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Abstract. We study fully discrete linearized Galerkin finite element approximations to a nonlin-
ear gradient flow, applications of which can be found in many areas. Due to the strong nonlinearity
of the equation, existing analyses for implicit schemes require certain restrictions on the time step
and no analysis has been explored for linearized schemes. This paper focuses on the unconditionally
optimal L2 error estimate of a linearized scheme. The key to our analysis is an iterated sequence of
time-discrete elliptic equations and a rigorous analysis of its solution. We prove the W 1,∞ bounded-
ness of the solution of the time-discrete system and the corresponding finite element solution, based
on a more precise estimate of elliptic PDEs in W 2,2+ε1 and H2+ε2 and a physical feature of the
gradient-dependent diffusion coefficient. Numerical examples are provided to support our theoretical
analysis.
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1. Introduction. We consider the nonlinear diffusion equation

∂u

∂t
−∇ · (σ(|∇u|2)∇u) = g(1.1)

in a convex polygonal domain Ω in R2 with the Neumann boundary condition

∇u · ~n = 0 on ∂Ω(1.2)

and the initial condition

u(x, 0) = u0(x) for x ∈ Ω,(1.3)

where g is a given function and

σ(s2) =
1√

λ2 + s2
(1.4)

is a gradient-dependent diffusion coefficient, where λ is a positive constant. The
equation has been involved in many applications, such as minimal surface flow [32],
prescribed mean curvature flow [16, 24], geometric measure theory [4], and a regu-
larized model in image denoising [11, 13, 14, 19, 25, 34, 35, 38, 40]. A review article for
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the applications in image processing was given in [10]. On the other hand, (1.1) can
be viewed as a gradient flow with the energy functional

Jλ[u] :=

∫
Ω

√
|∇u|2 + λ2 dx−

∫
Ω

gudx .

Mathematical analysis of the nonlinear diffusion equation (1.1) was studied in
[21, 24]. In particular, the W 1,∞ regularity of the solution was proved in [21], which
further implies higher regularity of the solution (by the method of Section 8.3.2 of [18]).
Numerical methods and simulations for the nonlinear diffusion equation have been in-
vestigated extensively in the last several decades. For examples, see [2, 34, 35, 40] for
finite difference methods and [13,16,17,19–22] for finite element methods (FEMs). Ex-
plicit schemes may not be efficient due to their strong time-step restrictions. A fully
implicit backward Euler–Galerkin FEM was analyzed in [21], where optimal conver-
gence rate was proved under the condition τ = O(h2). Suboptimal error estimates
for the scheme were presented in [22] under a weaker mesh restriction τ = o(h1/2),
and further analysis on the convergence rate of the scheme with respect to the reg-
ularization parameter was given in [20]. The implicit backward Euler scheme was
also studied in [19] with a lumped mass FEM, where L∞-boundedness of the nu-
merical solution was proved and no error estimates were presented. In these fully
implicit schemes, one has to solve a system of nonlinear equations at each time step
and an extra inner iteration is needed. In addition to the implicit schemes, linearized
semi-implicit FEMs for the nonlinear diffusion equation have also been investigated by
several authors [13,34,37]. In this method, the gradient-dependent diffusion coefficient
is calculated with the numerical solution at the last time step and Galerkin FEMs are
used to solve the linearized equation. The scheme only requires the solution of a linear
system at each time step, which is simple and efficient for implementation [23, 31].
However, theoretical error analysis of the linearized scheme seems very difficult due
to the strong nonlinear structure. As far as we know, no optimal error estimates of
linearized semi-implicit FEMs are available for the nonlinear diffusion equation. The
major difficulty for the analysis of the semi-implicit scheme is due to the nature of
the linearization of the scheme, which leads to the arising of the energy-norm errors
at two different time levels in the error equation (see (3.23)-(3.26) for the estimates
of the error equation).

In this paper, we study linearized backward Euler–Galerkin methods for the non-
linear system (1.1)-(1.3). Our focus is on unconditionally optimal error estimates
of numerical methods. The key issue in the analysis is to establish the W 1,∞ con-
vergence of the numerical solution. To deal with the strong nonlinearity from the
gradient-dependent diffusion coefficient, we introduce an iterated sequence of time-
discrete elliptic PDEs as in [28, 29]. Thus the linearized backward Euler–Galerkin
method coincides with the corresponding FE approximation to the time-discrete sys-
tem. We prove the W 1,∞ convergence of the solution of the time-discrete system
and FE solution, in terms of more precise estimates for elliptic PDEs in W 2,2+ε1 and
H2+ε2 :

‖u‖L2+ε1 ≤ (1 + ε∗1)‖∆u‖L2+ε1

‖u‖H2+ε2 ≤ (1 + ε∗2)‖∆u‖Hε2 ,

and a physical feature of the gradient flow

(1.5) 2|σ′(s2)|s2 < σ(s2) .
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With these a priori estimates, we establish the L2-norm optimal error estimate without
any time-step restrictions.

The rest part of this paper is organized as follows. In Section 2, we introduce
some notations and the linearized backward Euler–Galerkin FEM for the nonlinear
diffusion equation (1.1)-(1.3), and then we present our main results and our method-
ology. In Section 3, we prove our main results based on the regularity and W 1,∞-
convergence of the time-discrete solution, while the rigorous proof of the regularity
and W 1,∞-convergence of the time-discrete solution is postponed to Section 4. Nu-
merical examples are presented in Section 5, which confirm our theoretical analysis
and show clearly that the linearized scheme is efficient and no time-step conditions
are needed.

2. Notations and main results. Let Ω be a given convex polygon in R2. For
1 ≤ p ≤ ∞ and any nonnegative integer k, we denote by W k,p(Ω) the usual Sobolev
space of functions defined on Ω and, to simplify the notations, we set W k,p :=
W k,p(Ω), Hk := W k,2(Ω) and Lp := W 0,p. For s ∈ (0, 1), we define Hk+s :=
(Hk, Hk+1)[s] as the complex interpolation space between Hk and Hk+1. More de-
tailed discussions for the complex interpolation spaces can be found in literature, e.g.,
see the classical book [5] by Bergh and Löfström.

For a given quasi-uniform triangulation of Ω into triangles Tj , j = 1, · · · , J , we
denote by h = max1≤j≤J{diamTj} the mesh size and define a finite element space by

V rh = {vh ∈ C(Ω) : vh|Tj is a polynomial of degree r}

so that V rh is a subspace of H1(Ω). Let Πh : C(Ω) → V rh denote the Lagrangian
interpolation operator. Let 0 = t0 < t1 < · · · < tN = T be a uniform partition of the
time interval [0, T ] with tn = nτ . For a sequence of functions {fn}Nn=0, we define a
time-difference operator by

Dτf
n+1 =

fn+1 − fn

τ
, for n = 0, 1, · · · , N − 1.(2.1)

We define the linearized backward Euler–Galerkin finite element scheme by(
DτU

n+1
h , v

)
+
(
σ(|∇Unh |2)∇Un+1

h ,∇v
)

=
(
gn+1, v

)
, ∀v ∈ V rh ,(2.2)

with the initial condition U0
h = Πhu0 and r ≥ 2. At each time step, the scheme

only requires the solution of a linear system. Also we assume that the solution of
(1.1)-(1.3) exists and satisfies

‖u0‖Hr+1 + ‖u‖L∞((0,T );Hr+1) + ‖∂tu‖L∞((0,T );Hr+1) + ‖∂ttu‖L2((0,T );L2) ≤M0,
(2.3)

where M0 is some positive constant. For simplicity, we assume that g = g(x, t) in
this paper. The analysis presented in this paper can be easily extended to the general
case g = g(u, x, t) for the scheme(

DτU
n+1
h , v

)
+
(
σ(|∇Unh |2)∇Un+1

h ,∇v
)

=
(
g(Unh , x, t

n), v
)
, ∀v ∈ V rh ,

if g is a smooth function of u, x and t.
Our main results are given in the following theorem concerning the uncondition-

ally optimal convergence rate of the numerical solution.
Theorem 2.1. Suppose that the system (1.1)-(1.3) has a unique solution u sat-

isfying the regularity condition (2.3). Then there exists a positive constant C0, which
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is independent of τ and h (but may depend on λ, M0, Ω and T ), such that the finite
element system (2.2) admits a unique solution {Unh }Nn=1 satisfying

‖Unh − un‖L2 ≤ C0(τ + hr+1).(2.4)

To prove the above theorem, we introduce an iterated sequence of elliptic PDEs
(time-discrete system) as proposed in [28,29]:

DτU
n+1 −∇ · (σ(|∇Un|2)∇Un+1) = gn+1,(2.5)

with the boundary condition ∇Un+1 ·~n = 0 on ∂Ω and the initial condition U0 = u0.
Then the fully discrete solution Un+1

h coincides with the finite element solution of
(2.5). In view of this property, we split the error into

Unh − un = (Unh − Un) + (Un − un)

and analyze the two error functions separately. The regularity of the solution of the
time-discrete system (2.5) is given in the following theorem.

