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Let <n1×n2 be the linear space of all n1 × n2 real
matrices, not necessarily square or symmetric.

• Trace product:

〈X,Y 〉 =
∑
i,j

XijYji = Trace(XTY ).

• The Frobenius norm: ‖X‖ =
√
〈X,X〉.

• The nuclear norm: ‖X‖∗ =
∑min{n1,n2}

i=1 σi, where
σi, 1 ≤ i ≤ min{n1, n2} are the singular values of X.
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Given a linear mapping A : <n1×n2 → <m and b ∈ <m.

Consider the following nuclear norm minimization
problem with linear equality and second order cone
(SOC) constraints:

(P) min ‖X‖∗
s.t. A(X) ∈ b +Q,

where Q := {0}m1 ×Km2 and Km2 denotes the SOC of
dimension m2. Here, m = m1 + m2.



BJTU’09 Defeng Sun/NUS 4'

&

$

%

The problem (P) is the convex relaxationa of the rank
minimization problem with/without noise arising in
many fields of engineering and science.

The rank minimization problem is:

min Rank(X)

s.t. A(X) = b.

aRecht, B., Fazel, M. and Parrilo, P.A., Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization,
preprint.
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A special case is the matrix completion problem, which
has the form:

min rank(X)

s.t. Xij = Mij, (i, j) ∈ Ω,

where M is the unknown matrix with m available
sampled entries, and Ω is a set of index pairs (i, j) of
cardinality m.

• In this case, A(X) = XΩ, where XΩ ∈ <|Ω| is the
vector consisting of elements selected from X whose
indices are in Ω.
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• The rank minimization problem is NP-hard in general
and computationally hard to solve.

Question: How can we get the matrix with the
minimum rank of the rank minimization problem?

• A novel and tractable approacha is to consider solving
its convex relaxation problem:

(CRP) min ‖X‖∗
s.t. ‖b−A(X)‖ ≤ δ,

where δ ≥ 0 estimates the uncertainty about the
observation b.

aCandès, E.J. and Recht, B., Exact matrix completion via convex op-
timization, preprint.
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Some worksa,b consider solving the Lagrangian version
of (CRP):

min
X∈<n1×n2

1

2
‖A(X)− b‖2 + µ‖X‖∗.

• Although (CRP) and its Lagrangian version are
equivalent whenever δ and µ obey some special
relationship, it is generally hard to find the relationship.

aMa, S.Q., Goldfarb, D. and Chen, L.F., Fixed point and Bregman
iterative methods for matrix rank minimization, preprint, 2008.

bToh, K.C. and Yun, S.W., An accelerated proximal gradient algorithm
for nuclear norm regularized least squares problems, preprint, 2009.
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One obvious approach for (P) is to consider solving its
semidefinite programming (SDP) reformulation:

min (Tr(W1) + Tr(W2))/2

s.t. A(X) ∈ b +Q[
W1 X

XT W2

]
º 0.

But, the problem is:

The above approach makes the SDP more difficult since
it greatly enlarges the dimension of problem.

This suggests that other methods are needed to solve
(P) directly.
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Related Algorithms:

• The projected subgradient method [Recht, Fazel
and Parrilo]: Convergence?

• The singular value thresholding (SVT) algorithm
[Cai, Candès and Shen]: It is in the class of penalty
methods so that it requires large parameters.

• An accelerated proximal gradient (APG) algorithm
[Toh and Yun]: It is applied to the Lagrangian
version of (CRP).

• Fixed point method and Bregman iterative method
[Ma, Goldfarb and Chen]: They are also applied to
the Lagrangian version of (CRP).
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Our work: Three classes of proximal point algorithms
(PPA) in the primal, dual and primal-dual forms.

• The Lagrangian function of (P) in the extended form:

l(X, y) :=




‖X‖∗ + 〈y, b−A(X)〉 if y ∈ Q∗,

−∞ if y /∈ Q∗.

where Q∗ is the dual cone of Q.

