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GLOBAL AND SUPERLINEAR CONVERGENCE OF THE

SMOOTHING NEWTON METHOD AND ITS APPLICATION

TO GENERAL BOX CONSTRAINED VARIATIONAL

INEQUALITIES

X. CHEN, L. QI, AND D. SUN

Abstract. The smoothing Newton method for solving a system of nonsmooth
equations F (x) = 0, which may arise from the nonlinear complementarity
problem, the variational inequality problem or other problems, can be regarded
as a variant of the smoothing method. At the kth step, the nonsmooth function
F is approximated by a smooth function f(·, εk), and the derivative of f(·, εk)
at xk is used as the Newton iterative matrix. The merits of smoothing methods
and smoothing Newton methods are global convergence and convenience in
handling. In this paper, we show that the smoothing Newton method is also
superlinearly convergent if F is semismooth at the solution and f satisfies a

Jacobian consistency property. We show that most common smooth functions,
such as the Gabriel-Moré function, have this property. As an application, we
show that for box constrained variational inequalities if the involved function is
P–uniform, the iteration sequence generated by the smoothing Newton method
will converge to the unique solution of the problem globally and superlinearly
(quadratically).

1. Introduction

Let p, q : <n → <n be two smooth (continuously differentiable) mappings and
X be a closed convex set in <n. The general variational inequality problem,
GVI(X, p, q) for short, is to find a vector x ∈ <n such that

q(x) ∈ X, (y − q(x))T p(x) ≥ 0 for all y ∈ X.(1.1)

It is known (for example, see [10] for a proof in the case that q(x) = x) that
GVI(X, p, q) is equivalent to finding a zero of the following nonsmooth equation

q(x) −ΠX [q(x) − p(x)] = 0,(1.2)

where ΠX is the projection operator onto X under the Euclidean norm. Equation
(1.2) is called the generalized normal equation in [39]. GVI(X, p, q) is a gener-
alization of variational inequalities and general complementarity problems. The
variational inequality problem is to find an x ∈ X such that

(y − x)T p(x) ≥ 0 for all y ∈ X.(1.3)
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The general complementarity problem, GCP(p, q) for short, is to find an x ∈ <n
such that

q(x) ≥ 0, p(x) ≥ 0, q(x)T p(x) = 0.(1.4)

When q(x) = x, GCP(p, q) reduces to the nonlinear complementarity problem of
finding an x ∈ <n such that

x ≥ 0, p(x) ≥ 0, xT p(x) = 0.(1.5)

A lot of effort has been spent on complementarity problems and variational inequal-
ities, for a comprehensive survey see [20], [37].

In this paper we focus on general box constrained variational inequalities, i.e.,
we assume that in (1.1) X has the following box form:

X = {x ∈ <n| l ≤ x ≤ u},(1.6)

where l ∈ {<∪{−∞}}n, u ∈ {<∪{+∞}}n and l < u. In this case GVI(X, p, q) will
be denoted by GVI(l, u, p, q). GVI(l, u, p, q) includes two very useful models: gen-
eral complementarity problems and box constrained variational inequalities while
the latter is actually equivalent to what is called mixed complementarity problems
in some papers [2], [4], [9], [18]. Furthermore, GVI(l, u, p, q) models many important
problems in engineering, management and economics [20], [37].

When X is of the structure (1.6), problem (1.2) is equivalent to

q(x)− mid(l, u, q(x)− p(x)) = 0.(1.7)

Here mid(·) is the median operator, i.e., for three vectors a, b, c ∈ {< ∪ {±∞}}n
and a ≤ b,

(mid(a, b, c))i = mid(ai, bi, ci) =


ai if ci < ai,
ci if ai ≤ ci ≤ bi,
bi if bi < ci,

i = 1, ..., n.

If q(x) = x, (1.7) reduces to

x−mid(l, u, x− p(x)) = 0.(1.8)

Since the median operator is piecewise smooth, (1.7) and (1.8) are systems of
nonsmooth equations.

A considerable number of generalizations of Newton-type methods [15], [21], [23],
[29], [35], [36], [44], [47] have been developed for solving nonsmooth equation

F (x) = 0,(1.9)

where F : <n → <n is locally Lipschitz continuous but not differentiable. Some
of these methods solve a linear complementarity problem or a linear variational
inequality problem at each step. A natural extension of the classical Newton method
for solving (1.9) is

xk+1 = xk − V −1
k F (xk),(1.10)

where Vk is an n×n matrix in a generalized Jacobian of F at xk. For this method,
only a system of linear equations needs to be solved at each step. There are several
possible definitions of generalized Jacobians. We will discuss them in the next
section. It was proved in [40], [43] for the generalized Jacobians in the sense of
[7] and [40] that the sequence generated by (1.10) superlinearly (quadratically)
converges in a neighbourhood of a solution x∗ of (1.9) if F is (strongly) semismooth
at x∗ and all matrices in the generalized Jacobian of F at x∗ are nonsingular. Since
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most common nonsmooth functions, such as convex functions, piecewise smooth
functions, the Burmeister-Fischer function which is useful for nonsmooth equations
arising from the nonlinear complementarity problem [16], and their compositions
are semismooth functions, this extends the superlinear convergence theory of the
classical Newton method to the nonsmooth case. The function

F (x) = q(x) −mid(l, u, q(x)− p(x))(1.11)

is (strongly) semismooth if p and q are (twice) smooth. Globally and superlinearly
convergent methods for solving (1.9) can be constructed by combining this theory
with some global convergence techniques. Applications of this theory to the nonlin-
ear complementarity problem and the variational inequality problem can be found
in [8], [11], [12], [13], [14], [25], [27], [30], [31], [33], [34], [38], [48], [51]. For a general
survey on this development, see [26].

Another approach for solving (1.9) is the smoothing method [2], [3], [4], [18],
[28]. The feature of smoothing methods is to construct a smoothing approximation
function f : <n × <++ → <n of F such that for any ε > 0, f(·, ε) is continuously
differentiable and

‖F (x)− f(x, ε)‖ → 0 as ε→ 0+ for all x ∈ <n,
and then to find a solution of (1.9) by (inexactly) solving the following problems
for a given positive sequence {εk}, k = 0, 1, 2...,

f(x, εk) = 0.(1.12)

In [4], Chen and Mangasarian introduced a class of smoothing approximation func-
tions for nonlinear complementarity problems. Gabriel and Moré [18] extended
Chen-Mangasarian’s smoothing approach to box constrained variational inequali-
ties (1.8). Another class of smoothing approximation functions for general com-
plementarity problems (1.4) was given in [5]. Problems (1.8) and (1.4) are special
cases of general box constrained variational inequalities GVI(l, u, p, q). The mer-
its of the smoothing method are global convergence and convenience in handling
smooth functions instead of nonsmooth functions. However, (1.12), which needs to
be solved at each step, is nonlinear in general.