Theorem 2.2. Under the assumption of Theorem 2.1, there exist positive con-
stants τ∗0 , C∗0 , p > 2 and s0 > 0, which are dependent upon λ, M0, Ω and T and
independent of τ and h, such that when τ < τ∗0 the time-discrete system (2.5) admits
a unique solution {Un}Nn=0 satisfying

max
0≤n≤N

(‖Un‖2W 2,p + ‖Un‖2H2+s0 ) +

N∑
n=1

τ‖DτU
n‖2H2 ≤ C∗0 ,(2.6)

max
1≤n≤N

‖en‖2H1 +

N∑
n=1

τ‖en‖2H2 +

N∑
n=1

τ‖Dτe
n‖2L2 ≤ C∗0 τ2,(2.7)

max
1≤n≤N

‖en‖W 2,p ≤ C∗0 τ1/3,(2.8)

where en := un − Un.
The proofs of Theorem 2.1 and Theorem 2.2 will be given in Section 3 and Section

4, respectively. In the rest part of this paper, we denote by C a generic positive
constant which is independent of τ , h and n, and by ε a generic small positive constant.

3. Proof of Theorem 2.1. In this section, we prove Theorem 2.1 based on the
results of Theorem 2.2. The proof of the latter is deferred to Section 4. The following
inverse inequalities will be used in this section:

‖v‖Lp ≤ Ch2/p−2/q‖v‖Lq , for v ∈ V rh , 1 ≤ q ≤ p ≤ ∞,(3.1)

‖∇v‖Lp ≤ Ch−1‖v‖Lp , for v ∈ V rh , 1 ≤ p ≤ ∞.(3.2)

3.1. Preliminaries. Based on Theorem 2.2, we define

M = sup
τ

max
1≤n≤N

(‖un‖W 1,∞ + ‖Un‖W 1,∞) + 1

so that

σ(|∇un|2) ≥ σM , |σ(|∇un|2)|+ |σ′(|∇un|2)|+ |σ′′(|∇un|2)| ≤ CM ,
σ(|∇Un|2) ≥ σM , |σ(|∇Un|2)|+ |σ′(|∇Un|2)|+ |σ′′(|∇Un|2)| ≤ CM ,
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for some positive constants σM and CM .
For any given function w ∈ H1, we define the following matrix functions:

B(∇w) = 2σ′(|∇w|2)∇w(∇w)T , A(∇w) = σ(|∇w|2)I +B(∇w) .(3.3)

For n ≥ 0 we define the projection operators R
n+1

h : H1(Ω) → V rh and Rn+1
h :

H1(Ω)→ V rh by(
A(∇un)∇(w −Rn+1

h w),∇v
)

= 0, ∀ w ∈ H1 and v ∈ V rh ,(3.4) (
A(∇Un)∇(w −Rn+1

h w),∇v
)

= 0, ∀ w ∈ H1 and v ∈ V rh ,(3.5)

where
∫

Ω
R
n+1

h wdx =
∫

Ω
Rn+1
h wdx =

∫
Ω
wdx are enforced for uniqueness, and we set

R
0

h := R
1

h, R0
h := R1

h. These two projection operators are well defined since

λ2σ3
M |ξ|2 ≤ ξTA(∇un)ξ ≤ 2CM |ξ|2, ∀ ξ ∈ R2 ,

λ2σ3
M |ξ|2 ≤ ξTA(∇Un)ξ ≤ 2CM |ξ|2, ∀ ξ ∈ R2 .

We denote

θn+1
h = Un+1 −Rn+1

h Un+1, and θ
n+1

h = un+1 −Rn+1

h un+1 .

By the classical theory of finite element methods, with the regularity of Un given in
Theorem 2.2, we have

‖un+1 −Rn+1
h un+1‖W 1,∞ ≤ C‖un+1‖H3h,(3.6)

‖θn+1

h ‖Hl ≤ C‖un+1‖Hr+1hr+1−l, for l = 0, 1,(3.7)

‖Rn+1
h Un+1‖W 1,∞ + ‖Rn+1

h un+1‖W 1,∞ ≤ C(‖Un+1‖W 1,∞ + ‖un+1‖W 1,∞),(3.8)

‖τDτ∇Un+1‖L∞ ≤ C‖τDτ∇en+1‖L∞ + C‖τDτ∇un+1‖L∞ ≤ Cτ1/3,(3.9)

‖DτA(∇Un)‖Lp̄ ≤ C‖Dτ∇Un‖Lp̄ ≤ C‖DτU
n‖H2 ,(3.10)

and

‖θn+1
h ‖W l,q ≤ ‖en+1 −Rn+1

h en+1‖W l,q + ‖un+1 −Rn+1
h un+1‖W l,q

≤ Ch2−l‖en+1‖W 2,q + Ch2−l+2/q‖un+1‖H3 for l = 0, 1 and 2 ≤ q ≤ p,(3.11)

where p is given in Theorem 2.2 and 1/p̄ + 1/p = 1/2. The above inequality (3.7)
with l = 0, 1 is standard L2 and H1 error estimate of the finite element method for
elliptic equations, respectively. Since A(∇Un) ∈ W 1,p for some p > 2, the L2 error
estimate ‖un+1 − Rn+1

h un+1‖L2 ≤ Ch3‖un+1‖H3 is also standard. An interpolation
error estimate related to (3.6) is

‖un+1 −Πhu
n+1‖W 1,∞ ≤ Ch‖un+1‖H3

which can be derived by Bramble-Hilbert Lemma (see page 77 of the book [7]). Then
(3.6) can be established by using the above inequality and the standard L2 error es-
timate (together with an inverse inequality). Moreover, (3.8) and (3.11) follow from
Theorem 8.1.11 and Theorem 8.5.3 of [8], respectively, and (3.9)-(3.10) are conse-
quences of Theorem 2.2. From these inequalities we also derive that

‖θnh‖W 1,∞ ≤ ‖en −Rnhen‖W 1,∞ + ‖un −Rnhun‖W 1,∞

≤ C‖en‖W 1,∞ + Ch‖un‖H3

≤ C(τ1/3 + h).(3.12)
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In this section, we shall frequently use the inequalities (3.6)-(3.12) and also, we need
the following Lemma.

Lemma 3.1. Under the assumptions of Theorem 2.1, there exist positive constants
τ̃0 and δ0 such that when τ ≤ τ̃0,(N−1∑

n=0

τ‖Dτθ
n+1
h ‖2H−1

) 1
2

≤ C(τ1/3 + hδ0)h2,(3.13)

(N−1∑
n=0

τ‖Dτ (un+1 −Rn+1
h un+1)‖2H1

) 1
2

≤ Chr,(3.14)

(N−1∑
n=0

τ‖Dτθ
n+1

h ‖2L2

) 1
2

≤ Chr+1.(3.15)

Proof. Since un is smooth enough, (3.14)-(3.15) can be obtained easily. Here we
only prove (3.13). Note that(

A(∇Un)∇(Un+1 −Rn+1
h Un+1), ∇φh

)
= 0,(3.16) (

A(∇Un−1)∇(Un+1 −RnhUn+1), ∇φh
)

= 0.(3.17)

The difference of the above two equations gives(
A(∇un)∇(RnhU

n+1 −Rn+1
h Un+1), ∇φh

)
+
(

(A(∇Un)−A(∇un))∇(RnhU
n+1 −Rn+1

h Un+1), ∇φh
)

+
(

(A(∇Un)−A(∇Un−1))∇(Un+1 −RnhUn+1), ∇φh
)

= 0,

which together with Theorem 2.2 implies

‖∇(RnhU
n+1 −Rn+1

h Un+1)‖L2

≤ C‖(A(∇Un)−A(∇un))∇(RnhU
n+1 −Rn+1

h Un+1)‖L2

+ C‖(A(∇Un)−A(∇Un−1))∇(Un+1 −RnhUn+1)‖L2

≤ C‖∇en‖L∞‖∇(RnhU
n+1 −Rn+1

h Un+1)‖L2 + Cτ‖Dτ∇Un‖Lp̄‖∇(Un+1 −RnhUn+1)‖Lp

≤ Cτ1/3‖∇(RnhU
n+1 −Rn+1

h Un+1)‖L2

+ Cτ‖DτU
n‖H2(‖en+1 −Rnhen+1‖W 1,p + ‖un+1 −Rnhun+1‖W 1,p)

≤ Cτ1/3‖∇(RnhU
n+1 −Rn+1

h Un+1)‖L2

+ Cτ‖DτU
n‖H2(Ch‖en+1‖W 2,p + Ch1+2/p‖un+1‖H3)

≤ Cτ1/3‖∇(RnhU
n+1 −Rn+1

h Un+1)‖L2 + C‖DτU
n‖H2(τ1/3 + h2/p)τh,

where we have used (2.8), (3.10) and a similar W 1,p estimate as given in (3.11). When
τ < τ̃0 := min(τ∗0 , (2C)−3), we get

‖∇(RnhU
n+1 −Rn+1

h Un+1)‖L2 ≤ 2C‖DτU
n‖H2(τ1/3 + h2/p)τh.(3.18)
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To establish the corresponding L2-norm estimate, for any given ϕ ∈ H1(Ω) we
let ψ be the solution of the equation

−∇ ·
(
A(∇Un)∇ψ

)
= ϕ− 1

|Ω|

∫
Ω

ϕdx

with the boundary condition A(∇Un)∇ψ · ~n = 0 on ∂Ω and
∫

Ω
ψdx = 0. Due

to the structure of the matrix A(∇Un), this boundary condition is equivalent to
∇ψ ·~n = 0 on ∂Ω. Since A(∇Un) is uniformly bounded in W 1,p ∩H1+s0 , there exists
a positive constant δ0 ∈ (0,min(2/p, s0)) (dependent on the norm ‖∇Un‖H1+s0 ) such
that ‖ψ‖H2+s ≤ C‖ϕ‖Hs for s ∈ [0, δ0] (see Lemma 4.2).

