NUMERICAL ANALYSIS OF NONLINEAR SUBDIFFUSION EQUATIONS *
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Abstract. We present a general framework for the rigorous numerical analysis of time-fractional non-
linear parabolic partial differential equations, with a fractional derivative of order a € (0,1) in time. It
relies on three technical tools: a fractional version of the discrete Gronwall-type inequality, discrete maximal
regularity, and regularity theory of nonlinear equations. We establish a general criterion for showing the
fractional discrete Gronwall inequality, and verify it for the L1 scheme and convolution quadrature generated
by BDFs. Further, we provide a complete solution theory, e.g., existence, uniqueness and regularity, for a
time-fractional diffusion equation with a Lipschitz nonlinear source term. Together with the known results
of discrete maximal regularity, we derive pointwise L2(£2) norm error estimates for semidiscrete Galerkin
finite element solutions and fully discrete solutions, which are of order O(h?) (up to a logarithmic factor)
and O(7%), respectively, without any extra regularity assumption on the solution or compatibility condition
on the problem data. The sharpness of the convergence rates is supported by the numerical experiments.

Keywords: nonlinear fractional diffusion equation, discrete fractional Gronwall inequality, L1 scheme,
convolution quadrature, error estimate

1. Introduction. Time-fractional parabolic partial differential equations (PDEs) have
been very popular for modeling anomalously slow transport processes in the past two
decades. These models are commonly referred to as fractional diffusion or subdiffusion.
At a microscopic level, the underlying stochastic process is continuous time random walk
[32]. So far they have been successfully applied in a broad range of diversified research areas,
e.g., thermal diffusion in fractal domains [35], flow in highly heterogeneous aquifer [6] and
single-molecular protein dynamics [20], just to name a few. Hence, the rigorous numerical
analysis of such problems is of great practical importance. For the linear problem, various
efficient time stepping schemes have been proposed, which include mainly two classes: L1
type schemes and convolution quadrature (CQ).

L1 type schemes approximate the fractional derivative by replacing the integrand with
its piecewise polynomial interpolation [24] 26] B7, [3] and thus generalize the classical fi-
nite difference method. The piecewise linear case has a local truncation error O(72~%) for
sufficiently smooth solution, where 7 denotes the time step size. See also [31], [33] for the
discontinuous Galerkin method. CQ is a flexible framework introduced by Lubich [27] 28]
for constructing high-order time discretization methods for approximating fractional deriva-
tives. It approximates the fractional derivative in the Laplace domain and automatically
inherits the stability property of general linear multistep methods. See [10, B9} [40, [16] for
CQ type schemes. Optimal error estimates have been derived for both spatially semidiscrete
and fully discrete schemes, including problems with nonsmooth data [10} 14}, BT [16].

However, up to now, there has been very few work on the rigorous numerical analysis of
nonlinear time fractional diffusion equations. In this paper, we present a general framework
for analyzing discretization errors of nonlinear problems. The error of the numerical solution
can be split into a linear part and a nonlinear part. While the linear part has been carefully
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studied, the analysis of the nonlinear part requires different mathematical machineries, in
order to derive sharp error estimates. Besides regularity estimates for the nonlinear problem,
it requires discrete maximal ¢P regularity, and a fractional version of the discrete Gronwall’s
inequality for time stepping schemes. The former gives a bound on the discrete fractional
derivative due to the nonlinear part, whereas the latter allows combining the nonlinear part
with the linear part to obtain a global error estimate.

To the best of our knowledge, a fractional version of discrete Gronwall’s inequality
for time stepping schemes is still unavailable in the literature. We shall establish such
discrete Gronwall’s inequality for both L1 scheme and CQs generated by backward difference
formulas (BDFs) up to order 6 in Theorem[2.6] Further, in Theorem [2.5] we present a general
criterion under which the fractional discrete Gronwall’s inequality holds.

To illustrate the main idea of this framework, we consider the following nonlinear prob-
lem in a bounded convex polygonal domain Q C R%, d > 1:

Ofu—Au= f(u) in Qx (0,7),
(1.1) u=0 on 002 x (0,T),
U = ug in Q x {0},

where ug € Hg(2) N H?(Q) is a given function and f : R — R is a Lipschitz continuous
function, i.e., | f(s) — f(t)| < L|s —t] for all s,t € R, and 9fu denotes the Caputo fractional
derivative of order o € (0,1) in time [I9] pp. 91]

(1.2) ofu(t) := F(ll—a)/o (t— s)*o‘%u(s) ds, with I'(z) := /OOO s leds.

Let S, C HE(Q) be the continuous piecewise linear finite element space subject to a
quasi-uniform shape regular triangulation of €2, with a mesh size h, and let Ay : S — Sp
denote the Galerkin finite element approximation of the Dirichlet Laplacian A, defined by

(Apwn,vp) := —(Vwp, Vo),  Vwp, vy € Sh.

Let 0 = tp < t1 < ... < ty = T be a uniform partition of the time interval [0, 7], with
grid points ¢, = n7 and step size 7 = T/N. Upon rewriting the Caputo derivative 0fu as a
Riemann-Liouville one [19, pp. 91], we consider a linearized time-stepping scheme: for the
given initial value u% = Rpuo (Ritz projection of ug), find uj}, n =1,2,..., N, such that

(1.3) O (uf, — up) — Apujy, = Py f(up ™),

where P, denotes the L? projection onto the finite element space Sj,, and (io‘uz denotes
either the CQ generated by the backward Euler method or L1 scheme; see and
below. These methods are popular for discretizing the fractional derivative in time.

After proving the fractional discrete Gronwall’s inequality in Section [2]and the regularity
estimate in Section |3| we present an error analysis for the fully discrete scheme in
Section 4] By introducing an intermediate spatially semidiscrete Galerkin problem

(14) at“uh(t) — Ahuh(t) = th(uh(t)) YVt € (O,T],

we split the error into two parts: w(t,) — ul = (u(t,) — un(tn)) + (up(tn) — u}t), and derive
the following error estimates for each component in Theorems [£.3] and [£.4}

_ < P22 _.m < o
OréltanTHu(t) up(t)||2) < cfph”  and 12}2{N”uh(t”) up |l 2) < e,
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where £, = log(2 + 1/h). These estimates are sharp with respect to the regularity of the
solution in Theorem (up to a logarithmic factor ¢;,), and are confirmed by the numerical
experiments in Section [6} Besides, we show how to simplify the analysis of nonlinear prob-
lems by applying the fractional-type discrete maximal ¢P-regularity established in [I7], an
extension of the discrete maximal ¢P-regularity of standard parabolic equations [I8} 2T, 25],
which has been applied to numerical analysis of nonlinear parabolic equations in the litera-
ture [I1, 21 22].