The smoothing Newton method can be regarded as a variant of the smoothing
method. It uses the derivative of f with respect to the first variable in the Newton
method, namely

xk+1 = xk − tkfx(x
k, εk)

−1F (xk),(1.13)

where εk > 0, fx(x
k, εk) denotes the derivative of f with respect to the first variable

at (xk, εk) and tk > 0 is the stepsize. The smoothing Newton method (1.13) for
solving nonsmooth equation (1.9) has been studied for decades in different areas [1],
[5], [6], [22], [32], [42], [46], [50]. In some previous papers, method (1.13) is called a
splitting method because F (·) is split into a smooth part f(·, ε) and a nonsmooth
part F (·)−f(·, ε). The global and linear convergence of (1.13) has been discussed in
[42], but so far no superlinear convergence result has been obtained. In this paper
we will address this problem by investigating the relation between the derivative
fx(x, ε) and the generalized Jacobian of F at x. We define a Jacobian consistency
property and show that the smoothing approximation functions in [4], [5], [18],
[42] have this property. Under mild conditions, we prove that the sequence {xk}
generated by the smoothing Newton method is bounded and each accumulation
point is a solution of (1.9). Furthermore, the convergence rate is superlinear if F is
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semismooth at the solution and the smoothing approximation function satisfies this
Jacobian consistency property. Moreover, the convergence rate is quadratic if F is
strongly semismooth at the solution. In particular, for box constrained variational
inequalities if p is a uniform P -function, then the smoothing Newton method has
three advantages:

• Solving a linear system of equations at each step;
• Guaranteeing that {xk} is bounded and converges to the unique solution;
• Having superlinear convergence rate.

There are a wide variety of algorithms for the solution of variational inequalities
with box constraints [4], [9], [13], [18], [27], [45], [48]. As said before, some of them
have nonlinear subproblems. The algorithm proposed in [8] for nonlinear comple-
mentarity problem (1.5), which is a special case of the box constrained variational
inequality problem, has the above three properties. The algorithms proposed in
[27], [48] based on a differentiable merit function (for a survey on merit functions,
see [17]) for the box constrained variational inequality problem have the above
three properties if p is a strongly monotone function, which is a stronger condition
than that of a uniform P -function. Hence, as an application, we present a method
for solving the general box constrained variational inequality problem with better
convergence properties.

This paper is organized as follows. In section 2, we define the Jacobian consis-
tency property. In section 3, we present the smoothing Newton method in detail
and prove that the method is globally and superlinearly convergent. In section 4,
we discuss the application of the smoothing Newton method to GVI(l, u, p, q) and
verify various assumptions. In section 5, we give some final remarks and point out
the possible availability of the smoothing Newton method to the order complemen-
tarity problem and the variational inequality problem (1.3).

We let ‖ · ‖ denote the Euclidean norm of <n and let

<+ = {ε | ε ≥ 0, ε ∈ <}
and

<++ = {ε | ε > 0, ε ∈ <}.
We denote the set of all nonnegative integers by N = {0, 1, ...}.

2. Jacobian consistency property

Let H : <n → <m be locally Lipschitz continuous. According to Rademacher’s
theorem, H is differentiable almost everywhere. Let DH be the set where H is
differentiable. There are several definitions of generalized Jacobians of H , which
can be used in the generalized Newton method. The B-differential of H [40] is
defined by

∂BH(x) = { lim
xk→x
xk∈DH

H ′(xk)}.

The generalized Jacobian of H at x in the sense of Clarke [7] is

∂H(x) = conv∂BH(x).

The superlinear convergence of (1.10) is established for these two kinds of general-
ized Jacobians in [40], [43]. Some other variants of Jacobians and their perturba-
tions are used in the literature [48], [49], [51]. A general range of different kinds of
generalized Jacobians, which are associated with superlinear convergence of (1.10),
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is discussed in [41]. In this paper, for the function F , we use a kind of generalized
Jacobian, denoted by ∂CF and defined as

∂CF (x) = ∂F1(x)× ∂F2(x)× . . .× ∂Fn(x).

This definition can be seen as a special case of the C-differential operator discussed
in [41] and is more suitable to the discussion in this paper.

We are now able to define the Jacobian consistency property.

Definition 2.1. Let F be a Lipschitz continuous function in <n. We call f :
<n × <++ → <n a smoothing approximation function of F if f is continuously
differentiable with respect to the first variable and there is a constant µ > 0 such
that for any x ∈ <n and ε ∈ <++,

‖f(x, ε)− F (x)‖ ≤ µε.(2.1)

Furthermore, if for any x ∈ <n,

lim
ε↓0

dist((∇xf(x, ε))T , ∂CF (x)) = 0,(2.2)

then we say f satisfies the Jacobian consistency property.

Remark 2.1. In condition (2.1), µε may be replaced by any nondecreasing function
σ : <+ → <+ such that σ(0) = 0 and σ(t) > 0 for t > 0. In this paper, however,
we will restrict our discussion to (2.1), because it makes the analysis significantly
simple.

For simplicity, in the remainder of this paper we denote

fx(x, ε) ≡ (∇xf(x, ε))T .

It was proved in [42] that for any continuous function F by using convolution we
can construct a smoothing approximation function f of F . We now investigate the
cases in which f has the Jacobian consistency property.

Chen and Mangasarian [4] introduced a class of smoothing functions for the
nonlinear complementarity problem (1.5). Gabriel and Moré [18] extended Chen-
Mangasarian’s smoothing approach to the box constrained variational inequality
problem (1.8). The result in [18] may be easily generalized to the function F
defined in (1.11). Let ρ : < → <+ be a density function with a bounded absolute
mean, that is

κ :=

∫ ∞

−∞
|s|ρ(s)ds <∞.(2.3)

Define the smoothing approximation h(x, ε) = (hi(x, ε)) to the mid function in
(1.11) by

hi(x, ε) =

∫ ∞

−∞
mid(li, ui, qi(x) − pi(x) − εs)ρ(s)ds.