By noting the fact that
∫

Ω
(RnhU

n+1 −Rn+1
h Un+1)dx = 0, we have(

RnhU
n+1 −Rn+1

h Un+1, ϕ)

=
(
A(∇Un)∇(RnhU

n+1 −Rn+1
h Un+1), ∇ψ

)
=
(
A(∇Un)∇(RnhU

n+1 −Rn+1
h Un+1), ∇(ψ −Πhψ)

)
−
(

(A(∇Un)−A(∇Un−1))∇(Un+1 −RnhUn+1), ∇(Πhψ − ψ)
)

−
(

(A(∇Un)−A(∇Un−1)∇(Un+1 −RnhUn+1), ∇ψ
)

:= I1 + I2 + I3

By (3.11) and (3.18), the first two terms of the right-hand side of the above
equation are bounded by

|I1| ≤ C‖DτU
n‖H2‖ψ‖H2(τ1/3 + h2/p)τh2,

|I2| ≤ C‖DτA(∇Un)‖Lp̄‖∇(Un+1 −RnhUn+1)‖Lp‖ψ‖H2τh

≤ C‖DτU
n‖H2‖ψ‖H2(τ1/3 + h2/p)τh2,

where 1/p̄+1/p = 1/2. Again by (2.8), (3.11) and (3.18) and noting the homogeneous
boundary condition, with integration by part, we can bound the last term by

|I3| =
∣∣∣((A(∇Un)−A(∇Un−1))∇(Un+1 −RnhUn+1), ∇ψ

)∣∣∣
=
∣∣∣(Un+1 −RnhUn+1,∇ ·

[
(A(∇Un)−A(∇Un−1))∇ψ

])∣∣∣
≤ ‖Un+1 −RnhUn+1‖Lp‖∇ ·

[
(A(∇Un)−A(∇Un−1))∇ψ

]
‖Lp′

≤ C(h2‖en+1‖W 2,p + h2+2/p‖un+1‖H3)
(
‖A(∇Un)−A(∇Un−1)‖H1‖∇ψ‖Lp̃

+ ‖A(∇Un)−A(∇Un−1)‖Lp̃‖ψ‖H2

)
≤ C‖DτU

n‖H2‖ϕ‖L2(τ1/3 + h2/p)τh2,

where 1/p+ 1/p′ = 1 and 1/p̃+ 1/2 = 1/p′.
With the above estimates, we obtain

‖RnhUn+1 −Rn+1
h Un+1‖L2 ≤ C‖DτU

n‖H2(τ1/3 + h2/p)τh2 for n ≥ 1.

Since R0
hU

1 = R1
hU

1,(N−1∑
n=0

τ‖RnhUn+1 −Rn+1
h Un+1‖2L2

) 1
2

≤ C(τ1/3 + h2/p)τh2.
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Finally, we take a standard approach to the H−1-norm estimate (3.13) [8]. Since

|(φ−Rhφ, ϕ)| = inf
ψh∈V rh

|(A(∇Un)∇(φ−Rhφ),∇(ψ − ψh))|

≤ C‖∇(φ−Rhφ)‖L2‖ψ‖H2+δ0h
1+δ0

≤ C‖φ‖H2‖ϕ‖Hδ0h2+δ0 , ∀ ϕ ∈ Hδ0 ,

we have

‖φ−Rhφ‖H−δ0 ≤ C‖φ‖H2h2+δ0 , ∀ φ ∈ H2

from which, we further derive that

‖Dτ (Un+1 −Rn+1
h Un+1)‖H−1

≤ ‖DτU
n+1 −RnhDτU

n+1‖H−1 + τ−1‖Rn+1
h Un+1 −RnhUn+1‖H−1

≤ ‖DτU
n+1 −RnhDτU

n+1‖H−δ0 + τ−1‖Rn+1
h Un+1 −RnhUn+1‖L2

≤ C‖Dτe
n+1‖H2h2+δ0 + C‖Dτu

n+1‖H3h3 + τ−1‖Rn+1
h Un+1 −RnhUn+1‖L2 .

(3.13) follows immediately.

3.2. Boundedness of the numerical solution. By (2.6) and (3.8), we can
re-define

M = sup
τ,h

(
max

0≤n≤N
‖un‖W 1,∞ + max

0≤n≤N
‖Rnhun‖W 1,∞

+ max
0≤n≤N

‖Un‖W 1,∞ + max
0≤n≤N

‖RnhUn‖W 1,∞

)
+ 2.

By the regularity assumptions on σ, there exist σM and CM > 0 such that

σ(s2) ≥ σM , ∀ s ∈ [−M,M ],(3.19)

|σ(s2)|+ |σ′(s2)|+ |σ′′(s2)| ≤ CM , ∀ s ∈ [−M,M ].(3.20)

Lemma 3.2. Under the assumptions of Theorem 2.1, there exist positive constants
τ̂0 and ĥ0 which are independent of n, τ and h, such that the finite element system
(2.2) admits a unique solution {Unh }Nn=1 when τ < τ̂0 and h < ĥ0, satisfying

‖Unh ‖L∞ + ‖∇Unh ‖L∞ ≤M,(3.21)

‖enh‖L∞ + ‖∇enh‖L∞ < τ1/8 + hδ0/8,(3.22)

where enh = RnhU
n − Unh and δ0 is given in Lemma 3.1.

Proof. By (3.19)-(3.20), the coefficient matrix of the linear system (2.2) is symmetric
and positive definite, which implies that (2.2) admits a unique solution Un+1

h ∈ V rh
for 0 ≤ n ≤ k.

It is easy to see that the inequalities (3.21)-(3.22) hold for n = 0. By mathematical
induction, we can assume that (3.21)-(3.22) hold for 0 ≤ n ≤ k for some k ≥ 0.

Since the solution Un+1 of (2.5) satisfies(
DτU

n+1, v
)

+
(
σ(|∇Un|2)∇Un+1,∇v

)
=
(
gn+1, v

)
, ∀ v ∈ V rh ,

8



the error function en+1
h satisfies(

Dτe
n+1
h , v

)
+
(
σ(|∇Un|2)∇en+1

h ,∇v
)

(3.23)

=
[
−
(
σ(|∇Un|2)∇θn+1

h , ∇v
)

+
(
(σ(|∇Unh |2)− σ(|∇Un|2))∇Un+1

h ,∇v
)]

−
(
Dτθ

n+1
h , v

)
:= J1(v) + J2(v), ∀ v ∈ V rh .

By using Taylor’s expansion, we see that

(σ(|∇Unh |2)− σ(|∇Un|2))∇Un+1
h

(3.24)

=
(
2σ′(|∇Un|2)∇Un · ∇(Unh − Un) + σ′(|∇Un|2)|∇(Unh − Un)|2

)
∇Un+1

+
1

2
σ′′(ξnh )|∇(Unh + Un) · ∇(Unh − Un)|2∇Un+1

+ (σ(|∇Unh |2)− σ(|∇Un|2))∇(−en+1
h − θn+1

h )

= −2σ′(|∇Un|2)∇Un · ∇(enh + θn+1
h )(∇Un + τDτ∇Un+1)

+ 2σ′(|∇Un|2)∇Un · ∇τDτθ
n+1
h ∇Un+1

+
(
σ′(|∇Un|2)|∇(Unh − Un)|2 +

1

2
σ′′(ξnh )|∇(Un + Unh ) · ∇(enh + θnh)|2

)
∇Un+1

− (σ(|∇Unh |2)− σ(|∇Un|2))∇(en+1
h + θn+1

h )

where ξnh is some number between |∇Unh |2 and |∇Un|2. By using the notations in
(3.3), we see further that

J1(v) = −
(
A(∇Un)∇θn+1

h , ∇v
)

−
(
2σ′(|∇Un|2)∇Un · ∇θn+1

h τDτ∇Un+1, ∇v
)

−
(
2σ′(|∇Un|2)(∇Un · ∇enh)∇Un+1, ∇v

)
+
(
2σ′(|∇Un|2)∇Un · ∇τDτθ

n+1
h ∇Un+1, ∇v

)
+
(
σ′(|∇Un|2)|∇(Unh − Un)|2 +

1

2
σ′′(ξnh )|∇(Un + Unh ) · ∇(enh + θnh)|2∇Un+1, ∇v

)
−
(
(σ(|∇Unh |2)− σ(|∇Un|2))∇(en+1

h + θn+1
h ), ∇v

)
.

