An Efficient Inexact Accelerated Block Coordinate Descent Method for Least Squares Semidefinite Programming

Defeng Sun
Joint work with Kim-Chuan Toh and Liuqin Yang

Department of Mathematics, National University of Singapore

1 SDP and least squares SDP
2 Main ingredients

- A Danskin-type theorem
- Inexact APG
- Inexact block symmetric Gauss-Seidel iteration with a non-smooth block
3 Inexact accelerated block coordinate gradient descent method for composite problem with 2 non-smooth terms and a multiblock coupled smooth term
4 Inexact accelerated block coordinate descent (ABCD) method for dual SDP
5 Numerical experiments for LSSDP

SDP with an additional polyhedral set and inequalities:

$$
\begin{array}{ll}
\min & \langle C, X\rangle \\
\text { s.t. } & \mathcal{A}_{E}(X)=b_{E}, \mathcal{A}_{I} X-s=0, X \in \mathcal{S}_{+}^{n}, X \in \mathcal{P}, s \in \mathcal{K} \\
\mathcal{P}=\left\{W \in \mathcal{S}^{n}: L \leq W \leq U\right\}, \mathcal{K}=\left\{w \in \Re^{m_{I}}: l \leq w \leq u\right\} .
\end{array}
$$

Applying a proximal point algorithm (PPA) to solve above SDP:

$$
\begin{aligned}
\left(X^{k+1}, s^{k+1}\right)=\arg \min & \langle C, X\rangle+\frac{1}{2 \sigma_{k}}\left(\left\|X-X^{k}\right\|^{2}+\left\|s-s^{k}\right\|^{2}\right) \\
\text { s.t. } & \mathcal{A}_{E}(X)=b_{E}, \mathcal{A}_{I} X-s=0, X \in \mathcal{S}_{+}^{n}, \\
& X \in \mathcal{P}, s \in \mathcal{K} .
\end{aligned}
$$

Least squares semidefinite programming (LSSDP)

LSSDP includes PPA subproblem as a particular case: Given G, g,
(P) $\quad \min \frac{1}{2}\|X-G\|^{2}+\frac{1}{2}\|s-g\|^{2}$

$$
\text { s.t. } \mathcal{A}_{E}(X)=b_{E}, \mathcal{A}_{I} X-s=0, X \in \mathcal{S}_{+}^{n}, X \in \mathcal{P}, s \in \mathcal{K} .
$$

The dual of (\mathbf{P}) is given by
(D) $\min F\left(\boldsymbol{Z}, \boldsymbol{v}, \boldsymbol{S}, \boldsymbol{y}_{\boldsymbol{E}}, \boldsymbol{y}_{I}\right)$

$$
\begin{aligned}
& :=\delta_{\mathcal{P}}^{*}(-Z)+\delta_{\mathcal{K}}^{*}(-v)+\delta_{\mathcal{S}_{+}^{n}}(S) \\
& -\left\langle b_{E}, y_{E}\right\rangle+\frac{1}{2}\left\|\mathcal{A}_{E}^{*} y_{E}+\mathcal{A}_{I}^{*} y_{I}+S+Z+G\right\|^{2}+\frac{1}{2}\left\|v-y_{I}+g\right\|^{2} \\
& \quad+\mathrm{constant}
\end{aligned}
$$

$\delta_{\mathcal{C}}(\cdot)=$ indicator function over $\mathcal{C} ; \delta_{\mathcal{C}}(u)=0$ if $u \in \mathcal{C} ; \infty$ otherwise $\delta_{\mathcal{C}}^{*}(\cdot)$ is the conjugate function of $\delta_{\mathcal{C}}$ defined by

$$
\delta_{\mathcal{C}}^{*}(\cdot)=\sup _{W \in \mathcal{C}}\langle\cdot, W\rangle
$$

■ Block coordinate descent (BCD) type method [Luo,Tseng,...] with iteration complexity of $O(1 / k)$.