• The dual problem of (P):

(D) max
y∈<m

{g(y) := inf
X∈<n1×n2

l(X, y)}.
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• The primal form.

The primal PPA is the application of the general
proximal point method to (P). That is,

Xk+1 ≈ arg min
X∈<n1×n2

{f(X) +
1

2λk
‖X −Xk‖2},

where f is the convex function defined by

f(X) = sup
y∈<m

l(X, y).

• How to approximately get Xk+1?
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For given λ > 0, let Θλ(y; X) be defined by

Θλ(y; X) = 〈b, y〉 − 1

2λ

(‖Pλ[X + λA∗(y)]‖2 − ‖X‖2),

where (y, X) ∈ <m ×<n1×n2 and for any λ > 0 and
X ∈ <n1×n2, Pλ(X) is the unique optimal solution to

min
Y ∈<n1×n2

λ‖Y ‖∗ +
1

2
‖Y −X‖2.
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Let X be of rank r and have the following singular value
decomposition:

X = UΣV T , Σ = diag({σi}1≤i≤r),

where U ∈ <n1×r and V ∈ <n2×r have orthonormal
columns, respectively, and the positive singular values σi

are arranged in descending order. Then,

Pλ(X) = Udiag(max{σi − λ, 0})V T .
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• The function Θλ(y; X) is continuously differentiable.
For any given X ∈ <n1×n2, we have

∇yΘλ(y; X) = b−APλ(X + λA∗(y)).

• For any given X ∈ <n1×n2, ∇yΘλ(·, X) is globally
Lipschitz continuous.
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• The primal PPA

For given X0 ∈ <n1×n2, λ0 > 0, and ρ > 1, the primal
PPA for solving problem (P) generates sequences
{yk} ⊂ <m and {Xk} ⊂ <n1×n2 for k = 0, 1, 2, . . .





yk+1 ≈ arg max
y∈Q∗

Θλk
(y; Xk),

Xk+1 = Pλk
[Xk + λkA∗(yk+1)],

λk+1 = ρλk or λk+1 = λk.
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• Connection to the SVT algorithm

For a special case of (P) without the SOC constraints,
from the primal PPA, if X0 = 0 and λ0 = λ−1 > 0, then
X1 is exactly the solution to the following regularized
problem:

min λ‖X‖∗ +
1

2
‖X‖2

s.t. A(X) = b .

The SVT algorithm by [Cai, Candès and Shen] solves it
by applying the gradient method to its dual problem
and it is just one-step of the primal PPA.
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• The dual form.

The dual PPA is the application of the general proximal
point method to the dual problem (D), instead of (P).

The sequence {yk} ⊂ Q∗ is generated by the dual PPA
as follows:

yk+1 ≈ argmax
y∈<m

{g(y)− 1

2λk
‖y − yk‖2}.

Recall that g(y) = inf
X∈<n1×n2

l(X, y).

• How can we approximately obtain yk+1?
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For given λ > 0, let Ψλ(X; y) be defined by

Ψλ(X; y) = ‖X‖∗+ 1

2λ

[‖ΠQ∗[y+λ(b−A(X))]‖2−‖y‖2],

where (X, y) ∈ <n1×n2 ×<m and for any λ > 0 and
x ∈ <m, ΠQ∗(x) is the unique optimal solution to

min
z∈Q∗

1

2
‖z − x‖2.
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For any x = (x1; x2) ∈ <m1 ×<m2, one has

ΠQ∗(x) = (x1; ΠKm2(x2)).

where ΠKm2(x2) is given by

ΠKm2(x2) =





1
2

(
1 + x2

0

‖x̄2‖
)
(‖x̄2‖; x̄2) if |x2

0| < ‖x̄2‖,
(x2

0; x̄
2) if ‖x̄2‖ ≤ x2

0,

0 if ‖x̄2‖ ≤ −x2
0,

here, x2 = (x2
0, x̄

2) ∈ < × <m2−1.
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• The dual PPA

For given y0 ∈ <m, λ0 > 0, and ρ > 1, the dual PPA for
solving problem (P) and (D) generates sequences
{yk} ⊂ <m and {Xk} ⊂ <n1×n2 for k = 0, 1, 2, . . .