Let

f(x, ε) = q(x)− h(x, ε).(2.4)

Following Lemma 2.3 and Theorem 3.3 in [18], we can show that fi is continuously
differentiable with respect to x and satisfies (2.1) with µ =

√
nκ. Hence f is a

smoothing approximation function of F .
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Now we show that f has the Jacobian consistency property. For i = 1, 2, ..., n,
it is easy to verify

∂BFi(x) =

 {p′i(x)} if qi(x) − pi(x) ∈ (li, ui),
{q′i(x)} if qi(x) − pi(x) 6∈ [li, ui],
{q′i(x), p′i(x)} if qi(x) − pi(x) = li or qi(x) − pi(x) = ui.

(2.5)

Following Lemma 2.3 in [18] again, we have

(fx(x, ε))i = q′i(x)−
(∫ (qi(x)−pi(x)−li)/ε

(qi(x)−pi(x)−ui)/ε
ρ(s)ds

)
(q′i(x)− p′i(x)).(2.6)

Hence for any fixed x,

lim
ε↓0

(fx(x, ε))i

=


p′i(x) if qi(x)− pi(x) ∈ (li, ui),
q′i(x) if qi(x)− pi(x) 6∈ [li, ui],

q′i(x)−
(∫ 0

−∞ ρ(s)ds
)

(q′i(x)− p′i(x)) if qi(x)− pi(x) = li,

q′i(x)− (∫∞0 ρ(s)ds
)
(q′i(x) − p′i(x)) if qi(x)− pi(x) = ui.

Since
∫ 0

−∞ ρ(s)ds and
∫∞
0 ρ(s)ds are in [0, 1], we obtain (2.2). Hence f has the

Jacobian consistency property.
The limit (2.2) implies that for any δ > 0 there is an ε(x, δ) > 0 such that for

any ε ∈ (0, ε(x, δ)]

dist(fx(x, ε), ∂CF (x)) ≤ δ.

Based on the Gabriel-Moré function, such ε(x, δ) for GVI(l, u, p, q) can be chosen
as follows.

Let

γ(x) = min
1≤i,j≤n

{|qi(x)− pi(x)− li|, |qj(x)− pj(x)− uj | :
qi(x) − pi(x) 6= li, qj(x) − pj(x) 6= uj}.(2.7)

Since
∫∞
0 s−1ds = ∞, (2.3) implies that the density function ρ satisfies

lim
s→∞ |s|2ρ(s) = 0.

Thus we may choose a positive constant τ ≤ 1 such that for any ν with |ν| ∈ (0, τ ],

ρ(
1

|ν| ) < ν2.

This implies that for any ε ∈ (0, τ ]

{
∫ −1/ε

−∞
ρ(s)ds,

∫ ∞

1/ε

ρ(s)ds} ≤
∫ ∞

1/ε

1

s2
ds = ε.(2.8)

If ‖q′(x) − p′(x)‖ = 0, then by (2.6) from any ε > 0, fx(x, ε) = q′(x) ∈ ∂CF (x).
Suppose that ‖q′(x)− p′(x)‖ 6= 0. Let

ε(x, δ) = min{τγ(x),
γ(x)δ

2
√
n‖q′(x)− p′(x)‖}.
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If qi(x) − pi(x) 6∈ [li, ui], then Fi is differentiable at x and F ′
i (x) = q′i(x). Hence in

this case for any ε ∈ (0, ε(x, δ)],

‖(fx(x, ε)− F ′(x))i‖

=

(∫ (qi(x)−pi(x)−li)/ε

(qi(x)−pi(x)−ui)/ε
ρ(s)ds

)
‖q′i(x) − p′i(x)‖(2.9)

≤
(∫ ∞

γ(x)/ε

1

s2
ds

)
‖q′i(x)− p′i(x)‖

≤ ε

γ(x)
‖q′i(x)− p′i(x)‖

≤ δ

2
√
n
,

where the first inequality follows from (2.8) and τ ≥ ε/γ(x).
If qi(x)− pi(x) ∈ (li, ui), then Fi is differentiable at x and F ′

i (x) = p′i(x). Hence
in this case for any ε ∈ (0, ε(x, δ)]

‖(fx(x, ε)− F ′(x))i‖

=

(
1−

∫ (qi(x)−pi(x)−li)/ε

(qi(x)−pi(x)−ui)/ε
ρ(s)ds

)
‖q′i(x)− p′i(x)‖(2.10)

=

(∫ (qi(x)−pi(x)−ui)/ε

−∞
ρ(s)ds +

∫ ∞

(qi(x)−pi(x)−li)/ε
ρ(s)ds

)
‖q′i(x)− p′i(x)‖

≤ 2ε

γ(x)
‖q′i(x)− p′i(x)‖

≤ δ/
√
n.

If qi(x) − pi(x) = li or qi(x) − pi(x) = ui, then

(fx(x, ε))i = q′i(x) − λε(q
′
i(x)− p′i(x)),

where λε ∈ [0, 1]. Thus in this case (fx(x, ε))i ∈ ∂Fi(x) for any ε > 0.
Hence, in any case, we have

dist((fx(x, ε))i, ∂Fi(x)) ≤ δ/
√
n.

Thus

dist(fx(x, ε), ∂CF (x)) ≤ δ.

By choosing a special density function, for any fixed x ∈ <n, we even can ask
that

fx(x, ε) ∈ ∂CF (x)(2.11)

for any ε > 0 sufficiently small. For instance, we consider the uniform density
function

ρ(s) =

{
1

b−a if s ∈ [a, b],

0 otherwise,

where a and b are two finite real numbers and a < b. Notice that the uniform
density function has∫ c

−∞
ρ(s)ds = 0,

∫ ∞

d

ρ(s)ds = 0 and

∫ d

c

ρ(s)ds = 1
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for any d ≥ b and c ≤ a. Then it is easy to verify that for any ε ∈ (0, γ(x)
max{|a|,|b|} ],∫ (qi(x)−pi(x)−li)/ε

(qi(x)−pi(x)−ui)/ε
ρ(s)ds =

{
0 if qi(x)− pi(x) 6∈ [li, ui],
1 if qi(x)− pi(x) ∈ (li, ui).