Let

γ(|∇Un|2) = 2|σ′(|∇Un|2)||∇Un|2 = σ(|∇Un|2)− λ2σ(|∇Un|2)3.(3.25)

Taking v = en+1
h in (3.23) and noting the fact

(
A(∇Un)∇θn+1

h , ∇en+1
h

)
= 0, we

obtain

J1(en+1
h ) ≤

(
γ(|∇Un|2)|∇en+1

h |, |∇enh|
)

+ C‖τDτ∇Un+1‖L∞(‖∇enh‖L2 + ‖∇θn+1
h ‖L2)‖∇en+1

h ‖L2

+ C

( n+1∑
m=n

‖em −Rmh em‖H1 + τ‖Dτ (un+1 −Rn+1
h un+1)‖H1

)
‖∇en+1

h ‖L2

+ C(‖∇enh‖L∞ + ‖∇θnh‖L∞)(‖∇enh‖L2 + ‖∇θnh‖L2)‖∇en+1
h ‖L2

+ C(‖∇enh‖L∞ + ‖∇θnh‖L∞)(‖∇θn+1
h ‖L2‖∇en+1

h ‖L2 + ‖∇en+1
h ‖2L2).
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From (3.11), (3.12) and (3.22) we have

‖∇θnh‖L2 ≤ Ch‖en‖H2 + Ch2,

‖∇enh‖L∞ + ‖∇θnh‖L∞ ≤ C(τ1/8 + hδ0/8) < ε

when τ < τ1 and h < h1 for some positive constants τ1 and h1 (which depend on
the constant ε). With (3.6)-(3.12), the induction assumptions (3.21)-(3.22) and the
regularity of Un given in Theorem 2.2, we derive that,

J1(en+1
h ) ≤ 1

2

∥∥∥√γ(|∇Un|2)∇en+1
h

∥∥∥2

L2
+

1

2

∥∥∥√γ(|∇Un|2)∇enh
∥∥∥2

L2
+ Cτ1/3‖∇enh‖L2‖∇en+1

h ‖L2

+ C(h‖en+1‖H2 + h‖en‖H2 + τ1/3h2 + τ‖Dτ (un+1 −Rn+1
h un+1)‖H1)‖∇en+1

h ‖L2

+ ε(‖∇enh‖2L2 + ‖∇en+1
h ‖2L2) + Cε−1(‖∇enh‖2L∞ + ‖∇θnh‖2L∞)(‖∇θnh‖2L2 + ‖∇θn+1

h ‖2L2)

≤ 1

2

∥∥∥√γ(|∇Un|2)∇en+1
h

∥∥∥2

L2
+

1

2

∥∥∥√γ(|∇Un|2)∇enh
∥∥∥2

L2

+ Cε−1(h2‖en+1‖2H2 + h2‖en‖2H2 + τ2/3h4 + τ2‖Dτ (un+1 −Rn+1
h un+1)‖2H1)

+ 2ε(‖∇enh‖2L2 + ‖∇en+1
h ‖2L2)

+ Cε−1(‖∇enh‖2L∞ + τ2/3 + h2)(h2‖en‖2H2 + h2‖en+1‖2H2 + h4)

≤ 1

2

∥∥∥√γ(|∇Un|2)∇en+1
h

∥∥∥2

L2
+

1

2

∥∥∥√γ(|∇Un|2)∇enh
∥∥∥2

L2

+ 3ε(‖∇enh‖2L2 + ‖∇en+1
h ‖2L2) + Cε−1(h2‖en‖2H2 + h2‖en+1‖2H2)

+ Cε−1(τ2/3h4 + h6) + Cε−1τ2‖Dτ (un+1 −Rn+1
h un+1)‖2H1 ,

where we have used the inverse inequality h4‖∇enh‖2L∞ ≤ Ch2‖∇enh‖2L2 ≤ ε‖∇enh‖2L2 .
For J2(en+1

h ), we have the following estimate,

J2(en+1
h ) ≤ ‖Dτθ

n+1
h ‖H−1‖en+1

h ‖H1

≤ Cε−1‖Dτθ
n+1
h ‖2H−1 + ε‖∇en+1

h ‖2L2 + ε‖en+1
h ‖2L2 .

With the above estimates, (3.23) reduces to

1

2
Dτ‖en+1

h ‖2L2 +
1

2

(∥∥√σ(|∇Un|2)∇en+1
h

∥∥2

L2 −
∥∥√γ(|∇Un|2)∇enh

∥∥2

L2

)
≤ 3ε(‖∇en‖2L2 + ‖∇en+1‖2L2) + C‖Dτθ

n+1
h ‖2H−1

+ Cε−1‖en+1
h ‖2L2 + Cε−1τ2‖Dτ (un+1 −Rn+1

h un+1)‖2H1

+ Cε−1(‖en‖2H2 + ‖en+1‖2H2)h2 + Cε−1(τ2/3h4 + h6).(3.26)

From (2.8) we derive that

‖τDτγ(|∇Un|2)‖L∞ ≤ C‖τDτe
n‖W 1,∞ + C‖τDτu

n‖W 1,∞ ≤ Cτ1/3,
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which implies

‖
√
σ(|∇Un|2)∇en+1

h ‖2L2 − ‖
√
γ(|∇Un|2)∇enh‖2L2

= ‖
√
σ(|∇Un|2)− γ(|∇Un|2)∇en+1

h ‖2L2 + ‖
√
γ(|∇Un|2)∇en+1

h ‖2L2 − ‖
√
γ(|∇Un−1|2)∇enh‖2L2

−
(
(γ(|∇Un|2)− γ(|∇Un−1|2))∇enh,∇enh

)
≥ ‖λσ(|∇Un|2)3/2∇en+1

h ‖2L2 + τDτ‖
√
γ(|∇Un|2)∇en+1

h ‖2L2 − τ‖
√
|Dτγ(|∇Un|2)|∇enh‖2L2

≥ λ2σ3
M‖∇en+1

h ‖2L2 + τDτ‖
√
γ(|∇Un|2)∇en+1

h ‖2L2 − Cτ1/3‖∇enh‖2L2 .

With the above inequality, (3.26) reduces to

1

2
Dτ‖en+1

h ‖2L2 +
λ2σ3

M

2
‖∇en+1

h ‖2L2 +
τ

2
Dτ‖

√
γ(|∇Un|2)∇en+1

h ‖2L2

≤ 3ε(‖∇en‖2L2 + ‖∇en+1‖2L2) + C‖Dτθ
n+1
h ‖2H−1

+ Cε−1‖en+1
h ‖2L2 + Cε−1τ2‖Dτ (un+1 −Rn+1

h un+1)‖2H1

+ Cε−1(‖en‖2H2 + ‖en+1‖2H2)h2 + Cε−1(τ2/3h4 + h6).

Choosing ε = λ2σ3
M/72, by Theorem 2.2, Lemma 3.1 and Gronwall’s inequality,

we derive that

‖ek+1
h ‖2L2 +

k∑
m=0

τ‖∇em+1
h ‖2L2 ≤ Cτ2h2+Cτ2/3h4 + Ch4+2δ0 .

when τ < τ2 ≤ τ̃0 and h < h2 for some positive constants τ2 and h2.

Applying the inverse inequality, when τ ≥ h2 we have

‖ek+1
h ‖L∞ + ‖∇ek+1

h ‖L∞ ≤ Ch−1(‖ek+1
h ‖L2 + ‖∇ek+1

h ‖L2)

≤ Ch−1(τh2 + τ−1/3h4 + τ−1h4+2δ0)1/2

≤ C(τ1/2 + h2/3 + hδ0)

and when τ ≤ h2 we have

‖ek+1
h ‖L∞ + ‖∇ek+1

h ‖L∞ ≤ Ch−2‖ek+1
h ‖L2 ≤ Ch−2(τ2h2 + τ2/3h4 + h4+2δ0)1/2

≤ C(h+ τ1/3 + hδ0).