Xk+1 ≈ arg min
X∈<n1×n2

Ψλk
(X; yk),

yk+1 = ΠQ∗[yk + λk(b−A(Xk+1))],

λk+1 = ρλk or λk+1 = λk.
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For the special case of (P) with equality constraints
only, then with y0 = 0,

y1 = λ0(b−A(X1)),

where X1 (approximately) solves the following penalized
problem:

min
X∈<n1×n2

{1

2
‖A(X)− b‖2 + λ−1

0 ‖X‖∗
}

.

Again, this says that y1 is the result for one-step of the
dual PPA.
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• Connection to the Bregman iterative method

The Bregman iterative method by [Ma, Goldfarb and
Chen] for solving the special case of (P) without noise
can be described as:




bk+1 = bk + (b−A(Xk))

Xk+1 = arg min
X∈<n1×n2

{1

2
‖A(X)− bk+1‖2 + µ‖X‖∗}

for some fixed µ > 0. By noting that bk+1 = µyk+1 with
µ = λk

−1, we know that the Bregman iterative method
is actually a special case of the dual PPA with λk ≡ µ−1.
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• The primal-dual form.

The primal-dual PPA is the application of the general
proximal point method to the monotone operator
corresponding to the convex-concave Lagrangian
function l, i.e.,

(Xk+1, yk+1) ≈ min
X∈<n1×n2

max
y∈<m

{l(X, y)+

+
1

2λk
‖X −Xk‖2 − 1

2λk
‖y − yk‖2}.

• How to get an approximation solution (Xk+1, yk+1)?
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• The primal-dual PPA-I

For given (X0, y0) ∈ <n1×n2 ×<m, λ0 > 0, and ρ > 1, the
primal-dual PPA-I for solving problem (P) and (D)
generates sequences {(Xk, yk)} ⊂ <n1×n2 ×<m for
k = 0, 1, 2, . . .





yk+1 ≈ arg max
y∈Q∗

{Θλk
(y; Xk) + 1

2λk
‖y − yk‖2},

Xk+1 = Pλk
[Xk + λkA∗(yk+1)],

λk+1 = ρλk or λk+1 = λk.
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• The primal-dual PPA-II

For given (X0, y0) ∈ <n1×n2 ×<m, λ0 > 0, and ρ > 1, the
primal-dual PPA-II for solving problem (P) and (D)
generates sequences {(Xk, yk)} ⊂ <n1×n2 ×<m for
k = 0, 1, 2, . . .




Xk+1 ≈ arg min
X∈<n1×n2

{Ψλk
(X; yk) + 1

2λk
‖X −Xk‖2},

yk+1 = ΠQ∗[yk + λk(b−A(Xk+1))],

λk+1 = ρλk or λk+1 = λk.
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• First-order methods for the inner problems

We consider the gradient projection method (GPM) to
solve the inner problems of the primal PPA and the
primal-dual PPA-I, which have the form:

(SP1) min{h(y) : y ∈ Q∗},
where h is continuously differentiable and its gradient is
Lipshitz continuous with modulus Lh > 0.
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For given y0 ∈ Q∗, the GPM for solving (SP1) is:

yk+1 = ΠQ∗[yk − αk∇h(yk)],

where αk > 0 is the steplength to be decided in various
rules, e.g., the Armijo line search rule or the constant
steplength rule:

αk = s with s ∈ (0, 2/Lh).