Last we mention the interesting works [10], [34] on integro-differential equations, where
a Riemann-Liouville fractional integral operator appears in front of the Laplacian. These
models are closely related to , but have different smoothing properties. Cuesta et al
[10] proposed the CQ generated by the second-order BDF for a semilinear problem, and
proved an O(72) error bound of the temporal error. In [34], a Crank-Nicolson type method
for a semilinear problem with variable time step size was studied. In these works, a variant
of the discrete Gronwall’s inequality due to Chen et al [8] plays a crucial role, which differs
substantially from the discrete Gronwall’s inequality we shall establish below.

Throughout this paper, the notation ¢ denotes a generic constant, which may vary at
different occurrences, but it is always independent of the mesh size h and time step size 7.

2. Discrete Gronwall’s inequality for time-fractional diffusion. In this section,
we establish a fractional version of Gronwall’s inequality and its discrete analogue for time
stepping schemes. These inequalities are crucial in analyzing numerical schemes for nonlinear
subdiffusion equations, and are of independent interest.

2.1. Continuous Grénwall’s inequality. We begin with the continuous Grénwall’s
inequality for fractional differential equations in a general Banach space setting.

THEOREM 2.1 (Fractional Gronwall’s inequality). Let X be any given Banach space.
For a € (0,1) and p € (1/cr,00), if a function v € C([0,T]; X) satisfies 0fu € LP(0,T; X),
u(0) =0 and

(21) Hai(txu”LP(O,s;X) < "{”’U’HLP(O,S;X) + o, Vs e (OaT]a
for some positive constants k and o, then

(2.2) ||U||C([0,T];X) =+ ”atauHLP(O,T;X) < co,

where the constant c is independent of o, u and X, but may depend on «, p, k and T'.
Proof. Due to the zero initial condition u(0) = 0, the Riemann-Liouville and Caputo
fractional derivatives coincide. Hence, the function u(t) can be expressed in terms of 9w (cf.

[19, pp. 96, Lemma 2.22] and [19, pp. 74, Lemma 2.5]): u(t) = ﬁ fg(t — 5)0‘718?11(5) d¢.
Since p > 1/, Holder’s inequality implies

p—1

t (a=1) v
@3) s <o [0-95 ) 7 19gulrseon < clguliroon
0

Upon taking the supremum with respect to ¢ € (0, s) for any s € (0,7 in (2.3)), we obtain

HUHLOO(O,S;X) < CHaguHLP(O,s;X) < CKHUHLT’(O,S;X) + co

< e/£||uHLoc(0,s;X) + CEHHUHLl(O,s;X) +co, Vsé€ [O,T],

where € > 0 can be arbitrary. By choosing € = i, the L°°-norm on the right-hand side can
be eliminated by the left-hand side, and the last inequality reduces to

lull oo (0,85x) < crllullLio,s,x) +co, Vs e[0,T].
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That is, we have |[u(s)||x < ¢« [y [|u(€)|| xdé+co for s € (0, T). Now the standard Gronwall’s
inequality yields

max_|ju(s)||x < e“Teo.
s€[0,T]

Substituting it into (2.1)) yields (2.2). The proof of Theorem is complete. O

2.2. Discrete Gronwall’s inequality. In this part, we establish the discrete analogue
of the Gronwall’s inequality in Theorem for time stepping schemes that approximate the
fractional derivative 0fv(t,,) by a discrete convolution:

_ 1 <&
(2.4) ofv" ==

yd —
- n—jv’, n=20,1,2,...

=

j=0
where v" is an approximation of v(t,), and Kj;, j =0,1,2,..., are the weights independent
of the time step size 7. Throughout, we denote by K(() the generating function of the

discrete fractional derivative 9%, defined by

1 o :
2.5 K():=— K
(25) (©= 5 LK

which is an analytic function in the (open) unit disk D := {z € C : |z|] < 1}, continuously
differentiable up to the boundary dD\{+1}, except for the two points £1. Then we have

(2.6) K@) vm¢m = (™)™
n=0 n=0
EXAMPLE 2.1. The CQ generated by the k™" -order BDF [27, [10] is given by (2.4)), where
the coefficients K, 7 =0,1,..., are determined by the power series expansion
k 1 N\ @ e’} )
(2.7) (Z ~(1- <>J) =D K¢
=17 =0
The special case k = 1, i.e., the backward Euler CQ, is very popular and commonly known
as Grinwald—Letnikov approzimation, and the coefficients K;, j =0,1,2,..., are given by
0 .
(2.8) (1-Q =) K.
j=0
EXAMPLE 2.2. The popular L1 scheme [26] is also of the form (2.4)) with [17, pp. 8]
1-9?2 .. - :
2.9 ——— T, = K¢/,
(2.9) T oy He-1(©) ; i<

where Li,(z) = Z;’;l 27 /§P is the polylogarithmic function, which is well defined for |z| < 1
and can be analytically continued to the split complex plane C\ [1,00) [11]].
Now we turn to the discrete Gronwall’s inequality. For 1 < p < 0o, we denote by ¢P(X)

the space of sequences v™ € X, n=0,1,..., such that ||(v")7%ller(x) < 00, where
] 1
P
(Zrm)” #1sp<os
(0" )nzoller(x) = n=0
sup [[v" || x if p=oc0.
n>0
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For a finite sequence v € X, n = 0,1,...,m, we denote ||(v")7oller(x) := (V™) oo ller (x)
by setting v™ = 0 for n > m. The following theorem is a discrete analogue of Theorem
for the backward Euler CQ. It is foundational to the proof of the discrete Gronwall’s
inequalities for other time-stepping schemes.

THEOREM 2.2 (Discrete fractional Gronwall’s inequality: backward Euler). Let X be
any given Banach space, and let 02 denote the backward Euler CQ given by and .
Ifa € (0,1) and p € (1/a,00), and a sequence v™ € X, n =0,1,2,..., with v’ = 0, satisfies

(2.10) 182 6™) 7 ler (x) < Rl llen(x) + 0, VO <m < N,

for some positive constants k and o, then there exists a 79 > 0 such that for any 7 < 7
there holds

(2.11) 1™ n=t e x) + 170" ) llen ) < o,

where the constants ¢ and 19 are independent of o, 7, N, X and v™, but may depend on «,
p, k and T.

To prove Theorem we need a technical lemma, which gives a discrete analogue of
the Hardy type inequality .