By (2.9) and (2.10), we obtain (2.11).
To see a smoothing approximation function with a concrete density function, we

consider

ρ(s) =

{
1 if − 1

2 ≤ s ≤ 1
2 ,

0 otherwise.
(2.12)

By a straightforward calculation we have that

fi(x, ε) = qi(x)−
∫ 1/2

−1/2

mid(li, ui, qi(x) − pi(x)− εs)ds

=



qi(x) − 1
ε (qi(x)− pi(x))(ui − li)− 1

2 (li + ui)− 1
2ε (l

2
i − u2

i )
if |qi(x) − pi(x) − li| ≤ ε

2 , |qi(x) − pi(x) − ui| ≤ ε
2 ,

1
2 (qi(x) + pi(x))− 1

2ε (qi(x)− pi(x)− li)
2 − ε

8 − li
2

if |qi(x) − pi(x) − li| ≤ ε
2 , qi(x) − pi(x) − ui < − ε

2 ,
1
2 (qi(x) + pi(x)) + 1

2ε (qi(x)− pi(x)− ui)
2 − ui

2 + ε
8

if |qi(x) − pi(x) − ui| ≤ ε
2 , qi(x) − pi(x)− li >

ε
2 ,

Fi(x) otherwise.

We can simplify the definition of f(x, ε) for special ε. For example, let

ε̄ = min
1≤i≤n

{ui − li}.(2.13)

For i = 1, 2, ..., n and ε ∈ (0, ε̄], the smoothing approximation function (2.4) with
density function (2.12) reduces to

fi(x, ε) =



1
2 (pi(x) + qi(x)) + 1

2ε (pi(x)− qi(x) + ui)
2 + ε

8 − ui
2

if |qi(x) − pi(x) − ui| ≤ ε
2 ,

1
2 (pi(x) + qi(x)) − 1

2ε (pi(x)− qi(x) + li)
2 − ε

8 − li
2

if |qi(x) − pi(x) − li| ≤ ε
2 ,

Fi(x) otherwise.

(2.14)

Let

ε(x) = min{ε̄, γ(x)},
where ε̄ is defined by (2.13) and γ(x) is defined by (2.7). Then for any ε ∈ (0, ε(x)],

(fx(x, ε))i =

{
1
2 (p′i(x) + q′i(x)) if qi(x) − pi(x) = ui or qi(x) − pi(x) = li,
F ′
i (x) otherwise.

By (2.5), this implies that for any ε ∈ (0, ε(x)],

dist(fx(x, ε), ∂CF (x)) = 0.

For the general complementarity problem GCP(p, q), f(x, ε) defined by (2.14)
reduces to

fi(x, ε) =

{
1
2 (pi(x) + qi(x)) − 1

2ε (pi(x)− qi(x))2 − ε
8 if |qi(x) − pi(x)| ≤ ε

2 ,
Fi(x) otherwise.

(2.15)

The function defined by (2.15) has been studied in [5], [42].
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Some smoothing approximation functions are not derivable from the integra-
tion of probability densities, for example, the Auto-scaling interior point smooth
function [3], but also satisfy the Jacobian consistency property.

3. A smoothing Newton method

In this section we assume that f has the Jacobian consistency property, and
present a smoothing Newton method with a line search based on f . We prove that
this method converges globally and superlinearly.

We denote

Θ(x) =
1

2
‖F (x)‖2

and

θk(x) =
1

2
‖f(x, εk)‖2.

Algorithm 3.1. Given ρ, α, η ∈ (0, 1), γ ∈ (0,+∞) and a starting point x0 ∈ <n.
Choose σ ∈ (0, 1

2 (1− α)), and µ > 0 satisfying (2.1).

Initial step. Let β0 = ‖F (x0)‖ and ε0 = α
2µβ0. For k ≥ 0,

1. Solve

F (xk) + fx(x
k, εk)d

k = 0.(3.1)

Let dk be the solution of (3.1).
2. Let mk be the smallest nonnegative integer m such that

θk(x
k + ρmdk)− θk(x

k) ≤ −2σρmΘ(xk).(3.2)

Set tk = ρmk and xk+1 = xk + tkd
k.

3. 3.1 If ‖F (xk+1)‖ = 0, terminate.
3.2 If ‖F (xk+1)‖ > 0 and

‖F (xk+1)‖ ≤ max{ηβk, α−1‖F (xk+1)− f(xk+1, εk)‖},(3.3)

we let

βk+1 = ‖F (xk+1)‖
and choose an εk+1 satisfying

0 < εk+1 ≤ min{ α
2µ

βk+1,
εk
2
}(3.4)

and

dist(fx(x
k+1, εk+1), ∂CF (xk+1)) ≤ γβk+1.(3.5)

3.3 If ‖F (xk+1)‖ > 0 but (3.3) does not hold, we let βk+1 = βk and εk+1 = εk.

Without loss of generality, we assume that ‖F (xk)‖ 6= 0 for all k in the following
convergence analysis.

Remark 3.1. Condition (3.5) is the crucial condition for superlinear convergence
of Algorithm 3.1. To guarantee global convergence, one only needs to choose a
smoothing approximation function f and ignore (3.5). If f has the Jacobian consis-
tency property, we can find an εk+1 > 0 such that (3.4) and (3.5) hold by Definition
2.1. Moreover, we have shown, in section 2, how to choose an εk+1 satisfying (3.4)
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and (3.5) for GVI(l, u, p, q); we also show that it is possible to choose an εk+1 sat-
isfying (3.4) and (3.5) for order complementarity problems in section 5. From the
construction of Algorithm 3.1, we have

‖F (xk)− f(xk, εk)‖ ≤ α‖F (xk)‖ for k ≥ 0(3.6)

and

dist(fx(x
k, εk), ∂CF (xk)) ≤ γ‖F (xk)‖ for k ∈ K, k ≥ 1,

(3.7)

where

K = {0} ∪ {k | ‖F (xk)‖ ≤ max{ηβk−1, α
−1‖f(xk, εk−1)− F (xk)‖}, k ∈ N}.

(3.8)

Notice that (3.7) may not hold for those k such that (3.3) fail to hold.

Lemma 3.1. Suppose that fx(x
k, εk) is nonsingular. Then there exists a finite

nonnegative integer mk such that (3.2) holds.

Proof. The continuous differentiability of f(·, εk) implies that θk is continuously
differentiable and θ′k(x

k) = f(xk, εk)
T fx(x

k, εk). By the construction of Algorithm
3.1, fx(x

k, εk)d
k = −F (xk). Then, from (3.6) we have

θk(x
k + tdk)− θk(x

k)

= tθ′k(x
k)dk + o(t)

= −tF (xk)T f(xk, εk) + o(t)

= −2tΘ(xk) + tF (xk)T (F (xk)− f(xk, εk)) + o(t)

≤ −2tΘ(xk) + 2tαΘ(xk) + o(t)

= −2t(1− α)Θ(xk) + o(t).