• The GPM has an iteration complexity of O(Lh/ε) for
achieving ε-optimality for any ε > 0.
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• An accelerated proximal gradient method

We consider an accelerated proximal gradient (APG)
method to solve the inner problems of the primal PPA
and the primal-dual PPA-II, which have the form:

(SP2) min
X∈<n1×n2

{H(X) := ‖X‖∗ + h(X)},

where h are proper, convex, continuously differentiable
on <n1×n2, and ∇h are globally Lipschitz continuous
with modulus Lh > 0.
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• The APG algorithm

For given τ0 = τ−1 = 1 and X0 = X−1 ∈ <n1×n2, the
APG algorithm applied to solving (SP2) can be
expressed as:





X̂k = Xk + τ−1
k (τk−1 − 1)(Xk −Xk−1),

Xk+1 = PL−1
h

[X̂k − L−1
h ∇h(X̂k)],

τk+1 = (
√

1 + 4τ 2
k + 1)/2,

where Lh is the Lipschitz modulus of h.



BJTU’09 Defeng Sun/NUS 30'

&

$

%

• The APG algorithm has an attractive iteration
complexity of O(

√
Lh/ε) for achieving ε-optimality for

any ε > 0.

♠ Why we do not apply the APG algorithm to the inner
problems of the primal PPA and the primal-dual PPA-I?

The reason is that it requires two SVDs in each
iteration. Two SVDs per iteration is too expensive.
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Numerical results

• Stopping Criteria:

‖b−A(Xk)‖
max{1, ‖b‖} < 5× 10−5

or ∣∣‖b−A(Xk)‖ − ‖b−A(Xk−1)‖
∣∣

max{1, ‖b‖} < 5× 10−5.

• PC: Intel Xeon 3.20GHz with 4GB, Linux and
Matlab (Version 7.6).

• PROPACK package to compute partial SVDs.
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Table 1: Numerical results for the primal PPA versus the SVT
algorithm.

n/r/(m/dr) method λ = n/2 λ = n λ = 5n λ = 10n

1000/50/4 PPA 64 60 88 169

SVT (δ = 1.0/p) fail fail 135 250
SVT (δ = 1.2/p) fail fail 112 208
SVT (δ = 1.5/p) fail fail 89 165

5000/50/5 PPA 70 72 86 141

SVT (δ = 1.0/p) fail fail 129 239
SVT (δ = 1.2/p) fail fail 108 199
SVT (δ = 1.5/p) fail fail 86 159
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Table 2: Numerical results for the primal PPA on random matrix completion
problems without noise.

Unknown M Results

n p r p/dr µ iter #sv time error

1000 119560 10 6 1.00e-03 54 10 5.77e+00 7.02e-05

389638 50 4 1.00e-03 61 50 3.19e+01 7.42e-05

569896 100 3 1.00e-03 77 100 1.03e+02 5.34e-05

5000 599936 10 6 2.00e-04 57 10 2.23e+01 6.11e-05

2487739 50 5 2.00e-04 72 50 2.13e+02 4.12e-05

3960882 100 4 2.00e-04 83 100 6.94e+02 1.04e-04

10000 1200730 10 6 1.00e-04 52 10 4.40e+01 1.43e-04

4985869 50 5 1.00e-04 81 50 5.61e+02 3.05e-05

7959722 100 4 1.00e-04 82 100 1.48e+03 8.35e-05

20000 2400447 10 6 5.00e-05 66 10 1.07e+02 1.20e-04

30000 3599590 10 6 3.33e-05 72 10 1.86e+02 5.90e-05

50000 5995467 10 6 2.00e-05 70 10 3.49e+02 5.59e-04

100000 11994813 10 6 1.00e-05 99 10 9.85e+02 8.58e-05
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Table 3: Numerical results for the primal PPA on random matrix completion
problems with noise. The noise factor is set to 0.1.