LEMMA 2.3 (Discrete Hardy type inequality). Let o € (0,1), and X be any given
Banach space. If v* € X and w™ € X, n=20,1,2,..., satisfy

(212) (=) S onen = 3 g

n=0 n=0

in the sense that both sides are analytic in D, then for p € (1/«, 00), there holds
(2.13) J) gl x) < @) 2ollrx)y  0<m <N,

where the constant c is independent of 7, m, N and X, but may depend on «, p and T.
Proof. We define ¢™, n =0,1,..., to be the coefficients of the power series expansion

n=0

Then direct calculations yield ¢° = 1 and ¢" = H?Zl (1 + (XT_l) for n > 1. By the trivial

inequality In(1 4+ z) < z for x > —1, we have

o =3t (1422 <@ - DY < - DinGo 1),
=1 =1

That is, ¢" < (n+ 1)1 for n > 0. It follows from (2.12)) that

Yo = (1) L =(Xee) (S ee)
n=0 n=0 n=0 n=0

With p’ = I%, the last identity yields

n

o (anfjwj S
> .

Jj=0

1
o7

(2_j|¢) (wap)

7=0

Fo=1/p Jyn by
<o (S ) 10l

J=

[o"]lx =

(2.14)

e
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If p>1/c, then 0 < p/(1 —a) < 1 and so

> e < T _ds _ (ng 1))
ZGaopia = Jy @ T T a)

Hence, (2.14]) reduces to

(e ryte
(1 _p,(l _ a))l/p/ ||(wj)j:O||€p(X) S (1 _p/(l _ Oé))l/p/ ‘|(wj)j:0“ép(x)’

o7l < 7o/

where we have used the fact 7(n + 1) < 27 in the last inequality. Since the last inequality
holds for all n = 0,...,m, it follows that holds. O

Now we are ready to prove Theorem

Proof of Theorem. For the backward Euler CQ we have K({) = (t—g)a Since, v° =
0, 0%v° = 0, and the identity can be written as (1=5)% 3700 Jon¢h =370 (9%0™)(¢".
Then Lemma and imply

W™ molle (x) < ell(@2v™)nsoller(x) < etll(v™ g llen(x) + co
< enl[(v")nolle (x) + ekl (V" )ntoller(x) +co, V1 <m < N.

By choosing ex = 1/2 and collecting terms, and using the fact v° = 0, we obtain
1"z lleex) < call (@)t llerx) +co, VI<m <N.

That is, [[v"|x < cut >, |[v"]|x + co for 1 < m < N. Then the standard discrete

Gronwall’s inequality gives, for sufficiently small step size T,

n < c. T .
(ax [o"llx < e Teo

Substituting this into (2.10) yields (2.11)). The proof of Theorem is complete. O
To analyze other time-stepping schemes, we shall need the following lemma of discrete

Mikhlin multipliers, which is a simple consequence of Blunck’s multiplier theorem [7, Theo-
rem 1.3] through the transform ¢ = e~". Here, a UMD space X denotes a Banach space such
that the Hilbert transform Hf(t) := [, {(js) ds is bounded on LP(R; X) for all 1 < p < oo
[23]. Examples of UMD spaces include R?, d > 1, and L9(2), 1 < ¢ < oo, and their closed
subspaces (e.g. the finite element space Sy equipped with the L7(2) norm).

LEMMA 2.4 (Discrete Mikhlin multipliers). Let X be a UMD space and let M : D — C
be an analytic function, continuously differentiable up to OD\{x1}, such that the set

{M(¢): e aD\{£1}} U {(1 - )1+ M) : ¢ € OD\{*1}}

is bounded, and denote its bound by cr. Then for any 1 < p < oo and any sequence
(fM)oe, € tP(X), the coefficients up, € X, n=0,1,..., in the power series expansion

M(Q)Y fr¢h=> ur",  V(eD,
n=0 n=0
satisfy

(" )ozoller(x) < cp.xCrII(f™")nzoller(x)s

6



where the constant ¢, x is independent of the operators M(¢), ¢ € D.
Now other time-stepping schemes can be connected to the backward Euler CQ. The
next result gives a general criterion for the discrete fractional Grénwall’s inequality.
THEOREM 2.5 (General criterion for discrete fractional Gronwall’s inequality). Let X
be a UMD space. If the generating function K(() = Z= > 0" o Kn(™ satisfies

(e

219) K@= 5w 0200+ QRO < AR Ve am\(1)

then the discrete fractional Grénwall’s inequality holds: if « € (0,1) and p € (1/a,0), and
a sequence v" € X, n=0,1,2,..., with v° =0, satisfies

(2.16) 100" ) len(x) < Bl llen(xy +0, VI<m <N,

for some positive constants k and o, then there exists a 79 > 0 such that for any ™ < 7
there holds

(2.17) |

(U")ﬁ[ﬂ”ew(x) + ||(53U")f¥:1||er(x) < co.

where the constants ¢ and 19 are independent of o, T, N and v"™, but may depend on «, p,
k, X and T.

Proof. First, we note that 9%v™ = 77 Yo Kjv™ 7, n=0,1,2,..., are the coefficients
in the power series expansion

(2.18) K(Q)Y v"¢™ = (90",
n=0 n=0

it follows that

e Fe (2 e (5 |G - (=) Ere

n=0
where F", n=0,1,..., are the coefficients in the expansion
1 (1-¢\"] <~ -
8& n n — FTL n.
Fe( =) |5 =

By applying Lemma to (2.19), we obtain
(2:20) (0™ )n=ollex) < el (F")noller(x), V1<m<N.

Let m be fixed and define E" = 5‘2‘1}” if n < m and E" = 0if n > m. Let F™ be the
coefficients of the power series

n=0

then F™ = F" for 0 < n < m. Now the conditions in (2.15) imply

w55 = fo-onsozlmm () |

7
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By choosing M (¢) = %(%)a and applying Lemma to equation (2.21]), we obtain

[(F™)rollerx) < ell(E™)ollen (),

which further implies
I )nollerx) = ICF™)nollerx) < ell(E™)nZollerx) = €l (070" )noller )
where the constant ¢ is independent of m. The last inequality and (2.20)) yield
(™ nolles (x) < €ll(@F 0™ )lollen(x)-
Substituting (2.16]) into the last inequality gives

g N0l < K0 e + o
< en| (0" o) + el (0l x) + o, YIS m <.
where € > 0 is arbitrary. By choosing ex = 1/2, we obtain

10" ) nille ) < exll(@" )i llerx) + o, V1I<m < N.

Gronwall’s inequality gives, for sufficiently small step size 7,

That is, |[v™||x < ¢xTdoney|[v"]|x + co for 1 < m < N. Then the standard discrete

max_|[v"]|x < e*Tco.

1<n<N

This together with (2.16) and (2.22) yields (2.17). The proof of Theorem [2.5is complete. O

By Theorem the discrete fractional Gronwall’s inequality can be proved for the L1
scheme and general BDF CQs.

