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Abstract. A new type of low-regularity integrator is proposed for the Navier–Stokes equa-

tions. Unlike the other low-regularity integrators for nonlinear dispersive equations, which

are all fully explicit in time, the proposed method is a semi-implicit exponential method

in time in order to preserve the energy-decay structure of the Navier–Stokes equations.

First-order convergence of the proposed method is established independently of the viscos-

ity coefficient µ, under weaker regularity conditions than other existing numerical methods,

including the semi-implicit Euler method and classical exponential integrators. The pro-

posed low-regularity integrator can be extended to full discretization with either a stabilized

finite element method or a spectral collocation method in space, as illustrated in this ar-

ticle. Numerical results show that the proposed method is much more accurate than the

semi-implicit Euler method in the viscous case µ = O(1), and more stable than the classical

exponential integrator in the inviscid case µ→ 0.

1. Introduction

This article is concerned with the numerical solution of the initial and boundary value
problem of the incompressible Navier–Stokes (NS) equations

∂tu+ u · ∇u− µ∆u+∇p = 0 in Ω × (0, T ],

∇ · u = 0 in Ω × (0, T ],

u = u0 at Ω × {0},
(1.1)

in a bounded domain Ω ⊂ Rd, with d ∈ {2, 3}, under appropriate boundary conditions,
where we have used the notation u · ∇u := (u · ∇)u. The well-posedness of the two- and
three-dimensional NS equations was discussed in [7, 14,17,19,23].

The NS equations are the fundamental partial differential equations describing the motion
of incompressible viscous fluids. They are widely used in fluid dynamics to model water
and blood flows, air flow around a wing, and ocean currents. As the exact solution is not
known in most applications, the numerical solution of the NS equations plays a central role.
The development of accurate, stable numerical methods, together with their rigorous error
analysis, is therefore crucial and of major practical importance to reliably describe of the
NS equations. Driven by the immense spectrum of applications, many different numerical
methods have been proposed for solving the NS equations.

In the smooth setting, i.e., for smooth solutions and regular initial data, the numerical
approximation of the NS equations is nowadays in large parts well understood and sharp
rigorous global error estimates could be established; see, e.g., [11, 15, 18, 25, 26, 33, 34]. The
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optimal-order error estimates generally use the viscosity term to control the nonlinear term,
and therefore contain a viscosity-dependent constant c(µ−1) in the error bound in addition
to certain Sobolev norms of the exact solution. Note that in case of large viscosity µ ∼ 1
the solution of NS is regularised such that non-smooth initial data is not a big problem
numerically. In particular, the rigorous error analysis of semi- and full discretisations of the
NS equations with H1 initial data can be found in [12] and [9, 10, 20], respectively. This,
however, drastically changes in case of small viscosity µ � 1, where no smoothing can be
expected and classical viscosity-dependent c(µ−1) error bounds explode. Although there are
explicit Runge–Kutta methods for which the stability region includes part of the imaginary
axis, which would be stable in the case µ → 0 under the stepsize condition τ = o(h), such
methods typically require a much stronger CFL condition τ = o(h2) when µ is not close
to zero. Error estimates of the numerical methods for the NS equations without using the
viscosity term to bound the nonlinear term (therefore robust for all range of µ) could recently
be established for smooth solutions, see for example in [1,3,36]. The analysis in these articles
show that the classical finite difference methods in time, such as the semi-implicit Euler
method 

un − un−1

τ
+ un−1 · ∇un − µ∆un +∇pn = 0 in Ω

∇ · un = 0 in Ω
(1.2)

and the backward differentiation formulae, typically requires the solution to satisfy u ∈
L∞(0, T ;H2(Ω)d) and ∂ttu ∈ L2(0, T ;L2(Ω)d) for first-order convergence in time and space
(when the error constants do not depend on the viscosity), where d denotes the dimension of
space. The condition ∂ttu ∈ L2(0, T ;L2(Ω)d) actually requires u ∈ L2(0, T ;H4(Ω)d) for the
solution of the NS equations, as one time derivative of the solution is related to two spatial
derivatives of the solution. As a result, the classical finite difference methods in time requires

u ∈ H2(0, T ;L2(Ω)d) ∩ L2(0, T ;H4(Ω)d) ↪→ L∞(0, T ;H3(Ω)d)

for first-order convergence in time and space. The analysis in the current paper further shows
that the classical exponential integrators for the NS equations, such as the exponential Euler
method,

un = eτnµAun−1 −
∫ tn

tn−1

e(tn−s)µAPX(un−1 · ∇un−1)ds for n ≥ 1, (1.3)

where A = PX∆ denotes the Stokes operator (with PX being the projection onto the
divergence-free subspace), would also require u ∈ L∞(0, T ;H3(Ω)d) for first-order conver-
gence in time (if we require the error bound to be independent of the viscosity).