In either case, we have

‖ek+1
h ‖L∞ + ‖∇ek+1

h ‖L∞ ≤ τ1/8 + hδ0/8,(3.27)

and

‖Uk+1
h ‖L∞ + ‖∇Uk+1

h ‖L∞ ≤ ‖Rk+1
h Uk+1‖L∞ + ‖∇Rk+1

h Uk+1‖L∞ + 1 ≤M(3.28)

when τ < τ3 and h < h3 for some positive constants τ3 and h3. The induction on
(3.21)-(3.22) is closed with τ̂0 = min{τ∗0 , τ̃0, τ1, τ2, τ3} and ĥ0 = min{h1, h2, h3}.

The proof of Lemma 3.2 is completed.
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3.3. Unconditionally optimal error estimate. Now we turn back to the
proof of Theorem 2.1. Let enh = R

n

hu
n − Unh . From Lemma 3.2, Theorem 2.2, (3.6)

and (3.12), we see that there exist positive constants τ4 < τ̂0 and h4 < ĥ0 such that
when τ < τ4 and h < h4

‖Unh ‖L∞ + ‖∇Unh ‖L∞ ≤M, for n = 0, 1, · · · , N,(3.29)

‖enh‖L∞ + ‖∇enh‖L∞ < 2τ1/8 + 2hδ0/8, for n = 0, 1, · · · , N.(3.30)

Since the exact solution un satisfies(
Dτu

n+1, v
)

+
(
σ(|∇un|2)∇un+1,∇v

)
=
(
gn+1, v

)
+
(
En+1

tr , v
)
, ∀ v ∈ V rh ,

the error function en+1
h satisfies(

Dτe
n+1
h , v

)
+
(
σ(|∇un|2)∇en+1

h ,∇v
)

(3.31)

=
[
−
(
σ(|∇un|2)∇θn+1

h , ∇v
)

+
(
(σ(|∇Unh |2)− σ(|∇un|2))∇Un+1

h ,∇v
)]

−
(
Dτθ

n+1

h , v
)

+
(
En+1

tr , v
)

:= J1(v) + J2(v) + J3(v), ∀ v ∈ V rh .

To estimate J i, i = 1, 2, 3, we take the same approach as used for J1 and J2 in Section
3.2 and we get

J1(en+1
h ) = −

(
A(∇un)∇θn+1

h , ∇en+1
h

)
−
(
2σ′(|∇un|2)∇un · ∇enh∇un+1, ∇en+1

h

)
−
(
2σ′(|∇un|2)∇un · ∇θn+1

h τDτ∇un+1, ∇en+1
h

)
+
(
2σ′(|∇un|2)∇un · ∇τDτθ

n+1

h ∇un+1, ∇en+1
h

)
+

(
σ′(|∇un|2)|∇(unh − un)|2 +

1

2
σ′′(ξ

n

h)|∇(un + unh) · ∇(enh + θ
n

h)|2∇un+1, ∇en+1
h

)
−
(
(σ(|∇Unh |2)− σ(|∇un|2))∇(en+1

h + θ
n+1

h ), ∇en+1
h

)
≤ 1

2

∥∥∥√γ(|∇un|2)∇en+1
h

∥∥∥2

L2
+

1

2

∥∥∥√γ(|∇un|2)∇enh
∥∥∥2

L2
+ Cτ‖∇enh‖L2‖∇en+1

h ‖L2

+ (Cτ + Cτ‖Dτθ
n+1

h ‖H1)‖∇en+1
h ‖L2

+ C(‖∇enh‖L∞ + ‖∇θnh‖L∞)(‖∇enh‖L2 + ‖∇θnh‖L2)‖∇en+1
h ‖L2

+ C(‖∇enh‖L∞ + ‖∇(un −Rnhun)‖L∞)‖∇en+1
h ‖2L2

+ C‖∇θn+1

h ‖L∞(‖∇enh‖L2 + ‖∇θnh‖L2)‖∇en+1
h ‖L2

≤ 1

2

∥∥∥√γ(|∇un|2)∇en+1
h

∥∥∥2

L2
+

1

2

∥∥∥√γ(|∇un|2)∇enh
∥∥∥2

L2

+ ε(‖∇enh‖2L2 + ‖∇en+1
h ‖2L2) + Cε−1(1 + ‖Dτθ

n+1

h ‖2H1)τ2 + Cε−1h2r+2,

J2(en+1
h ) ≤ Cε−1‖Dτθ

n+1

h ‖2L2 + ε‖en+1
h ‖2L2 ,

and

J3(en+1
h ) ≤ ε‖en+1

h ‖2L2 + Cε−1‖En+1
tr ‖2L2
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when τ < τ5 and h < h5 for some positive constants τ5 and h5. With the above
estimates, (3.31) reduces to

1

2
Dτ‖en+1

h ‖2L2 +
1

2

(∥∥√σ(|∇Un|2)∇en+1
h

∥∥2

L2 −
∥∥√γ(|∇Un|2)∇enh

∥∥2

L2

)(3.32)

≤ ε(‖∇en‖2L2 + ‖∇en+1‖2L2) + ε‖en+1
h ‖2L2

+ Cε−1τ2‖Dτθ
n+1

h ‖2H1 + Cε−1‖Dτθ
n+1

h ‖2L2 + Cε−1‖En+1
tr ‖2L2 + Cε−1(τ2 + h2r+2).

Since

‖
√
σ(|∇Un|2)∇en+1

h ‖2L2 − ‖
√
γ(|∇Un|2)∇enh‖2L2

= ‖
√
σ(|∇Un|2)− γ(|∇Un|2)∇en+1

h ‖2L2 + ‖
√
γ(|∇Un|2)∇en+1

h ‖2L2 − ‖
√
γ(|∇Un−1|2)∇enh‖2L2

−
(
(γ(|∇Un|2)− γ(|∇Un−1|2))∇enh,∇enh

)
≥ ‖λσ(|∇Un|2)3/2∇en+1

h ‖2L2 + τDτ‖
√
γ(|∇Un|2)∇en+1

h ‖2L2 − τ‖
√
|Dτγ(|∇Un|2)|∇enh‖2L2

≥ λ2σ3
M‖∇en+1

h ‖2L2 + τDτ‖
√
γ(|∇Un|2)∇en+1

h ‖2L2 − Cτ1/3‖∇enh‖2L2 ,

the inequality (3.32) reduces to

1

2
Dτ‖en+1

h ‖2L2 +
λ2σ3

M

2
‖∇en+1

h ‖2L2 +
τ

2
Dτ‖

√
γ(|∇Un|2)∇en+1

h ‖2L2

(3.33)

≤ ε(‖∇en‖2L2 + ‖∇en+1‖2L2) + ε‖en+1
h ‖2L2

+ Cε−1τ2‖Dτθ
n+1

h ‖2H1 + Cε−1‖Dτθ
n+1

h ‖2L2 + Cε−1‖En+1
tr ‖2L2 + Cε−1(τ2 + h2r+2) .

By choosing ε = λ2σ3
M/24 and applying Gronwall’s inequality, when τ < τ6 and

h < h6 for some positive constants τ6 and h6, we obtain

max
0≤n≤N

‖enh‖2L2 +

N∑
n=0

τ‖∇enh‖2L2 ≤ C(τ2 + h2r+2).(3.34)

So far we have proved Theorem 2.1 for the case τ < τ7 := min{τ4, τ5, τ6} and
h < h7 := min{h4, h5, h6}. Now we consider the case that τ ≥ τ7 or h ≥ h7.
Substituting v = Un+1

h in (2.2), we get

Dτ

(
1

2
‖Un+1

h ‖2L2

)
≤ Cε−1‖gn+1‖2L2 + ε‖Un+1

h ‖2L2 ,

which further implies that (via Gronwall’s inequality)

max
1≤n≤N

‖Unh ‖L2 ≤ C.(3.35)

Therefore,

max
1≤n≤N

‖Unh − un‖L2 ≤ C ≤ C

max(τ, hr+1)
(τ + hr+1) ≤ C

min(τ7, h
r+1
7 )

(τ + hr+1).

(3.36)

Combining (3.7), (3.34 ) and (3.36), we see that (2.4) holds unconditionally.
The proof of Theorem 2.1 is completed.
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4. Proof of Theorem 2.2. First, we consider the Poisson equation

(4.1)

{
−∆v = f − 1

|Ω|
∫

Ω
fdx, in Ω,

∂~nv = 0 on ∂Ω,

in a convex polygon, and introduce some lemmas concerning the W 2,p and H2+s

estimates of its solution.

Lemma 4.1. Let v be the solution of (4.1) and w ∈ W 1,3 and wmin ≤ w(x) ≤
wmax, where wmin and wmax are positive constants. If f ∈ L2, then v ∈ H2 and for
any ε ∈ (0, 1/2) we have

‖∇2v‖L2 ≤ ‖f‖L2 ,(4.2)

(1− ε)
∫

Ω

∑
i,j

|∂ijv|2wdx ≤
∫

Ω

∣∣∣∣f − 1

|Ω|

∫
Ω

fdx

∣∣∣∣2wdx+ Cwmin,wmax,‖w‖W1,3
ε−2‖∇v‖2L2 .