Unknown M Results

n p r p/dr µ iter #sv time error

1000 /0.10 119560 10 6 1.00e-03 39 10 5.30e+00 5.62e-02

389638 50 4 1.00e-03 47 51 3.06e+01 7.74e-02

569896 100 3 1.00e-03 48 100 6.23e+01 7.94e-02

5000 /0.10 599936 10 6 2.00e-04 45 10 2.31e+01 5.02e-02

2487739 50 5 2.00e-04 53 50 2.20e+02 5.93e-02

3960882 100 4 2.00e-04 47 100 4.07e+02 7.72e-02

10000 /0.10 1200730 10 6 1.00e-04 45 10 4.78e+01 4.89e-02

4985869 50 5 1.00e-04 36 50 2.89e+02 5.84e-02

7959722 100 4 1.00e-04 57 100 1.23e+03 6.82e-02

20000 /0.10 2400447 10 6 5.00e-05 47 10 9.26e+01 5.60e-02

30000 /0.10 3599590 10 6 3.33e-05 53 10 1.69e+02 4.80e-02

50000 /0.10 5995467 10 6 2.00e-05 58 10 3.28e+02 5.24e-02

100000 /0.10 11994813 10 6 1.00e-05 67 10 7.52e+02 5.42e-02
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Table 4: Numerical results for the dual PPA on random matrix completion prob-
lems without noise.

Unknown M Results

n p r p/dr µ iter #sv time error

1000 119560 10 6 1.44e-02 35 10 3.90e+00 1.05e-04

389638 50 4 5.37e-02 51 50 2.95e+01 6.21e-05

569896 100 3 8.66e-02 56 100 7.78e+01 2.41e-05

5000 599936 10 6 1.38e-02 42 10 1.71e+01 7.34e-05

2487739 50 5 6.08e-02 50 50 1.47e+02 6.50e-05

3960882 100 4 1.02e-01 56 100 4.32e+02 9.68e-05

10000 1200730 10 6 1.37e-02 40 10 2.96e+01 1.40e-04

4985869 50 5 5.93e-02 51 50 3.19e+02 6.54e-05

7959722 100 4 9.88e-02 56 100 9.05e+02 1.04e-04

20000 2400447 10 6 1.35e-02 45 10 6.72e+01 1.50e-04

30000 3599590 10 6 1.35e-02 54 10 1.21e+02 1.41e-04

50000 5995467 10 6 1.34e-02 58 10 2.46e+02 4.83e-05

100000 11994813 10 6 1.34e-02 55 10 5.19e+02 1.04e-04
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Table 5: Numerical results for the dual PPA on random matrix completion prob-
lems with noise. The noise factor is set to 0.1.

Unknown M Results

n p r p/dr µ iter #sv time error

1000 /0.10 119560 10 6 1.44e-02 29 10 3.95e+00 4.49e-02

389638 50 4 5.37e-02 31 50 1.52e+01 5.49e-02

569896 100 3 8.67e-02 39 100 4.36e+01 6.39e-02

5000 /0.10 599936 10 6 1.38e-02 39 10 2.20e+01 4.51e-02

2487739 50 5 6.08e-02 39 50 1.09e+02 4.96e-02

3960882 100 4 1.02e-01 41 100 2.71e+02 5.67e-02

10000 /0.10 1200730 10 6 1.37e-02 44 10 4.73e+01 4.53e-02

4985869 50 5 5.93e-02 39 50 2.26e+02 4.99e-02

7959722 100 4 9.89e-02 47 100 6.92e+02 5.73e-02

20000 /0.10 2400447 10 6 1.35e-02 44 10 9.65e+01 4.52e-02

30000 /0.10 3599590 10 6 1.35e-02 45 10 1.45e+02 4.53e-02

50000 /0.10 5995467 10 6 1.34e-02 47 10 2.70e+02 4.53e-02

100000 /0.10 11994813 10 6 1.34e-02 43 10 5.42e+02 4.53e-02
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Remarks:

• Comparing the performances of the primal PPA and
the dual PPA for random matrix completion problems
without and with noisy data, we observe that the dual
PPA outperforms the primal PPA.

F In our experiments, we observe that the performance
of the primal-dual PPA-I is similar to that of the primal
PPA, and the performance of the primal-dual PPA-II is
also similar to that of the dual PPA.