The objective of this article is to develop a new low-regularity integrator for NS which
allows for first-order convergence in time and space under a weaker regularity condition
u ∈ L∞(0, T ;W 2,d+ε(Ω)d), where ε can be arbitrarily small. In particular, we present a
stabilization technique by utilizing the nonlinear convection term in the NS equations and
establish global error estimates independent of µ allowing for low-regularity approximations
also in regimes of small viscosity µ� 1.

Our new scheme also greatly extends previous works on low regularity integrators which
mainly focus on semi-discretizations in time [30] and nonlinear dispersive equations, e.g.,
Schrödinger, Dirac and Korteweg-de Vries [6,13,27–29,32,38,39]. In this work we approach the
the NS equations, and, for the first time couple the idea of low regularity time discretisations
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with a finite element based spatial discretisation. Note that fully discrete low regularity
integrators were so far restricted to pseudo spectral methods for the spatial discretisation [22]
which are not suitable for problems posed on general bounded domains. The latter are,
however, especially interesting in the context of NS flow problems. The numerical experiments
in this article show that the proposed low regularity integrator for the NS equations is much
more accurate than the classical semi-implicit Euler method in the viscous case µ = O(1),
and more accurate and robust than the classical exponential integrator in the inviscid case
µ→ 0. Therefore, the proposed method combines the advantages of the semi-implicit Euler
method and classical exponential integrator in both viscous and inviscid cases.

The rest of this article is organized as follows. In Section 2 we construct a low-regularity
integrator for the NS equations through analyzing and improving both the consistency and
the stability of the classical exponential Euler method. We first present the construction of
the method in the context of periodic boundary conditions and then extend it to the widely
used no-slip boundary conditions in NS flow problems. The energy-decay property and and
error estimates of the proposed low-regularity integrator are proved for semidiscretization
in time. In Section 3 we extend the low-regularity integrator to full discretization with a
stabilized finite element method in space, and present error estimates for the fully discrete
low-regularity integrator. Numerical examples are presented in Section 4 to compare the
performance of the proposed low-regularity integrator with the performance of both the
semi-implicit Euler method and the exponential Euler method. Conclusions and remarks are
presented in Section 5.

2. The low-regularity integrator and its basic properties

In this section, we present the construction of the low-regularity integrator by analyzing
the dependence of the consistency errors on the regularity of the solution. The construction
is presented first for the NS equations under the periodic boundary condition in subsection
2.1 and then extended to the no-slip boundary condition in subsection 2.2.

2.1. Construction of the time-stepping method

In this subsection, we focus on the NS equations on the d-dimensional torus Ω = [0, 1]d

(under the periodic boundary condition). Through integration by parts it is straightforward
to verify the following property of the divergence-free subspace

Ḣ := {v ∈ L2(Ω)d : ∇ · v = 0}.

If v ∈ Ḣ and q ∈ H1 then

(v,∇q) = 0.

Let PX : L2(Ω)d → Ḣ be the L2-orthogonal projection onto the divergence-free subspace

X = Ḣ. By using the above orthogonality, it is straightforward to verify that

PXf = f −∇q, (2.1)

where q is the solution (up to a constant) of the following PDE problem (under periodic
boundary conditions):

∆q = ∇ · f.



4

Let A = PX∆ : H2 → Ḣ. Then the NS equations can be written as finding u ∈
C([0, T ];H2) ∩ C1([0, T ];L2) to the following problem:{

∂tu+ PX(u · ∇u)− µAu = 0 for t ∈ (0, T ],

u(0) = u0.
(2.2)

From the definition of A and identity (2.1), it is easy to see that for f ∈ H2(Ω)d

APXf = PX∆PXf = PX∆f − PX∇∆q = PX∆f (since PX∇η ≡ 0). (2.3)

Moreover, if f ∈ Ḣ2 = {v ∈ H2(Ω)d : ∇ · v = 0} then ∆f ∈ Ḣ and therefore PX∆f = ∆f .
As a result, the following identity holds:

Af = ∆f for f ∈ Ḣ2. (2.4)

Let 0 = t0 < t1 < · · · < tN = T be a partition of the time interval [0, T ] with stepsize
τn = tn− tn−1. According to the variation of constants formula, the solution of (2.2) satisfies
the following identity:

u(tn) = eτnµAu(tn−1)−
∫ tn

tn−1

e(tn−s)µAPX(u(s) · ∇u(s))ds for n ≥ 1. (2.5)