Since σ < 1
2 (1 − α) < 1− α, there exists a finite nonnegative integer mk such that

(3.2) holds.

Assumption 1. The level set

D0 = {x ∈ <n : Θ(x) ≤ (1 + α)2Θ(x0)}
is bounded.

Assumption 2. For any ε ∈ <++ and x ∈ D0, fx(x, ε) is nonsingular.

Theorem 3.1. Suppose that Assumptions 1 and 2 hold. Then Algorithm 3.1 is
well defined and the generated sequence {xk} remains in D0 and satisfies

lim
k→0

F (xk) = 0.(3.9)

Proof. Let us denote

K1 = {k ∈ K| ηβk−1 ≥ α−1‖f(xk, εk−1)− F (xk)‖}
and

K2 = {k ∈ K| ηβk−1 < α−1‖f(xk, εk−1)− F (xk)‖}.
Then K1 ∪ K2 ∪ {0} = K, which is defined in (3.8). Assume that K consists of
k0 = 0 < k1 < k2 < . . . . Let k be an arbitrary nonnegative integer. Let kj be the
largest number in K such that kj ≤ k. Then

εk = εkj and βk = βkj .
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Notice that f is a smoothing approximation function. By the line search rule (3.2),

‖f(xk, εkj )‖ ≤ ‖f(xkj , εkj )‖.
Then by (2.1), for j ≥ 0,

‖F (xk)‖ ≤ ‖f(xk, εk)‖+ ‖F (xk)− f(xk, εk)‖
= ‖f(xk, εkj )‖+ ‖F (xk)− f(xk, εkj )‖
≤ ‖f(xkj , εkj )‖+ µεkj

≤ ‖F (xkj )‖ + µεkj + µεkj

= βkj + 2µεkj .

(3.10)

If j = 0, βkj = β0, εkj = ε0 and

‖F (xk)‖ ≤ β0 + 2µε0 ≤ (1 + α)‖F (x0)‖.
If j ≥ 1, by step 3 of Algorithm 3.1,

εkj ≤
1

2
εkj−1 =

1

2
εkj−1

and
βkj ≤ ηβkj−1 = ηβkj−1 , if kj ∈ K1,

or

βkj ≤ α−1‖f(xkj , εkj−1)− F (xkj )‖ ≤ µ

α
εkj−1 =

µ

α
εkj−1 ≤

1

2
βkj−1 , if kj ∈ K2.

Let

r = max{1

2
, η}.

Then by the definitions of ε0 and β0, for j ≥ 1,

εkj ≤
1

2(j−1)
ε0 =

1

2j
α

µ
‖F (x0)‖(3.11)

and

βkj ≤ rj−1β0 = rj−1‖F (x0)‖.(3.12)

Hence by (3.10), for j ≥ 1

‖F (xk)‖ ≤ (rj−1 +
α

2j−1
)‖F (x0)‖

≤ rj−1(1 + α)‖F (x0)‖,(3.13)

where the last inequality follows from the fact that 1
2 ≤ r.

Therefore in any case

‖F (xk)‖ ≤ (1 + α)‖F (x0)‖.
This implies that the sequence {xk} remains in the level set D0.

Now we prove (3.9). If K is infinite, by (3.13),

lim
k→∞

‖F (xk)‖ ≤ lim
j→∞

rj−1(1 + α)‖F (x0)|| = 0.

Hence to prove (3.9), it suffices to prove that K is infinite. Suppose that K is finite.

This means that both K1 and K2 are finite. Let k̂ be the largest number in K.

Then for all k > k̂,

εk = εk̂, βk = βk̂ = ‖F (xk̂)‖,(3.14)
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‖F (xk)‖ > ηβk = η‖F (xk̂)‖ > 0(3.15)

and

α‖F (xk)‖ > ‖f(xk, εk̂)− F (xk)‖.(3.16)

By (3.15), for all k > k̂,

Θ(xk) ≥ η2Θ(xk̂).(3.17)

Let
ε̂ = εk̂,

f̂(x) = f(x, ε̂)

and

θ̂(x) =
1

2
‖f̂(x)‖2.

Notice that for all k > k̂,

f(xk, εk) = f̂(xk) and θk(x
k) = θ̂(xk).

By Assumptions 1 and 2 there is an M > 0 such that for all x ∈ D0, ‖fx(x, ε̂)−1‖
≤M . Then for all k > k̂,

‖dk‖ = ‖fx(xk, ε̂)−1F (xk)‖
≤ M‖F (xk)‖
≤ M(1 + α)‖F (x0)‖
=: L.

If infk tk = t∗ > 0, then from (3.17) and the line search rule (3.2), for all k ≥ 0,

θ̂(xk+1)− θ̂(xk) ≤ −2σtkΘ(xk) ≤ −2σt∗η2Θ(xk̂) < 0.

This, together with the monotonicity of {θ̂(xk)}k≥k̂, implies that θ̂(xk) → −∞ as

k →∞. This contradicts the fact that θ̂(xk) ≥ 0 for all k ≥ 0. Hence K cannot be
finite. Thus (3.9) holds.

Now we consider the case that infk tk = 0. Let K0 be a subsequence of N such
that {tk}k∈K0 converges to zero. Since {xk} is bounded, without loss of generality,
we assume that {xk}k∈K0 converges to x∗.

By the line search rule (3.2) for all k ≥ k̂,

− 2σρmk−1Θ(xk) < θ̂(xk + ρmk−1dk)− θ̂(xk).(3.18)

Dividing both sides by ρmk−1, we obtain

−2σΘ(xk) <
θ̂(xk + ρmk−1dk)− θ̂(xk)

ρmk−1

= θ̂′(xk)dk +

∫ 1

0

((θ̂′(xk + λρmk−1dk)− θ̂′(xk))dk)dλ.

Notice that

θ̂′(xk)dk = −F (xk)T f̂(xk)

= −2Θ(xk) + F (xk)(f̂(xk)− F (xk))

≤ −2Θ(xk) + 2αΘ(xk),

where the last inequality follows from (3.16).
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By the continuity of θ̂′, the boundedness of {dk} and limk∈K0
k→∞

mk = ∞, we have

lim
k∈K0
k→∞

∫ 1

0

((θ̂′(xk + λρmk−1dk)− θ̂′(xk))dk)dλ = 0.

By taking the limit in (3.18) on the subsequence k ∈ K0, we obtain

−2σΘ(x∗) ≤ −2(1− α)Θ(x∗) < 0.