■ Accelerated proximal gradient (APG) method [Nesterov, BeckTeboulle] with iteration complexity of $O\left(1 / k^{2}\right)$.

- Accelerated randomized BCD-type method [Beck, Nesterov, Richtarik,...] with iteration complexity of $O\left(1 / k^{2}\right)$.

Consider block vectors $x=\left(x_{1}, x_{2}, \ldots, x_{s}\right) \in \mathcal{X}:=\mathcal{X}_{1} \times \mathcal{X}_{2} \cdots \times \mathcal{X}_{s}$, and

$$
\begin{aligned}
& \min \left\{p\left(x_{1}\right)+\varphi(z)+\phi(z, x) \mid z \in \mathcal{Z}, x \in \mathcal{X}\right\} \\
& =\min \left\{p\left(x_{1}\right)+f(x) \mid x \in \mathcal{X}\right\}
\end{aligned}
$$

where $p(\cdot), \varphi(\cdot)$ are convex functions (possibly nonsmooth), and

$$
\begin{aligned}
& f(x)=\min \{\varphi(z)+\phi(z, x) \mid z \in \mathcal{Z}\} \\
& z(x)=\operatorname{argmin}\{\ldots\}
\end{aligned}
$$

Assume that φ, ϕ satisfy the conditions in the next theorem, then f has Lipschitz continuous gradient $\nabla f(x)=\nabla_{x} \phi(z(x), x)$.
$\varphi: \mathcal{Z} \rightarrow(-\infty, \infty]$ is a closed proper convex function;
$\phi(\cdot, \cdot): \mathcal{Z} \times \mathcal{X} \rightarrow \Re$ is a convex function;
$\phi(z, \cdot): \Omega \rightarrow \Re$ is continuously differentiable on Ω for each z;
$\nabla_{x} \phi(z, x)$ is continuous on $\operatorname{dom}(\varphi) \times \Omega$.
Consider $f: \Omega \rightarrow[-\infty,+\infty)$ defined by

$$
\begin{equation*}
f(x)=\inf _{z \in \mathcal{Z}}\{\varphi(z)+\phi(z, x)\}, \quad x \in \Omega . \tag{1}
\end{equation*}
$$

Condition: The minimizer $z(x)$ is unique for each x and is bounded on a compact set.

Theorem 1

(i) If \exists an open neighborhood \mathcal{N}_{x} of x such that $z(\cdot)$ is bounded on any compact subset of \mathcal{N}_{x}, then the convex function f is differentiable on \mathcal{N}_{x} and

$$
\nabla f\left(x^{\prime}\right)=\nabla_{x} \phi\left(z\left(x^{\prime}\right), x^{\prime}\right) \quad \forall x^{\prime} \in \mathcal{N}_{x}
$$

(ii) Suppose that $z(\cdot)$ is bounded on any nonempty compact subset of \mathcal{Z}. Assume that for any $z \in \operatorname{dom}(\varphi), \nabla_{x} \phi(z, \cdot)$ is Lipschitz continuous on \mathcal{Z} and $\exists \Sigma \succeq 0$ such that for all $x \in \mathcal{X}$ and $z \in \operatorname{dom}(\varphi)$,

$$
\Sigma \succeq \mathcal{H} \quad \forall \mathcal{H} \in \partial_{x x}^{2} \phi(z, x)
$$

Then, $\nabla f(\cdot)$ is Lipschitz continuous on \mathcal{X} with the Lipschitz constant $\|\Sigma\|_{2}$ (the spectral norm of Σ) and for any $x \in \mathcal{X}$,

$$
\Sigma \succeq \mathcal{G} \quad \forall \mathcal{G} \in \partial_{x x}^{2} f(x)
$$

where $\partial_{r x}^{2} f(x)$ denotes the generalized Hessian of f at x.