The classical exponential integrator (for example, the exponential Euler method) approxi-
mates u(s) by u(tn−1) in (2.5). Since

u(s) = u(tn−1) + µ

∫ s

tn−1

Au(σ)dσ −
∫ s

tn−1

PX(u(σ) · ∇u(σ))dσ, (2.6)

substituting this identity into (2.5) yields that

u(tn) = eτnµAu(tn−1)−
∫ tn

tn−1

e(tn−s)µAPX(u(tn−1) · ∇u(tn−1))ds+Rn, (2.7)

where the remainder Rn is given by

Rn =−
∫ tn

tn−1

e(tn−s)µAPX
[
u(s) · ∇u(s)− u(tn−1) · ∇u(tn−1)

]
ds

=−
∫ tn

tn−1

e(tn−s)µAPX
[
(u(s)− u(tn−1)) · ∇u(s)

]
ds

−
∫ tn

tn−1

e(tn−s)µAPX
[
u(tn−1) · ∇(u(s)− u(tn−1))

]
ds.

By using the expression of u(s)− u(tn−1) in (2.6), one can obtain the following estimate:

‖Rn‖L2 . τn‖u(s)− u(tn−1)‖L∞(0,T ;L2)‖∇u‖L∞(0,T ;L∞)

+ τn‖u‖L∞(0,T ;L∞)‖∇(u(s)− u(tn−1))‖L∞(0,T ;L2)

.µτ2
n‖u‖L∞(0,T ;H2)‖u‖L∞(0,T ;W 1,∞) + τ2

n‖u · ∇u‖L∞(0,T ;L2)‖u‖L∞(0,T ;W 1,∞)

+ µτ2
n‖u‖L∞(0,T ;L∞)‖u‖L∞(0,T ;H3) + τ2

n‖u‖L∞(0,T ;L∞)‖u · ∇u‖L∞(0,T ;H1)

.µτ2
n‖u‖L∞(0,T ;H2)‖u‖L∞(0,T ;H3) + τ2

n‖u‖2L∞(0,T ;H2)‖u‖L∞(0,T ;H3). (2.8)

This requires u ∈ L∞(0, T ;H3) in order to have first-order convergence in time (with second-
order local truncation error).
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In contrast, the idea behind the low-regularity integrator recently developed in [30] lies in it-

erating the variation of constants formula (2.5), i.e., approximating u(s) by e(s−tn−1)µAu(tn−1)
in (2.5) and utilizing the relation

u(s) = e(s−tn−1)µAu(tn−1)−
∫ s

tn−1

e(tn−σ)µAPX(u(σ) · ∇u(σ))dσ. (2.9)

We then rewrite the corresponding temporal integral by∫ tn

tn−1

e(tn−s)µAPX(u(s) · ∇u(s))ds

=

∫ tn

tn−1

e(tn−s)µAPX(e(s−tn−1)µAu(tn−1) · ∇e(s−tn−1)µAu(tn−1))ds+Rn,1. (2.10)

Compared with the formula (2.6) used in the classical exponential integrator, the relation
(2.9) does not contain the term Au. As a result, the remainder Rn,1 in (2.10) satisfies the
following improved estimate:

‖Rn,1‖L2 . τ2
n‖u‖2L∞(0,T ;L∞)‖u‖L∞(0,T ;H2) + τ2

n‖u‖L∞(0,T ;L∞)‖u‖2L∞(0,T ;W 1,4), (2.11)

which does not contain the H3 norms of u that appear in (2.8).
By substituting (2.10) into (2.5), we obtain

u(tn) = eτnµAu(tn−1)−
∫ tn

tn−1

e(tn−s)µAPX(e(s−tn−1)µAu(tn−1) · ∇e(s−tn−1)µAu(tn−1))ds−Rn,1

= eτnµAu(tn−1)−
∫ tn

tn−1

g(s)ds−Rn,1, (2.12)

where

g(s) = e(tn−s)µAPX [v(s) · ∇v(s)] with v(s) = e(s−tn−1)µAu(tn−1).

Then we consider a Taylor series of the function g(s) at s = tn. Since (2.3) and (2.4) imply
that APXf = PX∆f = ∆PXf , by using this relation with f = v(s) · ∇v(s) (in the second
equality below) we have

g′(s) = −e(tn−s)µAµAPX [v(s) · ∇v(s)]

+ e(tn−s)µAPX [µAv(s) · ∇v(s) + v(s) · ∇µAv(s)]

= −µe(tn−s)µAPX∆[v(s) · ∇v(s)]

+ µe(tn−s)µAPX [∆v(s) · ∇v(s) + v(s) · ∇∆v(s)]

= −µe(tn−s)µAPX
[
v(s) · ∇∆v(s) + ∆v(s) · ∇v(s) +

∑
j∂jv(s) · ∇∂jv(s)

]
+ µe(tn−s)µAPX [∆v(s) · ∇v(s) + v(s) · ∇∆v(s)]

= −µe(tn−s)µAPX
[∑

j∂jv(s) · ∇∂jv(s)
]
. (2.13)