This implies σ ≥ (1 − α), which contradicts the fact that σ < (1− α)/2. Hence K
cannot be finite. Thus (3.9) holds.

To show the superlinear convergence rate, we give the following lemma.

Lemma 3.2. If there exists a scalar

λ ∈ [
1

2
− (1 − α− 2σ)2

2(2 + α)2
,
1

2
](3.19)

such that for some k ∈ K,

Θ(y)−Θ(xk) ≤ −2λΘ(xk),(3.20)

then it holds that

θk(y)− θk(x
k) ≤ −2σΘ(xk).(3.21)

Proof. By the definition of K, we have

0 < εk ≤ α

2µ
‖F (xk)‖, k ∈ K.

Hence, from (2.1), for any y ∈ <n, k ∈ K,

‖f(y, εk)‖ ≤ ‖F (y)‖+
α

2
‖F (xk)‖

and

‖f(xk, εk)‖ ≥ ‖F (xk)‖ − α

2
‖F (xk)‖.

Using these two inequalities and (3.20), we obtain

θk(y)− θk(x
k) =

1

2
‖f(y, εk)‖2 − 1

2
‖f(xk, εk)‖2

≤ 1

2
(‖F (y)‖+

α

2
‖F (xk)‖)2 − 1

2
(1− α

2
)2‖F (xk)‖2

= Θ(y) +
1

2
α‖F (y)‖‖F (xk)‖+

α2

4
Θ(xk)− (1− α +

α2

4
)Θ(xk)

= Θ(y) +
1

2
α‖F (y)‖‖F (xk)‖ − (1 − α)Θ(xk)

≤ Θ(y) + α
√

1− 2λΘ(xk)− (1 − α)Θ(xk)

= Θ(y)−Θ(xk) + α(1 +
√

1− 2λ)Θ(xk)

≤ −(2λ− α(1 +
√

1− 2λ))Θ(xk),

where the second and last inequalities follow from (3.20).
Let us denote

φ(λ) = λ− 1

2
α(1 +

√
1− 2λ).
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To prove (3.21), it suffices to show

φ(λ) ≥ σ for λ ∈ [
1

2
− (1− α− 2σ)2

2(2 + α)2
,
1

2
].(3.22)

Since 0 < (1− α− 2σ)/(2 + α) < 1,

(1 − α− 2σ)2

(2 + α)2
≤ 1− α− 2σ

2 + α
.(3.23)

Notice that φ is monotone increasing in [0, 1
2 ]. We only need to show (3.22) at

λ̄ = 1
2 − (1−α−2σ)2

2(2+α)2 . By the definition of φ and (3.23),

φ(λ̄) =
1

2
− (1 − α− 2σ)2

2(2 + α)2
− 1

2
α(1 +

1− α− 2σ

2 + α
)

≥ 1

2
− 1− α− 2σ

2 + α
− α

2
(1 +

1− α− 2σ

2 + α
)

=
1

2
− α

2
≥ σ.

This completes the proof.

Theorem 3.2. Suppose that Assumptions 1 and 2 hold. Suppose that for an ac-
cumulation point x∗ of the sequence {xk}, all V ∈ ∂CF (x∗) are nonsingular and
that F is semismooth at x∗. Then x∗ is a solution of F (x) = 0 and the sequence
{xk} generated by Algorithm 3.1 converges to x∗ superlinearly. Moreover, if F is
strongly semismooth at x∗, then {xk} converges to x∗ quadratically.

Proof. By Theorem 3.1, x∗ is a solution of F (x) = 0. Notice that ∂BF (x∗) ⊆
∂CF (x∗). By Proposition 2.5 in [40] there is a neighbourhood of x∗ such that x∗ is
the unique solution in this neighbourhood.

By Theorem 3.1, the set K defined by (3.8) is infinite, and there is a subsequence
K0 of K such that {xk}k∈K0 converges to x∗. Now we consider the convergence
behaviour of the subsequence {xk}k∈K0 .

Notice that for any x ∈ <n, ∂CF (x) is a compact set. Let Vk ∈ ∂CF (xk) be such
that

dist(fx(x
k, εk), ∂CF (xk)) = ‖fx(xk, εk)− Vk‖.

By construction of Algorithm 3.1,

‖fx(xk, εk)− Vk‖ ≤ γβk, k ∈ K0.

By Theorem 3.1, βk → 0 as k → ∞. This, together with the compactness of
∂CF (x∗), the nonsingularity of all V ∈ ∂CF (x∗) and the upper semicontinuity of

∂CF (·) at x∗, implies that there exist M > 0 and k̂ ≥ 0 such that for all k ≥ k̂ and
k ∈ K0, ‖fx(xk, εk)−1‖ ≤ M. Therefore, by the construction of Algorithm 3.1, for

all k ≥ k̂ and k ∈ K0,

‖xk + dk − x∗‖ = ‖xk − x∗ − fx(x
k, εk)

−1F (xk)‖
= ‖fx(xk, εk)−1(fx(x

k, εk)(x
k − x∗)− F (xk) + F (x∗))‖

≤ ‖fx(xk, εk)−1‖ (‖(fx(xk, εk)− Vk)(x
k − x∗)‖

+‖Vk(xk − x∗)− F (xk) + F (x∗)‖)
≤M(γβk‖xk − x∗‖+ ‖Vk(xk − x∗)− F (xk) + F (x∗)‖).(3.24)
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Since F is semismooth at x∗ if and only if each Fi is semismooth at x∗ [43], by
Theorem 3.2 in [43],

‖Vk(xk − x∗)− F (xk) + F (x∗)‖

≤
√√√√ n∑

i=1

‖V i
k (xk − x∗)− Fi(xk) + Fi(x∗)‖2

= o(‖xk − x∗‖) as k→∞, k ∈ K0,

(3.25)

where V i
k denotes the ith row of Vk. Hence

‖xk + dk − x∗‖ = o(‖xk − x∗‖) as k →∞, k ∈ K0.(3.26)

Furthermore, following the proof of Theorem 3.1 in [40]

‖F (xk + dk)‖ = o(‖F (xk)‖) as k →∞, k ∈ K0.(3.27)

Let λ = max
{

1
2 − (1−α−2σ)2

2(2+α)2 , 1−η2

2

}
. Then (3.27) implies that there is k̄ ≥ k̂ such

that k̄ ∈ K0 and for any k ≥ k̄ and k ∈ K0,

Θ(xk + dk)−Θ(xk) ≤ −2λΘ(xk).(3.28)

By Lemma 3.2, for any k ≥ k̄ and k ∈ K0,

θk(x
k + dk)− θk(x

k) ≤ −2σΘ(xk),

that is, tk ≡ 1 and xk+1 = xk + dk for all k ≥ k̄ and k ∈ K0. In particular,
xk̄+1 = xk̄ + dk̄ and from (3.28),

‖F (xk̄+1)‖ ≤ √
1− 2λ‖F (xk̄)‖ ≤ η‖F (xk̄)‖ = ηβk̄,

which implies that xk̄+1 ∈ K0. Repeating the above process we may prove that for
all k ≥ k̄,

k ∈ K0

and
xk+1 = xk + dk.