(4.3)

Proof. The inequality (4.2) is a consequence of Theorem 3.1.1.1 in [26].

To prove (4.3), we denote by ωj the interior angle of the corner xj , j = 1, 2, · · · , J ,
of the convex polygon Ω and by θj(x) the angle spanned by the two vectors xj+1−xj
and x− xj . If f ∈ C∞0 (Ω), then the solution v can be decomposed as [26,33]

v =

J∑
j=1

αjΦ(|x− xj |)|x− xj |π/ωj cos

(
π

ωj
θj(x)

)
+ ṽ

with ṽ ∈ H3, where Φ(r) is a smooth cut-off function which equals 1 in a neighborhood
of r = 0 and αj , j = 1, · · · , J , are positive constants. Letting ωmax = max1≤j≤J ωj ∈
(0, π), from the above expression one can see that v ∈ H2+s ∩ W 3,1 ↪→ C1(Ω) ∩
W 2,1(∂Ω) for s ∈ (0, π/ωmax − 1). Thus the identity

∂iiv∂jjv = ∂i(∂iv∂jjv)− ∂j(∂iv∂ijv) + |∂ijv|2

holds in L1(Ω) and therefore, we derive that

∫
Ω

∑
i,j

|∂ijv|2wdx =

∫
Ω

|∆v|2wdx+

∫
Ω

(
∆v∇v · ∇w −∇2v∇v · ∇w

)
dx

−
∫
∂Ω

∆v∇v · ~nw dl +

∫
∂Ω

∇2v∇v · ~nw dl
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By noting the Neumann boundary condition in (4.1), we have ∇v ·~n = 0 and ∇2v∇v ·
~n = 0 on ∂Ω. Denoting f̃ = f − 1

|Ω|
∫

Ω
fdx, the last equation reduces to∫

Ω

∑
i,j

|∂ijv|2wdx =

∫
Ω

|f̃ |2wdx+

∫
Ω

(
−f̃∇v · ∇w −∇2v∇v · ∇w

)
dx

≤ (1 + ε)

∫
Ω

|f̃ |2wdx+ ε−1‖w−1/2∇w‖2L3‖∇v‖2L6

≤ (1 + ε)

∫
Ω

|f̃ |2wdx+ Cε−1‖w−1/2∇w‖2L3(‖∇v‖2L2 + ‖∇v‖4/3L2 ‖∇2v‖2/3L2 )

≤ (1 + ε)

∫
Ω

|f̃ |2wdx+ ε

∫
Ω

∑
i,j

|∂ijv|2wdx+ Cε−2‖w−1/2∇w‖3L3‖∇v‖2L2 ,

which leads to

(1− ε)
∫

Ω

∑
i,j

|∂ijv|2wdx ≤ (1 + ε)

∫
Ω

|f̃ |2wdx+ Cε−2‖w−1/2∇w‖3L3‖∇v‖2L2 .

Since the above inequality holds for any f ∈ C∞0 (Ω) and C∞0 (Ω) is dense in L2, the
inequality must hold for all f ∈ L2.

It can be found in literatures, such as Theorem 4.3.2.3 and Theorem 4.4.3.7 of [26],
and (23.3) of [15], that

‖∇2v‖L1+p∗/2 ≤ C∗‖f‖L1+p∗/2 ,(4.4)

‖∇2v‖Hs∗/2 ≤ C∗‖f‖Ls∗/2(4.5)

for some positive constant C∗ ≥ 4, where p∗ = min(5/2, 1/[1 − π/(2ωmax)]), s∗ =
π/ωmax − 1 and ωmax denotes the maximal interior angle of the convex polygon Ω.
Since the operator from f to ∇2v defined by (4.1) satisfies (4.2) and (4.4)-(4.5). By
applying the complex interpolation (see Theorem 5.6.3 of [5]) to (4.2) and (4.4)-(4.5),
we obtain the following lemma.

Lemma 4.2. Assume that v ∈ H2(Ω) is the solution of the equation (4.1). Then

‖∇2v‖Lp ≤ (1 + εp)‖f‖Lp(4.6)

‖∇2v‖Hs ≤ (1 + εs)‖f‖Hs(4.7)

for p ∈ (2, p∗) and s ∈ (0, s∗), where limp→2 εp = 0 and lims→0 εs = 0.
Based on the regularity assumption (2.3), we set

K = ‖u‖L∞(Ω×(0,T )) + ‖∇u‖L∞(Ω×(0,T )) + 2.

Then, by the regularity assumptions on σ, there exist positive constants 0 < σK < 1
and CK such that for 0 ≤ s ≤ K we have

σ(s2) ≥ σK , |σ(s2)|+ |σ′(s2)|+ |σ′′(s2)| ≤ CK ,(4.8)

and we choose p so close to 2 that

εp < λ2σ2
K .(4.9)
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Now we start to prove Theorem 2.2. For the given Un ∈ H2+sn , (2.5) can be
viewed as a linear elliptic boundary value problem and therefore, it admits a unique
solution Un+1 ∈ H2+sn+1 for some positive constant sn+1 > 0 (a qualitative regularity
as a consequence of Lemma 4.2). Here we only prove the quantitative estimates (2.6)-
(2.8).

Before we study the estimates (2.6)-(2.8), we prove by mathematical induction
the following inequalities

‖Un‖L∞ + ‖∇Un‖L∞ ≤ K,(4.10)

‖en‖W 2,p ≤ τ1/3(4.11)

assuming τ < τ∗0 for some τ∗0 > 0. Since U0 = u0, the above inequalities hold for
n = 0. We assume that (4.10)-(4.11) hold for 0 ≤ n ≤ k for some nonnegative integer
k, and prove the inequalities for n = k + 1.

From (1.1)-(1.3) and (2.5), we see that en+1 satisfies the equation

Dτe
n+1 −∇ · (σ(|∇un|2)∇en+1)(4.12)

= En+1
tr −∇ · ((σ(|∇Un|2)− σ(|∇un|2))∇Un+1),

with the boundary condition ∇en+1 · ~n = 0 and the initial condition e0 = 0, where

En+1
tr = ∂tu

n+1 −Dτu
n+1 +∇ · [(σ(|∇un|2)− σ(|∇un+1|2))∇un+1]

is the truncation error due to the time discretization. By the regularity assumption
(2.3), we have

max
1≤n≤N

‖Entr‖L2 ≤ C,
N∑
n=1

τ‖Entr‖2L2 ≤ Cτ2.(4.13)

With a similar approach to (3.24), we can derive that

(σ(|∇Un|2)− σ(|∇un|2))∇Un+1

=
(
− 2σ′(|∇un|2)∇un · ∇en + σ′(|∇un|2)|∇en|2

)
∇Un+1

+
1

2
σ′′(ξn)|(∇un +∇Un)∇en|2∇Un+1

= −2σ′(|∇un|2)(∇un · ∇en)∇un

− 2σ′(|∇un|2)(∇un · ∇en)(τDτ∇un+1 −∇en+1)

+
(
σ′(|∇un|2)|∇en|2 +

1

2
σ′′(ξn)|(∇un +∇Un)∇en|2

)
· ∇Un+1

≤ γ(|∇un|2)|∇en|+ Cτ |∇en|+ C|∇en||∇en+1|+ C|∇en|2,(4.14)

where γ(·) is defined in (3.25).
Multiplying (4.12) by en+1 and using (4.14), we get

Dτ

(
1

2
‖en+1‖2L2

)
+‖
√
σ(|∇un|2)∇en+1‖2L2

≤ 1

2
‖
√
γ(|∇un|2)∇en‖2L2 +

1

2
‖
√
γ(|∇un|2)∇en+1‖2L2 + Cτ(‖∇en+1‖2L2 + ‖∇en‖2L2)

+ C‖∇en‖L∞(‖∇en‖2L2 + ‖∇en+1‖2L2) + ‖En+1
tr ‖2L2 + ‖en+1‖2L2 ,
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which implies that

Dτ

(
1

2
‖en+1‖2L2

)
+

1

2

(
‖
√
σ(|∇un|2)∇en+1‖2L2 − ‖

√
γ(|∇un|2)∇en‖2L2

)
≤ Cτ1/4(‖∇en+1‖2L2 + ‖∇en‖2L2) + C‖en+1‖2L2 + C‖En+1

tr ‖2L2 ,(4.15)

where we have used (4.11). By noting

‖
√
σ(|∇un|2)∇en+1‖2L2 − ‖

√
γ(|∇un|2)∇en‖2L2

= ‖
√
σ(|∇un|2)− γ(|∇un|2)∇en+1‖2L2 + ‖

√
γ(|∇un|2)∇en+1‖2L2 − ‖

√
γ(|∇un−1|2)∇en‖2L2

−
(
(γ(|∇un|2)− γ(|∇un−1|2))∇en,∇en

)
≥ ‖λσ(|∇un|2)3/2∇en+1‖2L2 + τDτ‖

√
γ(|∇un|2)∇en+1‖2L2 − τ‖

√
|Dτγ(|∇un|2)|∇en‖2L2

≥ λ2σ3
K‖∇en+1‖2L2 + τDτ‖

√
γ(|∇un|2)∇en+1‖2L2 − Cτ‖∇en‖2L2 ,

(4.15) reduces to

Dτ

(
1

2
‖en+1‖2L2 +

τ

2
‖
√
γ(|∇un|2)∇en+1‖2L2

)
+
λ2σ3

K

2
‖∇en+1‖2L2

≤ Cτ1/4(‖∇en+1‖2L2 + ‖∇en‖2L2) + C‖en+1‖2L2 + C‖En+1
tr ‖2L2 .