Since g(s) = g(tn)−
∫ tn
s g′(σ)dσ and

‖g′(σ)‖L2 . µ‖∇v(σ)‖Lq‖∇2v(σ)‖Lp when
1

p
+

1

q
=

1

2
,

W 2,p ↪→W 1,q when 1 =
d

p
− d

q
and 1 ≤ p ≤ q <∞,
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by choosing 1 ≤ p ≤ q <∞ satisfying 1
p + 1

q = 1
2 and 1 = d

p −
d
q = 2d

p −
d
2 we obtain

‖g′(σ)‖L2 . µ‖v(σ)‖2W 2,p (2.14)

with

p =


2d

1 + d/2
=

12

5
if d = 3

2 + ε if d = 2,

(2.15)

where ε > 0 can be arbitrarily small. Therefore, the following result holds:

‖g(s)− g(tn)‖L2 . µτn‖v‖2L∞(0,T ;W 2,p) . µτn‖u‖
2
L∞(0,T ;W 2,p).

In view of this estimate, we can rewrite (2.12) as

u(tn) = eτnµAu(tn−1)−
∫ tn

tn−1

g(tn)ds−Rn,1 −Rn,2, (2.16)

with a new remainder Rn,2 which has the following bound:

‖Rn,2‖L2 . µτ2
n‖u‖2L∞(0,T ;W 2,p). (2.17)

Inserting the expression of g(tn) into (2.16), we have

u(tn) = eτnµAu(tn−1)− τnPX [eτnµAu(tn−1) · ∇eτnµAu(tn−1)]−Rn,1 −Rn,2. (2.18)

Dropping the remainders Rn,1 and Rn,2 in (2.18) would yield a fully explicit scheme

un = eτnµAun−1 − τnPX [eτnµAun−1 · ∇eτnµAun−1]. (2.19)

However, in the stability estimate the gradient on the right-hand side should be bounded
by the smoothing property of the semigroup eτnµA, and this would yield a stability estimate
which depend on µ−1. This would not be suitable for solving the NS equations when the
viscosity µ is small.

In order to construct a low-regularity integrator which is stable for small µ, we further
approximate ∇eτnµAu(tn−1) by ∇u(tn), and rewrite (2.18) into

u(tn) = eτnµAu(tn−1)− τnPX [eτnµAu(tn−1) · ∇u(tn)]−Rn,1 −Rn,2 − PXRn,3, (2.20)

with

Rn,3 = τne
τnµAu(tn−1) · ∇[eτnµAu(tn−1)− u(tn)]

= τne
τnµAu(tn−1) · ∇

∫ tn

tn−1

e(tn−s)µAPX(u(s) · ∇u(s))ds (here (2.5) is used)

= τn[eτnµAu(tn−1)]j ·
∫ tn

tn−1

e(tn−s)µAPX(u(s) · ∇∂ju(s))ds

+ τn[eτnµAu(tn−1)]j ·
∫ tn

tn−1

e(tn−s)µAPX(∂ju(s) · ∇u(s))ds, (2.21)

where we have used (2.5) in deriving the second to last inequality. The new remainder has
the following bound:

‖Rn,3‖L2 . τ2
n‖eτnµAu(tn−1)‖L∞‖u‖L∞(0,T ;L∞)‖u‖L∞(0,T ;H2)

+ τ2
n‖eτnµAu(tn−1)‖L∞‖u‖2L∞(0,T ;W 1,4)

. τ2
n‖u‖3L∞(0,T ;H2). (2.22)
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Hence, the remainders in (2.20) are bounded by O(τ2
n) in the L2 norm, i.e.,

‖Rn,1‖L2 + ‖Rn,2‖L2 + ‖Rn,3‖L2 . τ2
n, (2.23)

which only requires u ∈ L∞(0, T ;W 2,p), where p is defined in (2.15).
By dropping the remainders Rn,1, Rn,2 and PXRn,3 in (2.20), we obtain the following

semi-implicit exponential method for the NS equations:

un + τnPX [eτnµAun−1 · ∇un] = eτnµAun−1. (2.24)

2.2. Extension to the no-slip boundary condition

If Ω is a bounded domain in Rd and the NS equations are considered under the no-slip
boundary condition, i.e., u = 0 on ∂Ω, then the definition of Ḣ should be replaced by

Ḣ = {v ∈ L2(Ω)d : ∇ · v = 0, v · ν = 0 on ∂Ω},

where ν denotes the unit outward normal vector on the boundary ∂Ω. The L2-orthogonal
projection PX : L2(Ω)d → Ḣ is given by

PXf = f −∇q, (2.25)

where q is the solution (up to a constant) of the following elliptic boundary value problem:{
∆q =∇ · f

∇q · ν =f · ν.