Then by using (3.26) we have proved that {xk} converges to x∗ superlinearly.
If F is strongly semismooth at x∗, then each Fi is also strongly semismooth at

x∗. By (3.25) and Lemma 2.3 in [40],

‖Vk(xk − x∗)− F (xk) + F (x∗)‖ = O(‖xk − x∗‖2).

By the Lipschitz continuity of F , for all k ∈ K0,

βk = ‖F (xk)‖ = O(‖xk − x∗‖).
Hence the quadratic convergence follows easily from (3.24) and the above proof.

4. Application

In this section we discuss an application of Algorithm 3.1 to general box con-
strained variational inequalities GVI(l, u, p, q). Conditions used in the convergence
analysis of Algorithm 3.1 are Assumptions 1 and 2, and the condition that F is
semismooth at a solution point x∗ and all V ∈ ∂CF (x∗) are nonsingular. Now we
consider when these conditions hold for the smoothing approximation function f
defined by (2.4) and the nonsmooth function F defined by (1.11).

Let A be an n × n matrix. A is called a P0-matrix, if its principal minors are
all nonnegative, and A is called a P -matrix, if its principal minors are all positive.
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We call p : <n → <n a uniform P -function with respect to q if there is a positive
constant κ such that

max
1≤i≤n

(qi(x)− qi(y))(pi(x) − pi(y)) ≥ κ‖x− y‖2.(4.1)

If q is the identity map and (4.1) holds, then we call p a uniform P -function directly.
The concepts of a P -matrix and a uniform P -function have been frequently used

in complementarity and variational inequalities areas.

Proposition 4.1. Suppose that q is norm coercive, i.e., ‖q(x)‖ → ∞ if and only
if ‖x‖ → ∞. Then the level sets

D(Γ) = {x ∈ <n : ‖F (x)‖ ≤ Γ}

are bounded for all positive numbers Γ if one of the following two conditions is
satisfied:

(i) l and u are both bounded;
(ii) p is a uniform P -function with respect to q and q is surjective and Lipschitz

continuous.

Proof. Since q is norm coercive, the boundedness of D(Γ) under assumption (i)
follows easily.

Next we prove the boundedness of D(Γ) under assumption (ii). It is not difficult
to verify that for a, b ∈ <n,

|ai −mid(li, ui, ai − bi)| → ∞ as |ai|, |bi| → ∞.(4.2)

Suppose that there exists one Γ > 0 such that D(Γ) is unbounded, i.e., there exists
a sequence {xk} ⊆ D(Γ) such that ‖xk‖ → ∞. Since q is norm coercive, {‖q(xk)‖}
is unbounded. Define the index set J by J := {i| {qi(xk)} is unbounded, i =
1, 2, ..., n}. Then J 6= ∅. Since q is surjective, we can choose yk ∈ <n such that

qi(y
k) =

{
qi(x

k) if i /∈ J,
0 if i ∈ J.

Then {‖q(yk)‖}, and so {‖yk‖}, is bounded. Since p is a uniform P -function with
respect to q, there is a positive number κ such that

κ‖xk − yk‖2 ≤ max
1≤i≤n

(qi(x
k)− qi(y

k))(pi(x
k)− pi(y

k))

≤ max
1≤i≤n

|qi(xk)− qi(y
k)||pi(xk)− pi(y

k)|,
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which, together with the Lipschitz continuity of q, implies that

L−2κ
∑
i∈J

(qi(x
k))2 = L−2κ‖q(yk)− q(xk)‖2

≤ κ‖xk − yk‖2

≤ max
1≤i≤n

|qi(yk)− qi(x
k)||pi(xk)− pi(y

k)|

= max
i∈J

|qi(xk)||pi(xk)− pi(y
k)|

≤
√∑

i∈J
(qi(xk))2 max

i∈J
|pi(xk)− pi(y

k)|,

where L is the Lipschitz constant of q. Then maxi∈J |pi(xk)−pi(y
k)| → ∞ as k →

∞. Since {‖p(yk)‖} is bounded, for each k there exists at least one ik ∈ J such that

|pik(xk)| → ∞.

Since J has only a finite number of elements, by taking a subsequence if necessary,
we may assume that there exists an i ∈ J such that

|pi(xk)| → ∞.

Then we have proved that there exists at least one i ∈ J such that

|qi(xk)|, |pi(xk)| → ∞,

which, together with (4.2), implies that for such i, {|Fi(xk)|} is unbounded. This
is a contradiction. So for every Γ > 0, the level set D(Γ) is bounded.

Remark 4.1. Let I = {i| li = −∞ or ui = ∞, i = 1, ..., n}. Notice that the index
set J in the proof of Proposition 4.1 is a subset of I. Conditions (i) and (ii) in
Proposition 4.1 can be replaced by the following condition

κ
∑
i∈I

(qi(x) − qi(y))
2 ≤ max

1≤i≤n
(qi(x) − qi(y))(pi(x)− pi(y)).(4.3)

Moreover, if condition (i) holds, then I = ∅, so (4.3) holds directly. If condition (ii)
holds, then from ∑

i∈I
(qi(x)− qi(y))

2 ≤ ‖q(x)− q(y)‖2,

we have (4.3).

Proposition 4.2. Suppose that q′(x) is nonsingular at x ∈ <n.
(i) If p′(x)q′(x)−1 is a P -matrix, then for any ε > 0, fx(x, ε) and all elements

in ∂CF (x) are nonsingular;
(ii) If p′(x)q′(x)−1 is a P0-matrix and the support of the density function ρ,

supp(ρ) = {s : ρ(s) > 0}
is the whole real line. Then for any ε > 0, fx(x, ε) is nonsingular.
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Proof. (i) By (2.6),

fx(x, ε) = q′(x)−D(x)(q′(x) − p′(x)),(4.4)

where D(x) =diag(di(x)) has di(x) ∈ [0, 1]. Let

P(x) := q′(x)−

 [0, 1]
. . .