THEOREM 2.6 (Discrete Gronwall’s inequality for L1 scheme and BDF CQ).
Let X be a UMD space. For both L1 scheme and CQ generated by the k' -order BDF, with
1 <k <6, the discrete fractional Grénwall’s inequality holds: if a € (0,1) and p € (1/a, 00),
and a sequence v™ € X, n=0,1,2,..., with v° = 0, satisfies

120 lenxy < RO lenxy +0. Y1<m <N,

for some positive constants k and o, then there exists a 79 > 0 such that for any 7 < 7

there holds

10" =i llee ) + 170" i llen (x) < co,

where the constants ¢ and 1y are independent of o, 7, N and v™, but may depend on «, p,
k, X and T.

Proof. By Theorem [2.5] it suffices to show that the generating functions K(¢) of the
L1 scheme and CQ satisfy . We discuss them separately. First, for the L1 scheme,

K@) = W (1_402 Lis—1(¢) converges for ¢ € 9D\{1} and has the following asymptotic

expansion (cf. [II, Theorem 1], or [I7, equation (4.6)])

TUK(Q) = (1= Q% +o((1=¢)%), as (=1L
If ¢ € OD\{1} is sufficiently close to 1, then

K Q)] = 311 - ¢
8



Meanwhile, we recall the following series expansion (cf. [I7, equation (4.5)])

Lioé—l(e_ie) _ a—2 .
Te-a) (2m) (COb (

where Ag =77 (k + %)aﬁ and By =Y 1o (k+1— L) % Thus, if ¢ = e is away
from 1, then 6 is away from 0 and 27, and thus A 4+ By > ¢. This shows |Lia_1(e71%)| > c.
Since |1 — ¢|? > ¢|1 — ¢|® when ¢ = e~ is away from 1, it follows that

~ |Lia—1(Q) 2 2 a
—mu—d >l = ¢|7 >l = (]*.

B2 (a0 + ) — isin (BT 4y - )

[0

T K(Q)]

Overall, the first inequality of holds for the generating function K (¢) of the L1 scheme.
The second inequality of has been proved in [I7, Lemma 4.3]. This shows the assertion
for the L1 scheme.

Next we turn to the CQ. For the CQ generated by the k*P-order BDF, the generating
function K (() satisfies

(o= (S0’

Jj=1

Since the function 2521 %(1 — )7~ has no root on the unit circle dD for 1 < k < 6 (see [,
Proof of Lemma 2] or [12] pp. 246-247]), it follows that

‘<1i<>aK(<)‘ = g;u — ¢yt

This proves the first inequality of (2.15)). Note that

[e3

> c.

a k 1 ' a—1 k '
1+0a-0r @ =-a+00-0%(Xia-0) Ta-o

=1 =1
a k 1 a—1k-1
—-Sa+on-or(Xia-0m) Xa-o
j=1 7=0

and so for any ¢ € 9D\{+£1}, there holds

k S 1\«
0‘(1 + O(Zj:1 %(1 - OJ 1)
k i
(5, 11— 0m)
where the last inequality holds, since the denominator (Z?Zl HUSO ~1) has no root on
OD. This shows the second part of ([2.15)), completing the proof of the theorem. O
REMARK 2.1. In Theorems [2.5] and [2.6] if we assume

-1

(1+90 - C)K’(C)' _
K(C)

1@ v x) < /I ey + 00 V1<m <N,
i.e., the index on the right-hand side is slightly changed, then we have
1™ = e x) + 1137 0™ )R llen () < o,

without any restriction on the step size 7.



3. Regularity of the solution. Now we discuss the existence, uniqueness and regu-
larity for the solutions to and . These results are needed in the numerical analysis
in Section 4l The main result of this section is the following theorem.

THEOREM 3.1. Let ug € HH(Q) N H*(Q), and let f : R — R be Lipschitz continuous.
Then problem has a unique solution u such that

(31)  we ([0, T L*()) N C([0, T; Hy () N H*(Q), 07w € C([0,T]; L*(2)),
(3.2) dwu(t) € L*()  and 10su(t)| 2y < ct® Y for t € (0,T).

Similarly, problem (L.4) has a unique solution wuy, such that

(3.3) lunllco o, 02(9)) + 1ARUR]c(jo,11:22(0)) + 105 unll o, 1122 (0)) < ¢,
(3.4) [0vun ()| 20y < et~ for t € (0,T).

The constant ¢ above is independent of the mesh size h, but may depend on T.

REMARK 3.1. For smooth initial data and right-hand side, in the absence of extra
compatibility conditions, the regularity results — and the h-independent estimates
— are sharp with respect to the Holder continuity in time. The regularity
was shown in [36] for linear subdiffusion equations and in [29] for a semilinear problem with
Neumann boundary conditions under certain compatibility conditions. However, we are not
aware of any existing results such as and — for semilinear problems without
compatibility conditions, which are important for the numerical analysis in Section

REMARK 3.2. If f is smooth but not Lipschitz continuous, and problems and
have unique bounded solutions, respectively, then f(u), f'(u), f(ug) and f'(up) are

still bounded. In this case, the estimates (3.1)-(3.2]) and (3.3)-(3.4) are still valid, which can
be seen from the proof of Theorem [3.1]

We begin with some preliminary results. Let L,QL(Q) be the vector space S;, equipped
with the norm of L?(£2) and let H?(2) be the vector space Sj, equipped with the norm

lvnllaz @) = llonllz2@) + 1Anvnllz2), Yo € Sh.

To analyze u(t) and uy(t) in a unified way, we consider the following abstract problem:

{ A% u(t) — Au(t) = Pf(u(t)) for t € (0,T),

(3.5) u(0) = o,

where the notation (X, D, A, u, P,ug) denotes either (L?(2), Hi(2) N H?(Q), A, u, I, ug) or
(L3(Q), H3 (), Ap, up, P, Ryup), with I denoting the identity operator. In a bounded
convex polygonal domain 2, the norm of D is equivalent to the graph norm, i.e.,

(3.6) [ollp ~ llvllx +[[Av]x, VoveD.