By Gronwall’s inequality, when τ < τ8 for some positive constant τ8, we have

max
0≤n≤k

‖en+1‖2L2 +

k∑
n=0

τ‖en+1‖2H1 ≤ C
k∑

n=0

τ‖En+1
tr ‖2L2 ≤ Cτ2.(4.16)

From the above inequality we also see that

‖Un+1‖L2 ≤ ‖un+1‖L2 + ‖en+1‖L2 ≤ C,(4.17)

‖DτU
n+1‖L2 ≤ ‖Dτu

n+1‖L2 + ‖Dτe
n+1‖L2 ≤ C.(4.18)

We rewrite (4.12) as

Dτe
n+1 − σ(|∇un|2)∆en+1

(4.19)

= En+1
tr + 2σ′(|∇Un|2)(∇2Un∇Un) · ∇en+1 − (σ(|∇Un|2)− σ(|∇un|2)∆un+1)

−
[
2σ′(|∇Un|2)∇2Un∇Un − 2σ′(|∇un|2)∇2un∇un

]
· ∇un+1

− [σ(|∇un|2)− σ(|∇Un|2)]∆en+1

= En+1
tr + 2σ′(|∇Un|2)(∇2Un∇Un) · ∇en+1 − (σ(|∇Un|2)− σ(|∇un|2)∆un+1)

+ 2σ′(|∇un|2)∇2en∇un · ∇un − [2σ′(|∇Un|2)∇2un∇Un − 2σ′(|∇un|2)∇2un∇un] · ∇un+1

+ [2σ′(|∇Un|2)∇Un − 2σ′(|∇un|2)∇un] · (∇2en∇un+1)

+ 2τσ′(|∇un|2)∇2en∇un · ∇Dτu
n+1 − [σ(|∇un|2)− σ(|∇Un|2)]∆en+1.
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Multiplying the above equation by −∆en+1 leads to

Dτ

(
1

2
|∇en+1|2dx

)
+

∫
Ω

σ(|∇un|2)|∆en+1|2dx

(4.20)

≤ ‖En+1
tr ‖L2‖∆en+1‖L2 + C‖∇2Un‖Lp‖∇Un‖L∞‖∇en+1‖L2p/(p−2)‖∆en+1‖L2

+ C‖∇en+1‖L2‖∆en+1‖L2 +

∫
Ω

γ(|∇un|2)|∇2en||∆en+1|dx+ C‖∇en‖L2‖∆en+1‖L2

+ C‖∇en‖L∞‖∇2en‖L2‖∆en+1‖L2 + Cτ‖∇2en‖L2‖∆en+1‖L2 + C‖∇en‖L∞‖∆en+1‖2L2 .

By the induction assumption (4.10)-(4.11), we have ‖∇Un‖L∞ ≤ ‖∇2Un‖Lp ≤ C and
by the Sobolev interpolation inequality, the second term in the hand side of the above
inequality is bounded by

‖∇2Un‖Lp‖∇Un‖L∞‖∇en+1‖L2p/(p−2)‖∆en+1‖L2 ≤ C‖en+1‖1−θL2 ‖∆en+1‖1+θ
L2

≤ Cε‖en+1‖2L2 +
ε

4
‖∆en+1‖2L2

for some θ ∈ (0, 1). With (4.11), (3.25) and the above inequality, (4.20) reduces to

Dτ

(
1

2
|∇en+1|2dx

)
+

1

2

∫
Ω

(
σ(|∇un+1|2) + λ2σ(|∇un|2)3 − ε

)
|∆en+1|2dx

≤ 1

2

∫
Ω

(γ(|∇un|2) + ε+ Cτ1/4)|∇2en|2dx+ Cε(‖En+1
tr ‖2L2 + ‖∇en‖2L2 + ‖∇en+1‖2L2)

+
1

2

∫
Ω

[
σ(|∇un+1|2)− σ(|∇un|2)

]
|∆en+1|2dx

≤ 1

2

∫
Ω

(γ(|∇un|2) + ε+ Cτ1/4)|∇2en|2dx+ Cτ

∫
Ω

|∆en+1|2dx

+ Cε(‖En+1
tr ‖2L2 + ‖∇en‖2L2 + ‖∇en+1‖2L2).

Choosing ε < λ2σ3
K/2 and τ < τ9 for some positive constant τ9, we get

Dτ

(
1

2
|∇en+1|2dx

)
+

1

2

∫
Ω

[
σ(|∇un+1|2) +

λ2

2
σ(|∇un|2)3

]
|∆en+1|2dx

≤ 1

2

∫
Ω

(γ(|∇un|2) + 2ε+ Cτ1/4)|∇2en|2dx+ Cε(‖En+1
tr ‖2L2 + ‖∇en‖2L2 + ‖∇en+1‖2L2).

and by applying Lemma 4.1 with w = σ(|∇un+1|2) + λ2

2 σ(|∇un|2)3, we obtain

Dτ

(
1

2
|∇en+1|2dx

)
+

1

2

∫
Ω

[
(1− ε)σ(|∇un+1|2) +

(1− ε)λ2

2
σ(|∇un|2)3

]
|∇2en+1|2dx

≤ 1

2

∫
Ω

[γ(|∇un|2) + ε+ Cτ1/4]|∇2en|2dx+ Cε(‖En+1
tr ‖2L2 + ‖∇en‖2L2 + ‖∇en+1‖2L2).

By choosing ε small enough and when τ < τ10 for some positive constant τ10, we
derive that

Dτ

(
1

2
|∇en+1|2dx

)
+

1

2

∫
Ω

σ(|∇un+1|2)|∇2en+1|2dx

≤ 1

2

∫
Ω

(
σ(|∇un|2)− λ2σ3

K/2
)
|∇2en|2dx+ C

(
‖En+1

tr ‖2L2 + ‖∇en‖2L2 + ‖∇en+1‖2L2

)
,
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which in turn shows that (with Gronwall’s inequality)

max
0≤n≤k

1

2
‖∇en+1‖2L2 +

λ2σ3
K

8

k∑
n=1

τ‖∇2en+1‖2L2 ≤ C
k∑

n=1

τ‖En+1
tr ‖2L2 ≤ Cτ2.(4.21)

From the above inequality we further derive that

max
0≤n≤k

(‖Un+1‖2H1 + ‖DτU
n+1‖2H1) +

k∑
n=1

τ‖DτU
n+1‖2H2 ≤ C.(4.22)

From (4.19) we see that

‖Dτe
n+1‖L2 ≤ C‖En+1

tr ‖L2 + C‖en‖H2 + C‖en+1‖H2 ,

and by using (4.21),

k∑
n=0

τ‖Dτe
n+1‖2L2 ≤ C

k∑
n=0

τ‖En+1
tr ‖L2 + C

k∑
n=0

τ‖en+1‖H2 ≤ Cτ2.(4.23)

In particular, the above inequality implies that ‖Dτe
k+1‖L2 ≤ Cτ1/2 and ‖Dτe

k+1‖H1 ≤
C from (4.22). By an interpolation between L2 and H1, we have

‖Dτe
k+1‖Lp ≤ C‖Dτe

k+1‖2/pL2 ‖Dτe
k+1‖1−2/p

H1 ≤ Cτ1/p.

We rewrite (4.19) by

∆ek+1 = σ(|∇uk|2)−12σ′(|∇uk|2)∇2ek∇uk · ∇uk +G,(4.24)

where

‖G‖Lp ≤ C‖Dτe
k+1‖Lp + C‖Ek+1

tr ‖Lp + (C‖∇2Uk‖Lp + C)‖∇ek+1‖L∞

+ Cτ‖∇2ek‖Lp + C(‖∇2ek‖Lp + ‖∇2ek+1‖Lp)‖∇ek‖L∞

≤ Cτ1/p + ε‖∇2ek+1‖Lp + Cε−1‖∇ek+1‖L2 + Cτ1/4(‖∇2ek+1‖Lp + ‖∇2ek‖Lp)

≤ Cε−1τ1/p + ε(‖∇2ek+1‖Lp + ‖∇2ek‖Lp).