Let Ḣ2 = {v ∈ (H1
0 ×H2)d : ∇ · v = 0} and A = PX∆ : Ḣ2 → Ḣ. Then the NS equations

can be written as (2.2). Since PX∇q = 0 for q ∈ H1(Ω)d, applying A = PX∆ to (2.25) yields

APXf = PX∆f for f ∈ (H1
0 ×H2)d, (2.26)

which is the same as (2.3). But (2.4) should be replaced by

Av = PX∆v = ∆v −∇r for v ∈ Ḣ2, (2.27)

where {
∆r =∇ ·∆v

∇r · ν =∆v · ν. (2.28)

In a bounded Lipschitz domain it is known that the solution of (2.28) satisfies the basic W 1,p

estimate for some sufficiently small number ε∗ > 0 (see [16, Theorem 2]):

‖r‖W 1,p . ‖v‖W 2,p for 2 ≤ p < 3 + ε∗. (2.29)

The change from (2.4) to (2.27) causes the change of analysis in the local truncation errors
in (2.13), i.e.,

g′(s) = −e(tn−s)µAµAPX [v(s) · ∇v(s)]

+ e(tn−s)µAPX [µAv(s) · ∇v(s) + v(s) · ∇µAv(s)]

= −µe(tn−s)µAPX∆[v(s) · ∇v(s)]

+ µe(tn−s)µAPX [(∆v(s)−∇r) · ∇v(s) + v(s) · ∇(∆v(s)−∇r)]

= −µe(tn−s)µAPX
[
v(s) · ∇∆v(s) + ∆v(s) · ∇v(s) +

∑
j∂jv(s) · ∇∂jv(s)

]
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+ µe(tn−s)µAPX [∆v(s) · ∇v(s) + v(s) · ∇∆v(s)]

− µe(tn−s)µAPX [∂jr∂jv(s) + vj(s)∂j∇r]

= −µe(tn−s)µAPX
[∑

j∂jv(s) · ∇∂jv(s)
]

− µe(tn−s)µAPX [∂jr∂jv(s) + vj(s)∂j∇r], (2.30)

where some additional terms involving ∇2r appears, compared with (2.13). Since ‖∇2r‖L2

is equivalent to ‖v‖H3 , the additional term involving ∇2r is not desired. Fortunately, the
projection operator PX in the last term of (2.30) cancels this bad term, i.e.,

(2.30) = −µe(tn−s)µAPX
[∑

j∂jv(s) · ∇∂jv(s)
]

− µe(tn−s)µAPX [∂jr · ∂jv(s)−∇vj(s)∂jr]

− µe(tn−s)µAPX [∇(vj(s) · ∂jr)]. (2.31)

Since PX∇q = 0 for all q ∈ H1(Ω), it follows that the last term of (2.31) is zero. This implies
that

g′(s) = −µe(tn−s)µAPX
[∑

j∂jv(s) · ∇∂jv(s)
]

− µe(tn−s)µAPX [∂jr · ∂jv(s)−∇vj(s)∂jr]. (2.32)

If 2 ≤ p ≤ q <∞, 1
p + 1

q = 1
2 and p < 3 + ε∗, then

‖g′(s)‖L2 .µ‖∇v(s)‖Lq(‖∇2v(s)‖Lp + ‖∇r‖Lp)

.µ‖∇v(s)‖Lq‖∇2v(s)‖Lp (here (2.29) is used).

Since

W 2,p ↪→W 1,q when 1 =
d

p
− d

q
and 1 ≤ p ≤ q <∞,

by choosing 2 ≤ p ≤ q <∞ satisfying 1
p + 1

q = 1
2 and 1 = d

p −
d
q = 2d

p −
d
2 we obtain

‖g′(s)‖L2 . µ‖v(s)‖2W 2,p (2.33)

with

p =


12

5
if d = 3

2 + ε if d = 2,

where ε > 0 can be arbitrarily small. Indeed, this choice of p satisfies the condition p < 3+ ε∗
required in (2.29). Since the estimate (2.33) we obtained here is the same as (2.14), the rest
analysis would be the same as the periodic boundary condition and therefore omitted. In
the end, we would obtain (2.20) under the no-slip boundary condition, with remainders Rn,1,
Rn,2 and Rn,3 satisfying the same estimates as that under periodic boundary conditions. By
dropping the remainders we would obtain the same semi-implicit exponential method (2.24).

2.3. The energy-decay property

The proposed semi-implicit exponential low-regularity integrator in (2.24) preserves the
energy-decay structure of the NS equations. This can be seen by testing (2.24) with un.
Then we have

‖un‖2L2 + τn(eτnµAun−1 · ∇un, un) = (eτnµAun−1, un). (2.34)
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Since eτnµAun−1 is divergence-free (the same as un−1), it follows from integration by parts
that

(eτnµAun−1 · ∇un, un) = (eτnµAun−1,∇
1

2
|un|2) = −(∇ · (eτnµAun−1),

1

2
|un|2) = 0.