Let || - ||x—x be the operator norm on the space X. Then the operator A satisfies the
following resolvent estimate [4, Example 3.7.5 and Theorem 3.7.11]:

H(Z*A)71||X—>X SC¢|Z|71a VZ€E¢7 Vo e (O’W)a
where for ¢ € (0,7), £, := {2z € C\{0} : |arg(z)| < ¢}. This further implies

(=2 = ) Ylxox < coal2l ™, V2 €4, Yo e (0,1),

[A(z* — A) 7 Hixox < Chan Vz € Xy, Vo e (0,m).
10
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Let g(t) = Pf(u(t)), and w := u — ug. Then w satisfies the following equation
(3.8) Ofw(t) — Aw(t) = Aug + g(t),
with w(0) = 0. By means of Laplace transform, denoted by ~, we obtain
2%W(2) — Aw(z) = 2 Aug + 9(2),

which together with (3.7) implies @w(z) = (2* — A)~} (271 Aug + g(z)). By inverse Laplace
transform and convolution rule, the solution w(t) to (3.8) is given by

t
(3.9) w(t) = F(£) Aug + / Bt — 5)g(s)ds,
0
where the operators F(t) : X — X and E(t) : X — X are defined by
1 1
(3.10) F(t):=— ey (2 —A)7tdz and E(t) := — (2% — A7 dz,
2mi To.s 2mi To.s

respectively. Clearly, we have E(t) = F’(t). The contour I'g 5 is defined by
(3.11) Tos={2€C:|z| =4 argz| <O}U{z € C:z=pet? p> 6},

oriented with an increasing imaginary part, where 6 € (7w/2,7) is fixed. In view of (3.9), u
is the solution of problem ({3.5)) if and only if it is the solution of

(3.12) u(t) — up = F(t)Aug + /O E(t — $)Pf(u(s))ds.

The next lemma summarizes the mapping properties of the operators F' and E. These
are partially known [36, Section 2] and [30]. We only sketch the proof for completeness.

LEMMA 3.2. For the operators F and E, the following properties hold.

() | F (D) xox + | FO)llxox + [AF@l|xox <c Vie (0.T],

(ii) F(t) : X — D is continuous with respect to t € [0,T], and AF(0) = 0.

(iii) "N E®)|xox + B @) xox +HAE®) | xox < ¢ VEe (0,T].

(iv) E(t) : X — D is continuous with respect to t € (0,T].

Proof. First, consider (ii) in the case X = L*(Q), D = H}(Q) N H*(Q) and A = A.
By setting f(u(t)) = 0 and A = A in (3.12)), [36, Theorem 2.1] implies that AF(t) =
F(t)A : L*(Q) — L?*(Q) is continuous with respect to ¢ € [0,7]. Thus, F(t) : L?(Q2) —
H} () N H%(Q) is continuous with respect to ¢ € [0,7]. Then taking ¢ — 0 in yields
AF(0) = 0. This proves (ii) in the case X = L*(Q), D = H} ()N H?(Q) and A = A. The
proof for the case X = L?(2), D = H?(Q2) and A = A, is similar.

For any integers k > 0 and m = 0, 1, by choosing § = t~! in the contour I'p 5 and using
the identity A(z® — A)~! = —I +2z%(2* — A)~!, the resolvent estimate (3.7)), and change of
variables z = scos ¢ + issin ¢, we have (with |dz| being the arc length element of T'g 5)

k
HAmdkF(t)H = i/ AP A (2 — A)Ldz
dt XX 271 Jr XX
< C/ eRe(z)t|Z|k—1+(m—1)a |d2|
To,s

oo [4
< C| COS@|/ est00598k71+(m71)ads + C/ ecosapakJr(mfl)ad(p

8 —6

< Ct—(m—l)a—k.

11



Since E(t) = F'(t), the last inequality yields (i) and (iii). The continuity of F'(¢) : X — D
and E(t) : X — D for t € (0,T] follows from the equivalent norm in (3.6)), showing (iv). O
Now we are ready to present the proof of Theorem

Proof of Theorem[3.1, The proof is divided into four steps.
Step 1: Existence and uniqueness. We denote by C([0, T]; X) the function space C([0,T]; X)
equipped with the following weighted norm:

— —At .
lollx = jmax fle™ o(®)llx, Vv e C((0,T]; X),

which is equivalent to the standard norm of C([0,T]; X) for any fixed parameter A > 0.
Then we define a nonlinear map M : C([0,T]; X)x — C(]0,T); X)x by

Mu(t) = up + F(t)Aug + /0 E(t—s)Pf(v(s))ds.

For any A > 0, u € C([0,T]; X) is a solution of if and only if u is a fixed point of the
map M : C([0,T]; X)x — C([0,T]; X)x. It remains to prove that for some A > 0, the map
M : C([0,T]; X)x» — C(]0,T]; X) has a unique fixed point. In fact, the definition of M and
Lemma iii) immediately yield

le™ (Mui(t) = Mu2(t)) |1 x

e / E(t — 5)(Pf(r(s)) — Pf(us(s)))ds
0

t
< e [t 5" oa(s) = vals)] s
0
t
(3.13) SC/O (=) 71707 mac [l (vi(s) = vals))xds

1
= c)\”‘</ (1— 0)“1()\t)°‘e)‘t(19)d0> |lvy — v2]|ax  (change of variable s = ¢6)
0

1
<c sup ([At(l9)]“/%”“”)@0)“/2( / (10)“/“d9)||v1v2|u
>\>0,7[;)21t]>0 0
0€lo,

< o(T/N)|loy = valx, Vvi,vs € C([0,T); X)x.
By choosing a sufficiently large A, the last inequality implies
le™ (Mvy (t) — Moo ()| x < Sllvr —v2llx,  Vui, vz € C([0,T]; X)a

Hence, the map M is contractive on the space C([0,T]; X ). The Banach fixed point theorem
implies that M has a unique fixed point, which is also the unique solution of ((3.12)).

Step 2: C([0,T); X) regularity. Consider the difference quotient for h > 0

u(t+h) —u(t) _ F(t+h) — ()AquLf/ E(s)Pf(u(t — s))ds

ha a

(3.14) / u(t+h —s)) — Pf(u(t —s)) -
E(s ds =: Zfi(t7h)~

ha

12



A simple consequence of Lemma[3.2{1) is that h=||F(t + h) — F(t)| xx < ¢, which implies
|Z1 (¢, h)||x < c. By appealing to Lemma iii), we have

1 t+h
1Tt 1)l x = Hha/t E()PS(ult = s)ds|

t+h « a
t+h t
Sa 1d$ = ( )

C
< c— - <ec.
= ha J, a  he =

By the Lipschitz continuity of f, we have
t J—
6_>\t/ E(t _ 8) Pf(U(S + h)) Pf(u(s))ds
0

Tt )] x = -

u(s + h) — u(s)
ho

X

¢
< cl/ e M8 (p — g)aTleAs ds.
0

‘ X

By substituting the estimates of Z;(¢,h), i = 1,2,3, into (3.14) and denoting W (t) =
e~ Mh=%||u(t + h) — u(t)||x, we obtain

t
Wi(t) <c+a / e M) (E— 5)* T W (s)ds < e+ 1 (T/A)? max, Wh(s),
0 s€|0,

where the last inequality can be derived in the same way as (3.13). By choosing a sufficiently
large A and taking maximum of the left-hand side with respect to t € [0,7], it implies
max W (t) < ¢, which further yields
te[0,T]

B lu(t 4+ h) — u(®)]x < e <c,
where the constant c is independent of h. Thus, we have proved [|ul|ce(o,r;x) < ¢

Step 3: C([0,T]; D) regularity. By applying the operator A to both sides of (3.12]) and using
the identity AF(t) = fot AE(t — s)ds, cf. Lemma we obtain
t
Au(t) — Aug = AF(t) Aup + / AE(t — s)Pf(u(s))ds
0

(3.15) = AF(t) (Aug + Pf(u(t))) + /0 AE(t — s)(Pf(u(s) — Pf(u(t)))ds

— T,(t) + Ts(t).