Consider

$$
\min \{F(x):=p(x)+f(x) \mid x \in \mathcal{X}\}
$$

with $\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\| \quad \forall x, y \in \mathcal{X}$.
Algorithm. Input $y^{1}=x^{0} \in \operatorname{dom}(p), t_{1}=1$. Iterate

1. Find an approximate minimizer
$x^{k} \approx \underset{y \in \mathcal{X}}{\arg \min }\left\{p(y)+f\left(y^{k}\right)+\left\langle\nabla f\left(y^{k}\right), y-y^{k}\right\rangle+\frac{1}{2}\left\langle y-y^{k}, \mathcal{H}_{k}\left(y-y^{k}\right)\right\rangle\right\}$
where $\mathcal{H}_{k} \succ 0$ is an a priori given linear operator.
2. Compute $t_{k+1}=\frac{1+\sqrt{1+4 t_{k}^{2}}}{2}, y^{k+1}=x^{k}+\left(\frac{t_{k}-1}{t_{k+1}}\right)\left(x^{k}-x^{k-1}\right)$.

Consider the following admissible conditions

$$
\begin{gathered}
F\left(x^{k}\right) \leq p\left(x^{k}\right)+f\left(y^{k}\right)+\left\langle\nabla f\left(y^{k}\right), x^{k}-y^{k}\right\rangle+\frac{1}{2}\left\langle x^{k}-y^{k}, \mathcal{H}_{k}\left(x^{k}-y^{k}\right)\right\rangle \\
\nabla f\left(y^{k}\right)+\mathcal{H}_{j}\left(x^{k}-y^{k}\right)+\gamma^{k}=: \delta^{k} \quad \text { with }\left\|\mathcal{H}_{k}^{-1 / 2} \delta^{k}\right\| \leq \frac{\epsilon_{k}}{\sqrt{2} t_{k}}
\end{gathered}
$$

where $\gamma^{k} \in \partial p\left(x^{k}\right)=$ the set of subgradients of p at x^{k}, $\left\{\epsilon_{k}\right\}$ is a nonnegative summable sequence. Note $t_{k} \approx k / 2$ for k large.

Theorem 2 (Jiang-Sun-Toh)

Suppose the above conditions hold and $\mathcal{H}_{k-1} \succeq \mathcal{H}_{k} \succ 0$ for all k. Then

$$
0 \leq F\left(x^{k}\right)-F\left(x^{*}\right) \leq \frac{4}{(k+1)^{2}}\left(\sqrt{\tau}+\bar{\epsilon}_{k}\right)^{2}
$$

where $\tau=\frac{1}{2}\left\|x^{0}-x^{*}\right\|_{\mathcal{H}_{1}}^{2}, \bar{\epsilon}_{k}=\sum_{j=1}^{k} \epsilon_{j}$.

An inexact APG

Apply inexact APG to

$$
\min \left\{F(x):=p\left(x_{1}\right)+f(x) \mid x \in \mathcal{X}\right\}
$$

Since $\nabla f(\cdot)$ is Lipschitz continuous, \exists an symmetric and PSD linear operator $\mathcal{Q}: \mathcal{X} \rightarrow \mathcal{X}$ such that

$$
\mathcal{Q} \succeq \mathcal{M}, \quad \forall \mathcal{M} \in \partial^{2} f(x), \forall x \in \mathcal{X}
$$

and $\mathcal{Q}_{i i} \succ 0$ for all i.
Given y^{k}, we have for all $x \in \mathcal{X}$
$f(x) \leq q_{k}(x):=f\left(y^{k}\right)+\left\langle\nabla f\left(y^{k}\right), x-y^{k}\right\rangle+\frac{1}{2}\left\langle x-y^{k}, \mathcal{Q}\left(x-y^{k}\right)\right\rangle$.
APG subproblem: need to solve a nonsmooth QP of the form

$$
\min _{x \in \mathcal{X}}\left\{p\left(x_{1}\right)+q_{k}(x)\right\}, \quad x=\left(x_{1}, x_{2}, \ldots, x_{s}\right)
$$

which is not easy to solve!
Idea: add an additional proximal term to make it easier!