As a result, (2.34) reduces to

‖un‖2L2 = (eτnµAun−1, un) ≤ ‖eτnµAun−1‖L2‖un‖L2 ≤ ‖un−1‖L2‖un‖L2 ,

which implies that

‖un‖L2 ≤‖un−1‖L2 . (2.35)

On the one hand, the energy-decay structure of the semi-implicit exponential low-regularity
integrator guarantees the energy boundedness of the numerical solution without requiring any
regularity of the solution and initial data. On the other hand, this energy-decay structure
also plays an important role in guaranteeing the convergence of numerical solutions when the
solution has sufficient regularity, as reflected by the error analysis below.

2.4. Error estimates

Theorem 2.1. Consider the NS equations either in a torus Ω = [0, 1]d with periodic boundary
condition or in a bounded domain Ω under the Dirichlet boundary condition, and assume that
the solution of the NS equations has the following regularity:

u ∈ C([0, T ];L2(Ω)d) ∩ L∞(0, T ;W 1,∞(Ω)d) ∩ L∞(0, T ;W 2,p(Ω)d), (2.36)

where p is given by (2.15). Then the numerical solution by the semi-implicit exponential
method (2.24) has the following error bound:

max
1≤n≤N

‖en‖L2 . τ. (2.37)

Proof. If the solution has regularity (2.36) for some p > d, then p is bigger than the value
defined in (2.15) and therefore the regularity required in Section 2 is satisfied.

Let en = un − u(tn) be the error function. The difference between (2.24) and (2.20) yields
the following error equation:

en + τnPX [eτnµAun−1 · ∇en] = eτnµAen−1 − τnPX [eτnµAen−1 · ∇u(tn)]

+Rn,1 +Rn,2 + PXRn,3. (2.38)

Testing (2.38) by en and using the consistency error estimates in (2.23), we obtain

‖en‖2L2 = (eτnµAen−1, en)− (τne
τnµAen−1 · ∇u(tn), en) + (Rn,1 +Rn,2 + PXRn,3, en)

≤ 1

2
‖en−1‖2L2 +

1

2
‖en‖2L2 + Cτn‖∇u(tn)‖L∞‖en−1‖L2‖en‖L2 + Cτ2

n‖en‖L2

≤ 1

2
‖en−1‖2L2 +

1

2
‖en‖2L2 + Cτn‖en−1‖2L2 + Cτn‖en‖2L2 + Cτ3

n.

The second and fourth terms on the right-hand side can be absorbed by the left-hand side.
Therefore, we have

(1− Cτn)‖en‖2L2 ≤ (1 + Cτn)‖en−1‖2L2 + Cτ3
n.

For sufficiently small stepsize τn we can apply Gronwall’s inequality. This yields

max
1≤n≤N

‖en‖2L2 . τ2.
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This proves the desired error bound in Theorem 2.1. �

3. Extension to full discretization

In this section, we show that the proposed semi-implicit exponential method in (2.24)
can be extended to full discretization, for example, with finite element methods or spectral
methods in space. Since the error analysis of these two class of full discretizations are similar,
we present the error analysis only for the finite element method in this article.

3.1. A finite element method with postprocessing

In this subsection, we extend the low-regularity integrator to full discretization by using
a finite element method with postprocessing at every time level. For simplicity we focus on
the periodic boundary condition.

We consider a conforming finite element subspace Xh ×Mh ⊂ H1(Ω)d × L2(Ω) with the
following two properties:

(1) The inf-sup condition:

‖qh‖L2 . sup
vh∈Xh

vh 6=0

(∇ · vh, qh)

‖vh‖H1

.

(2) Approximation properties:

inf
vh∈Xh

(‖v − vh‖L2 + h‖v − vh‖H1) . hk‖v‖Hk for v ∈ Hk(Ω)d and 1 ≤ k ≤ 2,

inf
qh∈Mh

‖q − qh‖L2 . hk‖q‖Hk for q ∈ Hk(Ω) and 0 ≤ k ≤ 1.

Examples of such finite element spaces include the Taylor–Hood Pk-Pk−1 spaces (for k ≥ 2)
and the mini-element P1b-P1 space; see [2, 4, 5].

We define the discrete divergence-free subspace of Xh by

Ẋh = {vh ∈ Xh : (∇ · vh, qh) = 0 for all qh ∈Mh},

and then define the discrete Stokes operator Ah : Ẋh → Ẋh by

(Ahw
h, vh) = −(∇wh,∇vh) ∀wh, vh ∈ Ẋh.