By Lemma iii) and the C*(]0,T]; X) regularity from Step 2, we have

IZs(t)]x = H [ AB@ =9 rt) - Prtu)as )
< /t Mds < /t Mols <ct®, Vte (0,T).
0 -5 0 -5

Lemma iv) implies that Z5(¢) is continuous for ¢ € (0,7, and the last inequality implies
that Zs(t) is also continuous at t = 0. Hence Z5 € C(]0,T); X). Moreover, Lemma ii)
gives 7y € C([0,T]; X) and

IZ4(®)llx < cllAuo + Pf(u(t))[[x < c.
13



Substituting the estimates of Z,(t) and Zs(t) into (3.15) yields ||Aulc(o,r;:x) < ¢, which
further implies ||ul|¢(jo,7);p) < ¢ The regularity result u € C([0,77]; D) together with (3.5)
yields 09w = Au+ Pf(u) € C([0,T]; X).

Step 4: Estimate of ||u'(t)||x. By differentiating (3.12]) with respect to ¢, we obtain
t
u'(t) = F'(t)Aug + E(t) P f(uo) + / E(s)Pf (u(t — s))u'(t — s)ds
0

t
— E(t)(Auo + Pf(uo)) + / B(t - $)Pf'(u(s)) (s)ds.

0

By multiplying this equation by t!17%, we get

o/ (t) = 1 E(t)(Aug + Pf(ug)) + /0 172 LBt — 5)Pf (u(s))s* 2w (s)ds,

which together with the L stability of P, [38, Lemma 6.1] directly implies that
e M (1) [ x < e M B x-x | Auo + P f (uo)| x
t
+ / e M T (g — ) TP () || Lo (e 5T W ()] x ds
0

< e[ Auo + P (uo) Lx +e(T/N)F max e™*s1 o/ ()] x.
s€[0,T
where the last line follows similarly as (3.13]). By choosing a sufficiently large A and taking
maximum of the left-hand side with respect to ¢ € [0, T, it implies H%ax] e~ Mo/ (1) ]| x <
te[o,T

¢, which further yields (3.2)). The proof of Theorem is complete. O

4. Error estimates. Now, we derive error estimates for the numerical solutions of
problem using the discrete Gronwall’s inequality from Section [2| and discrete maximal
¢P-regularity from [I7]. To illustrate the general framework for the numerical analysis of
nonlinear time fractional diffusion equations, we focus on the L1 scheme and backward
Euler CQ. Other time stepping schemes can be analyzed similarly. The convergence rates
we show below are sharp (up to a logarithmic factor) with respect to the solution regularity
in Theorem [3.1] and also confirmed by the numerical experiments in Section [6}

4.1. Preliminaries on the linear problem. First we recall some error estimates for
the following linear subdiffusion equation:

(4.1) 9 o(t) — Av(t) = g(t), vt e (0,T],
where g is a given function. The semidiscrete FEM for (4.1]) seeks vy (t) € Sy, such that
(4.2) O vn(t) — Apvn(t) = Prg(t), vt e (0,71,

with v;,(0) = Rpv(0), and the fully discrete scheme seeks vj € S, n=1,..., N, such that
(4.3) O (v = vh) = Anvh = Pag(tn),

with v = v;,(0), where 920} denotes either the backward Euler CQ or the L1 scheme.
The semidiscrete solution vy, satisfies the following error estimate [14] [13] [16].
LEMMA 4.1 (Semidiscrete solution of linear problems). For the semidiscrete solution
vy, to problem ([A.2), there holds with €, =log(2 + 1/h)

e [fon(t) = v(8) (s < k200 s + b6 0.7:02000)
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The solution v; of the fully discrete scheme satisfies the following error estimate.
For the backward Euler CQ, it was proved in [16, Theorems 3.5 and 3.6], while the proof
for the L1 scheme will be given in Section

LEMMA 4.2 (Fully discrete solutions of linear problems). For the fully discrete solutions
vy to problem with the L1 scheme or backward Euler CQ, there holds

tn
[on(tn) = villLa) < ety ™ (1A0(0)]220) + l9(0) L2 () + CT/O (tn = )" g/ (s)]| 2 (@yds.

REMARK 4.1. If 1 < d < 3 and v(0) € H}(Q) N H?(Q), then the error estimates in
Lemmas [4.1] and [4.2] are still valid if v, (0) is the Lagrange interpolation of v(0), due to the
smoothing property of the solution operator [I4, Lemma 3.1]. Consequently, all the results
in Section [£2] remain valid in this case.

Lemmas and will be used below in the analysis of the nonlinear problem.

4.2. Error estimates for the nonlinear problem. Now we can present error esti-
mates for problem . Like in the linear case, we discuss the spatial error and temporal
error separately. First, we derive the spatial discretization error.

THEOREM 4.3. Let ug € HY(Q)NH?(Q), and f : R — R be Lipschitz continuous. Then
the semidiscrete problem has a unique solution uy, € C([0,T); L3(S2)), which satisfies

(4.4) OgltaSXT |lu(t) — uh(t)HLz(Q) < c@ihQ.

Proof. By Theorem [3.1] the existence and uniqueness of the solution uy, hold. It remains
to establish the estimate (4.4]). To this end, we define vy (t) as the solution of

Ofvp(t) — Apop(t) = Puf(u(t)), with v4(0) = up(0) = Rpuo.
This together with Lemma [4.1] yields the following estimate for ¢t > 0
(4.5) [(w = va) ()l 22 () < h?|[w(0)]| 20y + ch® 6|1 f (W) os 0,7:12(0)) < ch?3.
Meanwhile, we note that p;, := v, — uy, satisfies the following equation

O pr(t) — App(t) = Prf(u(t)) — Puf(un(t)), with pp(0)=0.