Given positive semidefinite linear operator \mathcal{Q} such that

$$
\mathcal{Q} x \equiv\left(\begin{array}{cccc}
\mathcal{Q}_{11} & \mathcal{Q}_{12} & \cdots & \mathcal{Q}_{1 s} \\
\mathcal{Q}_{12}^{*} & \mathcal{Q}_{22} & \cdots & \mathcal{Q}_{2 s} \\
\vdots & \vdots & \ddots & \vdots \\
\mathcal{Q}_{1 s}^{*} & \mathcal{Q}_{2 s}^{*} & \cdots & \mathcal{Q}_{s s}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{s}
\end{array}\right)
$$

where $\mathcal{Q}_{i i} \succ 0$. Consider the following block decomposition:

$$
\mathcal{U} x \equiv\left(\begin{array}{cccc}
0 & \mathcal{Q}_{12} & \cdots & \mathcal{Q}_{1 s} \\
& \ddots & & \vdots \\
& & \ddots & \mathcal{Q}_{s-1, s} \\
& & & 0
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{s}
\end{array}\right)
$$

Then $\mathcal{Q}=\mathcal{U}^{*}+\mathcal{D}+\mathcal{U}$, where $\mathcal{D} x=\left(\mathcal{Q}_{11} x_{1}, \ldots, \mathcal{Q}_{s s} x_{s}\right)$.

Consider the convex quadratic function:

$$
q(x):=\frac{1}{2}\langle x, \mathcal{Q} x\rangle-\langle r, x\rangle, \quad x=\left(x_{1}, \ldots, x_{s}\right) \in \mathcal{X} .
$$

Let $p: \mathcal{X}_{1} \rightarrow(-\infty,+\infty]$ be a given closed proper convex function. Define

$$
\mathcal{T}:=\mathcal{U D}^{-1} \mathcal{U}^{*}
$$

Let $y \in \mathcal{X}$ be given. Define

$$
\begin{equation*}
x^{+}:=\underset{x \in \mathcal{X}}{\arg \min }\left\{p\left(x_{1}\right)+q(x)+\frac{1}{2}\|x-y\|_{\mathcal{T}}^{2}\right\} . \tag{2}
\end{equation*}
$$

The quadratic term has $\mathcal{H}:=\mathcal{Q}+\mathcal{T}=(\mathcal{D}+\mathcal{U}) \mathcal{D}^{-1}\left(\mathcal{D}+\mathcal{U}^{*}\right) \succ 0$.
(2) is easier to solve!

An inexact block symmetric Gauss-Seidel (sGS) iteration

Theorem 3 (Li-Sun-Toh)

Given y. For $i=s, \ldots, 2$, define

$$
\begin{aligned}
\widehat{x}_{i} & :=\underset{x_{i}}{\arg \min }\left\{p\left(y_{1}\right)+q\left(y_{\leq i-1}, x_{i}, \widehat{x}_{\geq i+1}\right)-\left\langle\widehat{\delta}_{i}, x_{i}\right\rangle\right\} \\
& =\mathcal{Q}_{i i}^{-1}\left(r_{i}+\widehat{\delta}_{i}-\sum_{j=1}^{i-1} \mathcal{Q}_{j i}^{*} y_{j}-\sum_{j=i+1}^{s} \mathcal{Q}_{i j} \widehat{x}_{j}\right)
\end{aligned}
$$

computed in the backward GS cycle. The optimal solution x^{+}in (2) can be obtained exactly via