(4.25)

With (4.9), we apply (4.6) to the elliptic equation (4.24) to get

‖∇2ek+1‖Lp ≤ (1 + λ2σ2
K)‖σ(|∇uk|2)−1γ(|∇uk|2)∇2ek‖Lp + (1 + λ2σ2

K)‖G‖Lp

≤ (1− λ4σ4
K)‖∇2ek‖Lp + (1 + λ2σ2

K)‖G‖Lp .

With ε = λ4σ4
K/(4 + 2λ2σ2

K) in (4.25), a straightforward calculation gives

‖∇2ek+1‖Lp ≤ (1− λ4σ4
K/2)‖∇2ek‖Lp + Cτ1/p

when τ < τ11 for some positive constant τ11. By the Sobolev embedding inequality,
we have ‖ek‖Lp + ‖∇ek‖Lp ≤ C‖ek‖H2 ≤ Cτ1/2 and therefore,

‖ek+1‖W 2,p ≤ (1− λ4σ4
K/2)‖ek‖W 2,p + Cτ1/p(4.26)
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which, by noting 1 < p ≤ 5/2, leads to

‖ek+1‖W 2,p ≤ τ1/3(4.27)

when τ < τ12 for some positive constant τ12. By using the Sobolev embedding in-
equality again, we obtain

‖ek+1‖L∞ + ‖∇ek+1‖L∞ ≤ C‖ek+1‖W 2,p ≤ Cτ1/3

which further implies that

‖ek+1‖L∞ + ‖∇ek+1‖L∞ ≤ τ1/4,(4.28)

‖Uk+1‖L∞ + ‖∇Uk+1‖L∞ ≤ K,(4.29)

when τ < τ13 for some positive constant τ13.
The induction on (4.10)-(4.11) is closed, and (4.16) and (4.21)-(4.27) hold for

k = N provided τ < τ∗0 := min
8≤i≤13

τi.

It remains to estimate ‖Un+1‖H2+s for some s > 0. From (4.27) we see that
∇U ∈ Cα for some α > 0. Rewrite (2.5) as

−∆Un+1 =
2σ′(|∇Un|2)

σ(|∇Un|2)
(∇2Un∇Un) · ∇Un

+ 2τ
σ′(|∇Un|2)

σ(|∇Un|2)
(∇2Un∇Un) · ∇DτU

n+1 + (gn+1 −DτU
n+1)/σ(|∇Un|2)

= l(∇2Un) + (gn+1 −DτU
n+1)/σ(|∇Un|2),(4.30)

where the linear operator l defined by

l(∇2Un) =
2σ′(|∇Un|2)

σ(|∇Un|2)
(∇2Un∇Un) · ∇Un + 2τ

σ′(|∇Un|2)

σ(|∇Un|2)
(∇2Un∇Un) · ∇DτU

n+1

satisfies that

‖l(∇2Un)‖L2 ≤
(

K2

λ2 +K2
+ Cτ1/3

)
‖∇2Un‖L2

‖l(∇2Un)‖Hα ≤ C‖∇2Un‖Hα .

By choosing τ ≤ τ14 for some τ14 > 0 and using the complex interpolation between
L2 and Hα [5] we derive that, there exist positive constants sK such that

‖l(∇2Un)‖Hs ≤
(

K2

λ2 +K2
+ Cτ1/3

)1−sK/α

CsK/α‖∇2Un‖Hs

≤
(

1− λ2

2λ2 + 2K2

)
‖∇2Un‖Hs for s ∈ [0, sK ].(4.31)

Therefore, by applying (4.7) to the equation (4.30) we obtain that

‖∇2Un+1‖Hs ≤ (1 + εs)

[(
1− λ2

2λ2 + 2K2

)
‖∇2Un‖Hs + C‖gn+1‖Hs + C‖DτU

n+1‖Hs
]
,
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and choosing s0 so small that εs0 < λ2/(2λ2 + 2K2), we get

‖∇2Un+1‖Hs0 ≤
(

1− λ4

4(λ2 +K2)2

)
‖∇2Un‖Hs0 + C‖gn+1‖Hs0 + C‖DτU

n+1‖Hs0 .

Iterations of the above inequality give

max
1≤n≤N

‖∇2Un‖Hs0 ≤ C( max
1≤n≤N

‖gn‖Hs0 + max
1≤n≤N

‖DτU
n‖Hs0 ) ≤ C.(4.32)

The proof of Theorem 2.2 is completed.

5. Numerical example. In this section, we present an example to confirm
our theoretical analysis. All computations are performed by FreeFEM++ in double
precision [27].

We solve (1.1)-(1.3) in the domain Ω = [0, 1]× [0, 1] up to the time T = 1, where
the diffusion coefficient σ(|∇u|2) is given by (1.4), the function g and u0 are chosen
corresponding to the exact solution

u(x, y, t) = e0.01t cos(2πx) cos(2πy)/4.(5.1)

To test the convergence rate in the spatial direction, a uniform triangulation is gener-
ated with M + 1 points on each side of the rectangular domain with h =

√
2/M , and

we choose a very small time step τ = 2−15. In this case, the optimal error estimate
given in Theorem 2.1 is, approximately,

‖Unh − un‖L2 = O(hr+1) .

We present the L2-norm errors for λ = 1 in Table 1, where the convergence rate is
calculated based on the numerical results corresponding to two finest meshes. We
see that the L2-norm errors are proportional to hr+1, which is consistent with our
theoretical error analysis.

Table 1
L2-norm errors of the numerical solution for λ = 1

M ‖UNh − uN‖L2 for r = 2 ‖UNh − uN‖L2 for r = 3
8 9.0361E-04 3.6292E-04
16 1.1846E-04 7.6558E-05
32 1.4948E-05 4.1758E-07

convergence rate O(h3.0) O(h4.1)

To test the stability of the numerical solution, we solve (1.1)-(1.3) with several
refined meshes for each fixed τ . The L2-norm errors of the numerical solution are
presented in Figure 1 for r = 2, 3 and λ = 1 in the logarithmic scale. We see that, for
each fixed τ , the L2-norm error of the numerical solution tends to a constant which
is proportional to τ . Therefore, no restriction on the grid ratio is needed. It has been
noted that our theoretical analysis is given under the assumption of λ being a positive
constant. Clearly, the numerical accuracy of the linearized scheme depends upon λ
and decreases as λ → 0. In this example, |∇u| = 0 at some points and the equation
becomes degenerate when λ→ 0.
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Fig. 1. L2-errors of the FEM for the problem with λ = 1 (left for r = 2 and right for r = 3)

6. Conclusion. In this paper, we have presented optimal error estimates for a
linearized backward Euler–Galerkin FEM (r ≥ 2) for a nonlinear and non-degenerate
diffusion equation in a convex polygonal domain under certain assumption on the
regularity of the exact solution and λ being a positive constant. For this strongly
nonlinear equation, no previous works have been devoted to the error analysis for
linearized semi-implicit FEMs, and existing analyses for implicit schemes still require
certain restrictions on the time-step size. Our analysis shows that the numerical solu-
tion of the linearized semi-implicit scheme achieves optimal convergence rate without
any time-step condition. The analysis only focuses on the gradient flow with the
gradient-dependent diffusion coefficient given in (1.4), while it can be extended easily
to the problem with the diffusion coefficient satisfying (1.5).

For r = 1, the expected optimal spatial error bound is in the second order and
under the assumption ‖Unh ‖W 1,∞ ≤ K, we can derive that

‖RhUn+1 − Un+1
h ‖2L2 +

∑
τ‖∇(RhU

m − Umh )‖2L2 ≤ CKh4 .

However, from this estimate, one may not be able to obtain the uniform boundedness
of numerical solution in W 1,∞-norm by inverse inequalities. The stability analysis of
the lowest order FEM is under investigation. Moreover, in the gradient flow model, λ
denotes a regularization parameter. Clearly, the constant C0 in Theorem 2.1 depends
heavily upon λ and therefore, the optimal error estimate given in Theorem 2.1 is
not uniform for the parameter λ. There are some applications in which degenerate
diffusion equations (λ = 0) are concerned, such as total variation model [4,20,21] and
parabolic p-Laplacian [3, 17, 40] without regularization. Numerical analysis for such
degenerate equations is extremely difficult. Existing techniques in classical FEMs may
not work well. An implicit backward finite element scheme was analyzed in [21]. The
uniform convergence to the solution of the degenerate equation as h, τ, λ → 0 was
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proved and optimal error estimate for the nondegenerate equation was established
under the time-step condition τ = O(h2). Analysis for linearized schemes was less
explored due to the strong nonlinearity of the equations. Developing efficient schemes
for the nonlinear degenerate equations with the uniform and optimal convergence is
our future work.
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