Then, by the Lipschitz continuity of f and the maximal LP-regularity of fractional evolution
equations [5, Corollary 1], we obtain the following estimate for any p € (1, 00)

108 pull L 0,152 () < ellPrf(w) — Prf(un)llzr 0,502 ()
< cllu —unllLro,1;2(0)
< cllu = vnllLe(o,miL2(0)) + cllonlleo,r;02 @)
< ch?03 + cllpnllLe o, 02(0))-

Then by the fractional Gronwall’s inequality in Theorem we have

t < ch?02.
tg[lg’,}] Il on( )HL?(Q) =S ey

This and (4.5) directly imply the desired result. O
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Next we give the temporal discretization error.
THEOREM 4.4. Let ug € HY(Q)NH?(Q), and f : R — R be Lipschitz continuous. Then
the fully discrete scheme (1.3|), with either the L1 scheme or backward Euler CQ for time

discretization, has a unique solution up € Sp, n=1,..., N, and the solutions satisfy
4. —uy <ecr®.
(46) max[un(ta) = uf oo < 7
Proof. For given ul, - ,qul, 11.3) is essentially a linear system with a symmetric

positive definite matrix, and thus it has a unique solution uj € Sj,. It suffices to establish
the estimate (4.6]). Like before, we decompose the fully discrete solution u} into two parts,
up = vy + pj, where vl and pj respectively satisfy

(4.7) O (vp — vp) — Apvp = Puf(un(tn)),
(4.8) 02 ok — Dnphy = Puf(up ™) = Puf (un(tn)),

with v) = u;(0) = Rpup and pf), = 0. Equation (4.7) can be viewed as the time discretization
of (1.4), with the right-hand side being a given function. Hence, by Lemma and using
0sun(s)|| L2 < es* ™t (cf. Theorem and Rademacher’s theorem, we have

un(tn) — vplle () Scti_17<||Ahuh(0)||L2(n) + ||f(uh(0))|L2(Q))

(4.9) ter / "t — ) (un(5)Dstn (5)| 2 0y ds

tn
<ctolr 4 CT/ (tp — 8)* 15> ds
0
<ol f et < e

It remains to estimate p}'. By applying the discrete maximal ¢P-regularity to (4.8]) (choosing
X = L3(Q) in [17, Theorems 3.1 and 4.1]), we obtain that for all 1 < p < oot
102 P ller 2y < el (f(up ™) = Flun(tn)))ic llen 220
<ol (f(up™) = Fun(tn-1)))miller L2
+cl|(f (un(tn-1)) = fun(tn)))nzillerL2(2))-

By the Lipschitz continuity of f and the triangle inequality, we arrive at
I1CF (uh ™) = Fun(ta1)))ic lev(r2()

< ell(un(tn1) —up =" ller (22
< ell(untn—1) = v )nller20)) + ll(oh ™ msyller (2 (0)
< et + el (o) m ler (L2

n—
h
n—
h

where the last inequality follows from (4.9). Similarly, by the Lipschitz continuity of f and
the a priori estimate ||up||ce(jo,7);22(0)) < ¢ (cf. Theorem , we deduce

L (un (1)) = FCun ()l 22 )T ller < ell(lun(tnat) = un(ta)ll2@)) i ller
S C”(CT )n:]_ng.

Combining the preceding three estimates yields

102 pp)ms llerr2eay) < cll (PR m=i ler (z2(0)) + €T
16



By choosing p > 1/a and applying the discrete Gronwall’s inequality (with X = L?(Q) in
Theorem , we obtain

. 7 < cr“.
(4.10) Jax pkllz2(0) < er

In view of the decomposition up (t,) — ujy = (un(tn) — v}) — pjr, the two estimates and
imply , completing the proof of the theorem. O

REMARK 4.2. If the nonlinear source f is not Lipschitz continuous but problem
has a unique bounded solution u, then Theorems [1.3] and [£:4] are still valid by proving the
boundedness of the semidiscrete solution u;, and the fully discrete solution uj;. For simplicity,
we have assumed f to be Lipschitz continuous in order to avoid these technicalities.

5. Proof of Lemma for the L1 scheme. The L1 scheme was analyzed in [15]
only for the homogeneous problem. Below we give a proof for the general case.

First, we assume that ¢ is time-independent, i.e., g(t) = ¢g(0). Then using Laplace
transform, one can derive the following error representation (cf. [I5] eq. (2.7) and (2.9)]):

1

2mi To s

L et (e )T B e ) — D) (Anon(0) + Pug(0)) d,

2 e
Fe,é

vp(tn) — vy = e 27Nz — Ap) T (Apun(0) + Prg(0))dz

where the contour I'g 5 is defined in (3.11)), I'y s = {2 € Ty 5 : [Im(z)| < 1/7}, and

T 1—e*7)?
u@=ewd&W“=e;$ﬁ)w

TE 2T

Lia,1 (e_”),

which satisfy the following estimates (cf. [15 Section 3]):

(5.0)  colsl < (e )| Serle] and |u(e ) — 2| < erlef?, ¥z €Ty
(5.2) 1B-(e7* )| > clz|r' ™ and [B,(e7T) — 2% < c|2PT*7*, VzeTgs.
By using (5.1)—(5.2)), direct calculations yield

(5.3) 1271 (= = A) ™ = u(e™* )TN B (eTT) = An) T lra(@) 120 < clz| 70T

Now we split the error vy (t,) — v} into two components, i.e., vy (t,,) — v} = Z; + Zs, where

I, = i . et (272 = Ap) T = (e ) TN (Br(e7FT) = Ap) ) (Apvn(0) + Prg(0)) dz,

1 . -
— ez (2% — AR)THARYR(0) + Prg(0))dz.
2mi FG,J\FE,(;
By using (5.3]) and (3.7)), and choosing § < 1/¢,, the argument from [I5] yields
(5.4) I1Z1ll 2 (0) + [ Z2ll2() < ety ™' 7|20 0A(0) + Pag(0)]|2(q)-

Second, we consider the case v(0) = ¢g(0) = 0. Then Taylor’s expansion gives

(5.5) Prg(t) = Prg(0) + 1% Pog'(t) = 1 % Pyg'(t).
17



In view of (3.9)), the semidiscrete solution vy (t,) can be represented by
(5.6) On(tn) = (E % Pog)(tn) = (E* (1% Prg))(tn) = ((E * 1) * Pog')(tn).

Similarly, we have

oo
T

(/87'(5) - Ah)_l = Z Efﬁ" with E:_L = — eZ"T(ﬁT(e—ZT) _ Ah)—l dz.

T oom S
n=0 Fe,é

Hence the fully discrete solution vj can be represented by vy = -7 Er~I Pyg(t;), and the
second inequality of (5.2)) implies

(5.7) | EX | p2(0)—12(0) < cto™'r.