$$
\begin{aligned}
x_{1}^{+} & =\arg \min _{x_{1}}\left\{p\left(x_{1}\right)+q\left(x_{1}, \widehat{x}_{\geq 2}\right)-\left\langle\delta_{1}^{+}, x_{1}\right\rangle\right\} \\
x_{i}^{+} & =\arg \min _{x_{i}}\left\{p\left(x_{1}^{+}\right)+q\left(x_{\leq i-1}^{+}, x_{i}, \widehat{x}_{\geq i+1}\right)-\left\langle\delta_{i}^{+}, x_{i}\right\rangle\right\} \\
& =\mathcal{Q}_{i i}^{-1}\left(r_{i}+\delta_{i}^{+}-\sum_{j=1}^{i-1} \mathcal{Q}_{j i}^{*} x_{j}^{+}-\sum_{j=i+1}^{s} \mathcal{Q}_{i j} \widehat{x}_{j}\right)
\end{aligned}
$$

where $x_{i}^{+}, i=1,2, \ldots, s$, is computed in the forward GS cycle.
Very useful for multi-block ADMM! Reduces to classical block sGS if $p(\cdot)=0$

$$
\min \left\{p\left(x_{1}\right)+\varphi(z)+\phi(z, x) \mid z \in \mathcal{Z}, x \in \mathcal{X}\right\}
$$

Algorithm 2. Input $y^{1}=x^{0} \in \operatorname{dom}(p) \times \mathcal{X}_{2} \times \cdots \times \mathcal{X}_{s}, t_{1}=1$. Let $\left\{\epsilon_{k}\right\}$ be a nonnegative summable sequence. Iterate

1. Suppose $\delta_{i}^{k}, \widehat{\delta}_{i}^{k} \in \mathcal{X}_{i}, i=1, \ldots, s$, with $\widehat{\delta}_{1}^{k}=\delta_{1}^{k}$, are error vectors such that

$$
\begin{gathered}
\max \left\{\left\|\delta^{k}\right\|,\left\|\widehat{\delta}^{k}\right\|\right\} \leq \epsilon_{k} /\left(\sqrt{2} t_{k}\right) \\
z^{k}=\underset{z}{\arg \min }\left\{\varphi(z)+\phi\left(z, y^{k}\right)\right\} \quad \text { (elimination via Danskin) } \\
x^{k}=\underset{x}{\arg \min }\left\{p\left(x_{1}\right)+q_{k}(x)+\frac{1}{2}\left\|x-y^{k}\right\|_{\mathcal{T}}^{2}-\left\langle\Delta\left(\widehat{\delta}^{k}, \delta^{k}\right), x\right\rangle\right\} \\
\text { (inexact sGS) }
\end{gathered}
$$

2. Compute $t_{k+1}=\frac{1+\sqrt{1+4 t_{k}^{2}}}{2}, y^{k+1}=x^{k}+\left(\frac{t_{k}-1}{t_{k+1}}\right)\left(x^{k}-x^{k-1}\right)$.

Theorem 4

Let $\mathcal{H}=\mathcal{Q}+\mathcal{T}$ and $\beta=2\left\|\mathcal{D}^{-1 / 2}\right\|+\left\|\mathcal{H}^{-1 / 2}\right\|$. The sequence $\left\{\left(z^{k}, x^{k}\right)\right\}$ generated by Algorithm 2 satisfies

$$
0 \leq F\left(x^{k}\right)-F\left(x^{*}\right) \leq \frac{4}{(k+1)^{2}}\left(\sqrt{\tau}+\beta \bar{\epsilon}_{k}\right)^{2}
$$

where $\tau=\frac{1}{2}\left\|x^{0}-x^{*}\right\|_{\mathcal{H}}^{2}, \bar{\epsilon}_{k}=\sum_{j=1}^{k} \epsilon_{j}$.