We define Uh to be the H(div,Ω)-conforming Raviart–Thomas finite element spaces of
order 1, i.e.,

Uh := {w ∈ H(div,Ω) : w|K ∈ P1(K)d + xP1(K) for every triangle K},

and define the divergence-free subspace of Uh by

U̇h := {vh ∈ Uh : ∇ · vh = 0 in Ω}. (3.1)

Let PU̇h
: L2(Ω)d → U̇h be the L2-orthogonal projection, defined by

(v − PU̇h
v, wh) = 0 ∀wh ∈ U̇h, ∀ v ∈ L2(Ω)d. (3.2)
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If v ∈ H2(Ω)d is a divergence-free vector field then the following approximation result holds
(see [21, inequality (3.4)])

‖v − PU̇h
v‖L2 ≤ Ch2‖v‖H2 . (3.3)

Note that the weak formulation of the time-stepping method in (2.24) can be written as

(un, v) + (τne
τnµAun−1 · ∇un, v) + (pn,∇ · v) = (eτnµAun−1, v) ∀ v ∈ H1(Ω)d, (3.4)

(∇ · un, q) = 0 ∀ q ∈ L2(Ω), (3.5)

where pn is the function satisfying

τnPX [eτnµAun−1 · ∇un] = τne
τnµAun−1 · ∇un −∇pn.

By using the discrete Stokes operator Ah and the projection operator PU̇h
introduced in this

section, we consider the following fully discrete finite element method for (3.4)–(3.5): Find
(uhn, p

h
n) ∈ Xh ×Mh such that the following equations hold:

(uhn, v
h) + τn([PU̇h

eτnµAhuhn−1] · ∇uhn, vh) + (phn,∇ · vh) = (eτnµAhuhn−1, v
h) ∀ vh ∈ Xh,

(3.6)

(∇ · uhn, qh) = 0 ∀ qh ∈Mh.
(3.7)

The presence of the postprocessing projection PU̇h
is necessary for obtaining error estimates

as well as preserving the energy-decay structure. In particular, since τnPU̇h
eτnµAhuhn−1 is

divergence-free (due to the projection PU̇h
), it follows that

τn([PU̇h
eτnµAhuhn−1] · ∇uhn, uhn) = 0.

As a result, choosing (vh, qh) = (uhn, p
h
n) in (3.6)–(3.7) yields

‖uhn‖2L2 = (eτnµAhuhn−1, u
h
n) ≤ ‖eτnµAhuhn−1‖L2‖uhn‖L2 ≤ ‖uhn−1‖L2‖uhn‖L2 , (3.8)

which implies the following energy-decay inequality:

‖uhn‖L2 ≤ ‖uhn−1‖L2 . (3.9)

Theorem 3.1. Consider the NS equations either in a torus Ω = [0, 1]d (with periodic bound-
ary condition) and assume that the solution of the NS problem (1.1) has the following regu-
larity:

u ∈ C([0, T ];L2(Ω)d) ∩ L∞(0, T ;W 1,∞(Ω)d) ∩ L∞(0, T ;W 2,p(Ω)d), (3.10)

where p is given by (2.15). Then, under mesh size restriction h . τmin (the smallest stepsize),
the numerical solution given by the fully discrete method (3.6)–(3.7) has the following error
bound:

max
1≤n≤N

‖uhn − u(tn)‖L2 . τ. (3.11)

Proof. By requiring the test function vh to be in the discrete divergence-free subspace Ẋh,
the weak formulation (3.6)–(3.7) can be equivalently written as: Find uhn ∈ Ẋh such that

(uhn, v
h) + τn(PU̇h

[eτnµAhuhn−1] · ∇uhn, vh) = (eτnµAhuhn−1, v
h) ∀ vh ∈ Ẋh. (3.12)

The exact solution satisfies similar equations, i.e.,

(PẊh
u(tn), vh) + τn(PU̇h

[eτnµAhPẊh
u(tn−1)] · ∇PẊh

u(tn), vh)
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= (eτnµAhPẊh
u(tn−1), vh)− (Rn,1 +Rn,2 + PXRn,3, v

h)

− (En,1 + En,2 + En,3, v
h) ∀ vh ∈ Ẋh, (3.13)

where

En,1 = τn
[
eτnµAu(tn−1)− PU̇h

eτnµAhPẊh
u(tn−1)

]
· ∇u(tn), (3.14)

En,2 = τnPU̇h

[
eτnµAhPẊh

u(tn−1)
]
· ∇(u(tn)− PẊh

u(tn)), (3.15)

En,3 = eτnµAhPẊh
u(tn−1)− PẊh

eτnµAu(tn−1). (3.16)

By using the triangle inequality we can decompose En,1 into two parts, i.e.,

‖En,1‖L2 ≤ τn
∥∥[eτnµAu(tn−1)− PU̇h

eτnµAu(tn−1)
]
· ∇u(tn)