Let E;c(t) = > 07 o B0, —e(t), where &, _, is the Dirac-Delta function concentrated at
tn — €, with € € (0,7). Then v}} can be rewritten as

(5:8) vt =l (By.c % Pag)(t) = i (Br,c + (15 Pag))(t) = (lim(Br.c 1) % Pag') (tn):

e—
The representations (5.6) and (5.8)) yield
(5.9) lon(tn) = vitllz @) < N[Hm((E = Er.c) # 1) * Pag'(tn) [l 22 (@)

Using Laplace transform and Cauchy’s integral formula, we deduce

(lim(E - Br) #1)(t) = o

e—0 2mi Tos

o [ et (e ) T (e ) - A

2mi F;,&

etz — Ap) "Nz

Then using the estimate we obtain

(5.10) 1(im (B — Er ) % 1)(tn) | 2@ 22(2) < €Tt

It remains to prove the following extension of the estimate :

(5.11) ||(l1_>n%(E —Er) * 1)(t) | n20)—r20) < ert®™ 1, YVt e (0,T).

Then this and yield the second part on the right-hand side of , and completes the

proof of Lemma
To prove ([5.11)), we consider the Taylor expansion of (E(t) — E, (t)) * 1 at t = ¢,, i.e.,

(5.12) (E—E.)+ 1)(t) = (E — Eyo) % 1)(tn) — /t (B - E,)(s)ds.

In view of Lemma (iii), there holds
tn tn
H / E(s)ds < c/ 5% tds < ert* L.
t L2(Q)—L2() t
Similarly, appealing to (5.7)), we have

tn
lim/ E.(s)ds
e—=0 J,

= [|EX |22 (@)= L2(0) < ot
L2(Q)—L2(Q)

Substituting (5.10) and the last two inequalities into (5.12)) yields (5.11)). O

18



6. Numerical experiments. In this section, we present numerical examples to verify
the theoretical results in Theorems and We consider problem with a diffusion
coefficient 0.1 in the unit square = (0, 1)?, with the following two sets of problem data:

(a) uo(w,y) = ay(1 —2)(1 — y) € HY(Q) N HA(Q) and f = v1+ 2

(b) ug(z,y) = (1 — z)sin(2ry) € HY(Q) N H?2(Q) and f =1 —u?.

In the computation, we divided the domain €2 into regular right triangles with M equal
subintervals of length h = 1/M on each side of the domain. The numerical solutions are
computed by using the Galerkin FEM in space, and the backward Euler (BE) CQ or the L1
scheme in time. To evaluate the convergence, we compute the spatial error e; and temporal
error eg, respectively, defined by

es = 1ganaSXN lun(tn) — u(tn)l|z2() and e = 12182(1\7 lupy — un(tn)ll L2(0)-

Since the exact solution to problem is unavailable, we compute reference solutions on
a finer mesh, i.e., the continuous solution u(t,,) with a fixed time step 7 = 1/1000 and mesh
size h = 1/1280, and the semidiscrete solution uy(t,) with h = 1/10 and 7 = 1/(64 x 10%).

In case (a), since the nonlinearity f is Lipschitz continuous, the theory in Section
applies. The numerical results for case (a) are shown in Tables [l{and [2| where the numbers
in the bracket in the last column refer to the theoretical predictions from Section [ We
observe an O(h?) rate for the spatial error e,, and an O(7%) rate for the temporal error e;
for both backward Euler CQ and L1 scheme. These observations fully confirm Theorems

(43 and [4.4

TABLE 1
Numerical results for case (a): the spatial error es with T =1, with N = 1000, h = 1/M.
a\M 5 10 20 40 80 rate
0.4 6.89e-2  2.00e-2 5.34e-3 1.37e-3 3.3le-4 | = 2.01 (2.00)
0.6 7.06e-2  2.05e-2 5.58e-3 1.42e-3 3.44e-4 | = 2.01 (2.00)
0.8 7.59e-2 2.18e-2 5.80e-3 1.48e-3 3.57e-4 | = 2.01 (2.00)
TABLE 2
Numerical results for case (a): the temporal error e; with T =1, 7 = T/N, N =k x 10*, and h = 0.1.
@ k 1 2 4 8 16 rate

04 | BE | 1.16e-3 8.88¢-4 6.79e-4 5.19e-4 3.86e-4 | =~ 0.39
L1 | 2.06e-3 1.59e-3 1.22e-3 9.34e-4 7.15e-4 | =~ 0.38 (0.40
0.6 | BE | 1.79¢-4 1.18e-4  7.75e-5  5.10e-5 3.36e-5 | ~ 0.60 (0.60

(0.40)
(0.40)
(0.60)
L1 | 3.05e-4 2.02e-4 1.33¢-4 8.80e-5 5.8le-5 | ~ 0.60 (0.60)
(0.80)
(0.80)

0.8 | BE | 1.73e-5 9.87e-6 5.65e-6 3.24e-6 1.86e-6 | ~ 0.80 (0.80
L1 | 3.91e-5 2.24e-5 1.29e-5 7.38¢-6 4.24e-6 | ~ 0.80 (0.80

In case (b), the nonlinear source f is not Lipschitz continuous. Nonetheless, one observes
an O(h?) and O(7%) convergence rate for the spatial and temporal errors, respectively, cf.
Tables [3] and [ This concurs with the discussions in Remarks [3.1] and Further, the
absolute accuracy of the L1 scheme and backward Euler CQ is comparable with each other
for both cases (a) and (b). Interestingly, the spatial error e, increases slightly with the
fractional order «, but the temporal error e; decreases with a.

Acknowledgements. The authors are grateful to the anonymous referees for their
constructive comments, which are very helpful to improve the presentation of the paper.
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TABLE 3

Numerical results for case (b): the spatial error es with T =1, with N = 1000, h = 1/M.

a\M 5 10 20 40 80 rate
0.4 5.65e-2  1.68e-2 4.58e¢-3 1.18e-3  2.87e-4 | = 2.00 (2.00)
0.6 5.90e-2 1.75e-2 4.74e-3  1.22e-3  2.97e-4 | = 2.00 (2.00)
0.8 6.19e-2  1.82e-2 4.93e-3 1.27e-3  3.08¢-4 | = 2.01 (2.00)
TABLE 4
Numerical results for case (b): the temporal error ey with T =1, 7 =T/N, N = k x 10%, h = 0.1.
@ k 1 2 4 8 16 rate
04 | BE | 1.53e-3 1.17e-3  9.07e-4 6.96e-4 5.33e-4 | ~ 0.38 (0.40)
L1 | 2.73e-3  2.12e-3  1.64e-3  1.26e-3  9.65e-4 | =~ 0.38 (0.40)
0.6 | BE | 2.43e-4 1.60e-4 1.05e-4 6.93e-5 4.56e-5 | ~ 0.60 (0.60)
L1 | 4.14e4 2.74e-4 1.8le-4 1.20e-4 7.89%-5 | = 0.60 (0.60)
0.8 | BE | 2,35e-5 1.34e-5 7.68¢-6 4.40e-6 2.53e-6 | =~ 0.80 (0.80)
L1 | 5.30e-5 3.04e-5 1.75e-5 1.00e-5 5.76e-6 | = 0.80 (0.80)
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