Inexact ABCD for (D): version 1

Step 1. Suppose $\delta_{E}^{k}, \widehat{\delta}_{E}^{k} \in \mathcal{R}^{m_{E}}, \delta_{I}^{k}, \widehat{\delta}_{I}^{k} \in \mathcal{R}^{m_{I}}$ satisfy

$$
\begin{aligned}
& \max \left\{\left\|\delta_{E}^{k}\right\|,\left\|\delta_{I}^{k}\right\|,\left\|\widehat{\delta}_{E}^{k}\right\|,\left\|\widehat{\delta}_{I}^{k}\right\|\right\} \leq \frac{\epsilon_{k}}{\sqrt{2} t_{k}} . \\
&\left(Z^{k}, v^{k}\right)= \arg \min _{Z, v}\left\{F\left(Z, v, \widetilde{S}^{k}, \widehat{y}_{E}^{k}, \widetilde{y}_{I}^{k}\right)\right\} \quad(\text { Projection onto } \mathcal{P}, \mathcal{K}) \\
& \widehat{y}_{E}^{k}= \arg \min _{y_{E}}\left\{F\left(Z^{k}, v^{k}, \widetilde{S}^{k}, y_{E}, \widetilde{y}_{I}^{k}\right)-\left\langle\widehat{\delta}_{E}^{k}, y_{E}\right\rangle\right\} \quad \text { (Chol or CG) } \\
& \widehat{y}_{I}^{k}= \arg \min _{y_{I}}\left\{F\left(Z^{k}, v^{k}, \widetilde{S}^{k}, \widehat{y}_{E}^{k}, y_{I}\right)-\left\langle\widehat{\delta}_{I}^{k}, y_{I}\right\rangle\right\} \quad \text { (Chol or CG) } \\
& S^{k}= \arg \min _{S}\left\{F\left(Z^{k}, v^{k}, S, \widehat{y}_{E}^{k}, \widehat{y}_{I}^{k}\right)\right\} \quad \text { (Projection onto } \mathcal{S}_{+}^{n} \text {) } \\
& y_{I}^{k}= \arg \min _{y_{I}}\left\{F\left(Z^{k}, v^{k}, S^{k}, \widehat{y}_{E}^{k}, y_{I}\right)-\left\langle\delta_{I}^{k}, y_{I}\right\rangle\right\} \quad \text { (Chol or CG) } \\
& y_{E}^{k}= \arg \min _{y_{E}}\left\{F\left(Z^{k}, v^{k}, S^{k}, y_{E}, y_{I}^{k}\right)-\left\langle\delta_{E}^{k}, y_{E}\right\rangle\right\} \quad \text { (Chol or CG) }
\end{aligned}
$$

Step 2. Set $t_{k+1}=\frac{1+\sqrt{1+4 t_{k}^{2}}}{2}$ and $\beta_{k}=\frac{t_{k}-1}{t_{k+1}}$. Compute

$$
\left(\widetilde{S}^{k+1}, \widetilde{y}_{E}^{k+1}, \widetilde{y}_{I}^{k+1}\right)=\left(1+\beta_{k}\right)\left(S^{k}, y_{E}^{k}, y_{I}^{k}\right)-\beta_{k}\left(S^{k-1}, y_{E}^{k-1}, y_{I}^{k-1}\right)
$$

Inexact ABCD for (D): version 2

We can also treat $\left(S, y_{E}, y_{I}\right)$ as a single block and use a semismooth Newton-CG (SNCG) algorithm introduced in [Zhao-Sun-Toh] to solve it inexactly. Choose $\tau=10^{-6}$.

Step 1. Suppose $\delta_{E}^{k} \in \mathcal{R}^{m_{E}}, \delta_{I}^{k} \in \mathcal{R}^{m_{I}}$ are error vectors such that

$$
\max \left\{\left\|\delta_{E}^{k}\right\|,\left\|\delta_{I}^{k}\right\|\right\} \leq \frac{\epsilon_{k}}{\sqrt{2} t_{k}}
$$