[0, 1]

 (q′(x)− p′(x)).

By Lemma 5.1 in [39], all elements in P(x) are nonsingular. Obviously, fx(x, ε) ∈
P(x) and ∂CF (x) ⊆ P(x). Hence we obtain (i).

(ii) Supp(ρ) = < implies that the diagonal matrix D(x) in (4.4) has di(x) ∈ [0, 1).
By Theorem 4.2 in [18],

I −D(x)(I − p′(x)q′(x)−1)

is nonsingular. Thus

fx(x, ε) = (I −D(x)(I − p′(x)q′(x)−1))q′(x)

is nonsingular.

The condition in Proposition 4.1 that p′(x)q′(x)−1 is a P -matrix can be weakened
to the condition that [p′(x)q′(x)−1]I is nonsingular and its Schur complement in
[p′(x)q′(x)−1]I∪B,

[p′(x)q′(x)−1]I∪B/[p′(x)q′(x)−1]I ,

is a P -matrix, where

I = {i : li < qi(x)− pi(x) < ui},
B = {i : qi(x) − pi(x) = li} ∪ {i : qi(x) − pi(x) = ui}.

Corollary 4.1. Suppose that p, q : <n → <n are continuously differentiable, p
is a uniform P -function with respect to q, and q is norm coercive, surjective and
Lipschitz continuous. Then the iteration sequence {xk} generated by Algorithm 3.1
for F given by (1.11) and f defined by (2.4) is well defined and converges to the
unique solution x∗ of F (x) = 0 superlinearly. Furthermore, if p′ and q′ are locally
Lipschitz continuous around x∗, the convergence is quadratic.

Proof. By the assumption that p is a uniform P -function with respect to q, there
exists a κ > 0 such that (4.1) holds. Since p, q are continuously differentiable, from
(4.1) for any x ∈ <n we have

max
1≤i≤n

(q′(x)z)i(p
′(x)z)i ≥ κzT z for all z ∈ <n.

This, from Lemma 5.1 of [39], implies that both q′(x) and p′(x) are nonsingular
and p′(x)q′(x)−1 is a P -matrix. Then from Proposition 4.2, for any x ∈ <n and
ε > 0, fx(x, ε) is nonsingular and all elements in ∂CF (x) are nonsingular. The
boundedness of D0 follows from Proposition 4.1. The uniqueness of the solution
follows from the nonsingularity of all elements in ∂CF (x). Finally, F is piecewise
smooth, hence semismooth everywhere, from Theorem 3.2 we may conclude that
{xk} is well defined and converges to the unique solution x∗ superlinearly.

The quadratic convergence follows from the fact that when p′ and q′ are Lipschitz
continuous around x∗, F is strongly semismooth at x∗.
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Remark 4.2. When q is the identity map, Corollary 4.1 says that if p is a con-
tinuously differentiable uniform P -function, then the sequence {xk} generated by
Algorithm 3.1 is well defined and converges to the unique solution of box con-
strained variational inequalities superlinearly. Such a result was only obtained for
the nonlinear complementarity problem in [8]. In [27], [48], a similar result for box
constrained variational inequalities was obtained by assuming that p is a strongly
monotone function, which is a stronger condition than that of a uniform P -function.

5. Final remarks

In this paper we have shown that the smoothing Newton method for solving non-
smooth equations can have a convergence rate better than the linear rate. We have
established global and superlinear convergence of the smoothing Newton method
based on the Jacobian consistency property. Furthermore, we have investigated our
conditions used in the convergence analysis for general box constrained variational
inequalities GVI(l, u, p, q). We have shown that all assumptions hold if p is a uni-
form P -function with respect to q and q is norm coercive, surjective and Lipschitz
continuous. In contrast with other methods for GVI(l, u, p, q), the smoothing New-
ton method has three advantages: solution of a linear system at each iteration, the
boundedness of the iterates and superlinear convergence rate.

Algorithm 3.1 and the convergence analysis in section 3 are not restricted to
GVI(l, u, p, q). More applications of the smoothing Newton method are possible.
For example, we can use the smoothing Newton method to solve the order comple-
mentarity problem. The order complementarity problem is to find an x ∈ <n such
that

qi(x) ≥ 0, i = 1, ...,m,
∏m

i=1
qij(x) = 0, j = 1, ..., n,(5.1)

where all qi : <n → <n are continuously differentiable. Problem (5.1) has received
as increasing amount of interest recently [19], [24]. Let “min” be the component
minimum operator. Problem (5.1) is equivalent to finding a zero of the following
nonsmooth equation

min(qi(x) : i = 1, ...,m) = 0.

For simplicity, let us consider

F (x) = min(r(x), q(x), p(x)).(5.2)

By using the results of Zang [52], (5.2) is equivalent to

F (x) = r(x) −max(r(x) − q(x) + max(q(x) − p(x), 0), 0).

A smoothing approximation function f , which has the Jacobian consistency prop-
erty, can be given as

fi(x, ε) = ri(x)

−
∫ ∞

−∞
max

(
ri(x)−qi(x)−εt+

∫ ∞

−∞
max(qi(x) − pi(x) − sε, 0)ρ(s)ds, 0

)
ρ(t)dt,

where ρ : < → <+ is a density function with a bounded absolute mean.
Another possible application of the smoothing Newton method is for the varia-

tional inequality problem (1.3) with X given by

X = {x ∈ Rn| g(x) ≤ 0, h(x) = 0, l ≤ x ≤ u},
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where g : Rn → Rm1 and h : Rn → Rm2 are assumed to be twice continuously
differentiable. The Karush-Kuhn-Tucker conditions of problem (1.3) can be written
as [49] 

x−Π[l,u][x− L(x, λ, µ)]

λ−ΠRn
+
[λ− (−g(x))]

−h(x)

 = 0,(5.3)

where

L(x, λ, µ) = p(x) +

m1∑
i=1

∇gi(x)λi +

m2∑
j=1

∇hj(x)µj .

Problem (5.3) is a special box constrained variational inequality problem, so the
smoothing Newton method can be used directly to find a solution of (5.3), and
in turn to find a solution of (1.3) under some constraint qualification conditions
[20]. However for problem (5.3), the boundedness assumption on the level sets may
not hold even if p is strongly monotone. We will leave this and the comparison of
different smoothing approximation functions in the smoothing Newton methods as
further research topics.
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