Compute

$$
\begin{aligned}
& \left.\left(Z^{k}, v^{k}\right)=\underset{Z, v}{\arg \min }\left\{F\left(Z, v, \widetilde{S}^{k}, \widetilde{y}_{E}^{k}, \widetilde{y}_{I}^{k}\right)\right\} \quad \text { (Projection onto } \mathcal{P}, \mathcal{K}\right) \\
& \left(S^{k}, y_{E}^{k}, y_{I}^{k}\right)=\underset{S, y_{E}, y_{I}}{\arg \min }\left\{\begin{array}{c}
F\left(Z^{k}, v^{k}, S, y_{E}, y_{I}\right)+\frac{\tau}{2}\left\|y_{E}-\widetilde{y}_{E}^{k}\right\|^{2} \\
-\left\langle\delta_{E}^{k}, y_{E}\right\rangle-\left\langle\delta_{I}^{k}, y_{I}\right\rangle \\
\text { (SNCG) }
\end{array}\right\}
\end{aligned}
$$

Step 2. Set $t_{k+1}=\frac{1+\sqrt{1+4 t_{k}^{2}}}{2}, \beta_{k}=\frac{t_{k}-1}{t_{k+1}}$. Compute
$\left(\widetilde{S}^{k+1}, \widetilde{y}_{E}^{k+1}, \widetilde{y}_{I}^{k+1}\right)=\left(1+\beta_{k}\right)\left(S^{k}, y_{E}^{k}, y_{I}^{k}\right)-\beta_{k}\left(S^{k-1}, y_{E}^{k-1}, y_{I}^{k-1}\right)$.

■ We compare the performance of $A B C D$ against $B C D, A P G$ and eARBCG (an enhanced accelerated randomized block coordinate gradient method) for solving LSSDP.

- We test the algorithms on LSSDP problem (P) by taking $G=-C, g=0$ for the data arising from various classes of SDP of the form (SDP).

Let $\mathcal{P}=\left\{X \in \mathcal{S}^{n} \mid X \geq 0\right\}$.

- SDP relaxation of a binary integer nonconvex quadratic (BIQ) programming:

$$
\begin{array}{ll}
\min & \frac{1}{2}\langle Q, Y\rangle+\langle c, x\rangle \\
\text { s.t. } & \operatorname{diag}(Y)-x=0, \quad \alpha=1, \\
& X=\left[\begin{array}{cc}
Y & x \\
x^{T} & \alpha
\end{array}\right] \in \mathcal{S}_{+}^{n}, \quad X \in \mathcal{P}
\end{array}
$$

- SDP relaxation $\theta_{+}(G)$ of the maximum stable set problem of a graph G with edge set \mathcal{E} :
$\max \left\{\left\langle e e^{T}, X\right\rangle \mid X_{i j}=0,(i, j) \in \mathcal{E},\langle I, X\rangle=1, X \in \mathcal{S}_{+}^{n}, X \in \mathcal{P}\right\}$
■ SDP relaxation of clustering problems (RCPs):
$\min \left\{\langle W, I-X\rangle \mid X e=e,\langle I, X\rangle=K, X \in \mathcal{S}_{+}^{n}, X \in \mathcal{P}\right\}$
- SDP arising from computing lower bounds for quadratic assignment problems (QAPs):

$$
\begin{aligned}
v:=\min & \langle B \otimes A, Y\rangle \\
\text { s.t. } & \sum_{i=1}^{n} Y^{i i}=I, \quad\left\langle I, Y^{i j}\right\rangle=\delta_{i j} \quad \forall 1 \leq i \leq j \leq n, \\
& \left\langle E, Y^{i j}\right\rangle=1 \quad \forall 1 \leq i \leq j \leq n, \\
& Y \in \mathcal{S}_{+}^{n^{2}}, Y \in \mathcal{P}
\end{aligned}
$$

where $\mathcal{P}=\left\{X \in \mathcal{S}^{n^{2}} \mid X \geq 0\right\}$.
■ SDP relaxation of frequency assignment problems (FAPs):

- In order to get tighter bound for BIQ, we may add some valid inequalities to get the following problems:
$\min \frac{1}{2}\langle Q, Y\rangle+\langle c, x\rangle$
s.t. $\quad \operatorname{diag}(Y)-x=0, \alpha=1, X=\left[\begin{array}{cc}Y & x \\ x^{T} & \alpha\end{array}\right] \in \mathcal{S}_{+}^{n}, X \in \mathcal{P}$

$$
\begin{aligned}
& 0 \leq-Y_{i j}+x_{i} \leq 1, \quad 0 \leq-Y_{i j}+x_{j} \leq 1 \\
& 0 \leq x_{i}+x_{j}-Y_{i j} \leq 1, \quad \forall 1 \leq i<j, j \leq n-1
\end{aligned}
$$

We call the above problem an extended BIQ (exBIQ).

Stop the algorithms after 25,000 iterations, or

$$
\eta=\max \left\{\eta_{1}, \eta_{2}, \eta_{3}\right\}<10^{-6},
$$

where $\eta_{1}=\frac{\left\|b_{E}-\mathcal{A}_{E} X\right\|}{1+\left\|b_{E}\right\|}, \eta_{2}=\frac{\|X-Y\|}{1+\|X\|}, \eta_{3}=\frac{\left\|s-\mathcal{A}_{I} X\right\|}{1+\|s\|}$
$X=\Pi_{\mathcal{S}_{+}^{n}}\left(\mathcal{A}_{E}^{*} y_{E}+\mathcal{A}_{I}^{*} y_{I}+Z+G\right), Y=\Pi_{\mathcal{P}}\left(\mathcal{A}_{E}^{*} y_{E}+\mathcal{A}_{I}^{*} y_{I}+S+G\right)$,
$s=\Pi_{\mathcal{K}}\left(g-y_{I}\right)$.

problem set (No.) \solver	ABCD	APG	eARBCG	BCD
$\theta_{+}(64)$	64	64	64	11
FAP (7)	7	7	7	7
QAP (95)	95	95	24	0
BIQ (165)	165	165	165	65
RCP (120)	120	120	120	108
exBIQ (165)	165	141	165	10
Total (616)	616	592	545	201

Problem	$\begin{gathered} m_{E}, m_{I} ; n \\ \mathcal{P}, \mathcal{K} \end{gathered}$	$\begin{gathered} \eta \\ \mathrm{ABCD}\|\mathrm{APG}\| \mathrm{eARBCG} \end{gathered}$	time (hour:minute) ABCD \mid APG \| eARBCG		
1tc. 2048	$\begin{aligned} & 18945,0 ; \\ & 2048 \end{aligned}$	9.8-7 \| 9.8-7	9.4-7	7:35 \| 22:18	31:38
fap25	$\begin{aligned} & 2118,0 \\ & 2118 \end{aligned}$	9.2-7 \| 8.1-7	9.0-7	0:03\| 0:11	0:13
nug30	$\begin{aligned} & 1393,0 ; \\ & 900 \end{aligned}$	9.6-7 \| 9.9-7	1.4-6	0:10 \| 1:12	7:21
tho30	$\begin{aligned} & 1393,0 ; \\ & 900 \end{aligned}$	9.9-7 \| 9.9-7	1.6-6	0:13 \| 1:17	$3: 51$
ex-gka5f	$\begin{aligned} & 501,0.37 M \text {; } \\ & 501 \end{aligned}$	9.8-7 \| 1.6-6	9.9-7	0:24\| 2:26	4:00

Figure: Performance profiles of ABCD, APG, eARBCG and BCD on $[1,10]$

Number of problems which are solved to the accuracy of $10^{-6}, 10^{-7}$, 10^{-8} by the ABCD method.

problem set (No.)	10^{-6}	10^{-7}	10^{-8}
$\theta_{+}(64)$	64	58	52
FAP (7)	7	7	7
QAP (95)	95	95	95
BIQ (165)	165	165	165
RCP (120)	120	120	118
exBIQ (165)	165	165	165
Total (616)	616	610	602

Figure: Tolerance profiles of ABCD on $[1,10]$

Thank you for your attention!