∥∥
L2 (3.17)

+ τn
∥∥PU̇h

[
eτnµAu(tn−1)− eτnµAhPẊh

u(tn−1)
]
· ∇u(tn)

∥∥
L2

≤ τnh2‖eτnµAu(tn−1)‖H2‖∇u(tn)‖L∞ + τnh
2‖u(tn−1)‖H2‖∇u(tn)‖L∞ , (3.18)

where the first term on the right-hand side of (3.17) is estimated by using (3.3), and the
second term is estimated by using the standard L2 error estimates of semidiscrete FEM for
a linear parabolic equation with initial value u(tn−1); see [35, Theorem 3.1] (for the time-
dependent Stokes equations the error estimation is the same). The standard approximation
property of the L2 projection operator PẊh

implies that

‖En,2‖L2 . τnh‖u‖2L∞(0,T ;H2). (3.19)

Again, the standard L2 error estimates of semidiscrete FEM for linear parabolic equations
with initial value u(tn−1) in [35, Theorem 3.1] implies that

‖En,3‖L2 . h2‖u(tn−1)‖H2 . (3.20)

The three estimates above can be summarized as

‖En,1‖L2 + ‖En,2‖L2 + ‖En,3‖L2 . τnh+ h2. (3.21)

Let ehn = uhn−PẊh
u(tn). Then the difference between (3.12) and (3.13) yields the following

error equation:

(ehn, v
h) + τn(PU̇h

[
eτnµAhuhn−1

]
· ∇ehn, vh) + τn(PU̇h

[
eτnµAhehn−1

]
· ∇PẊh

u(tn), vh) (3.22)

= (eτnµAhehn−1, v
h)− (Rn,1 +Rn,2 + PXRn,3, v

h)− (En,1 + En,2 + En,3, v
h) ∀ vh ∈ Ẋh.

By choosing vh = ehn in (3.22) and using the property (thanks to the projection PU̇h
onto the

divergence-free space U̇h)

(PU̇h

[
eτnµAhuhn−1

]
· ∇ehn, ehn) = 0,

we obtain

‖ehn‖2L2 + τn(PU̇h

[
eτnµAhehn−1

]
· ∇PẊh

u(tn), ehn)

= (eτnµAhehn−1, e
h
n)− (Rn,1 +Rn,2 + PXRn,3, e

h
n)− (En,1 + En,2 + En,3, e

h
n). (3.23)

The rigth-hand side of the above inequality can be estimated by using the consistency error
estimates in (2.23) and (3.21). This yields

‖ehn‖2L2 + τn(PU̇h

[
eτnµAhehn−1

]
· ∇PẊh

u(tn), ehn)
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≤ 1

2
‖ehn−1‖2L2 +

1

2
‖ehn‖2L2 + Cτn(τn + h)‖ehn‖L2 + Ch2‖ehn‖L2

≤ 1

2
‖ehn−1‖2L2 +

1 + τn
2
‖ehn‖2L2 + C[τn(τ2

n + h2) + h4/τn]

≤ 1

2
‖ehn−1‖2L2 +

1 + τn
2
‖ehn‖2L2 + Cτ3

n when h . τn. (3.24)

The second term on the left-hand side of the above inequality can be estimated by

|τn(PU̇h

[
eτnµAhehn−1

]
· ∇PẊh

u(tn), ehn)| . τn‖ehn−1‖L2‖ehn‖L2 . (3.25)

By combining the two inequalities above, we obtain

(1− τn)‖ehn‖2L2 ≤ (1 + Cτn)‖ehn−1‖2L2 + Cτ3
n when h . τn. (3.26)

Then, iterating the inequality for n = 1, 2, . . . , N , we obtain the following error bound:

max
1≤n≤N

‖ehn‖2L2 . τ2 when h . τmin. (3.27)

This completes the proof of Theorem 3.1. �

3.2. A spectral collocation method

In this subsection, we show that the proposed semi-implicit low-regularity exponential
integrator can also be combined with some spectral methods which can be performed with
less computational cost by using the Fast Fourier transform (FFT). For illustration, we
present a Fourier collocation method in the two-dimensional torus. The three dimensional
case can be treated similarly by using the eigenfunctions expansion of the Stokes operator;
see [37, Theorem 2.11] or [31, Section 7].

It is known that the eigenfunctions of the Stokes operator A = PX∆ on the torus Ω =
[−π, π]× [−π, π] are the constant vector fields

φ01 =

(
1

0

)
and φ02 =

(
0

1

)
and the following vector fields:

φk = k⊥eik·x, k ∈ Z2
0 := Z2\{(0, 0)}, where k⊥ :=

(
k2

−k1

)
,

with eigenvalues −k2 for k ∈ Z2
0. Let XM = span{φ01, φ02} ⊕ span{φk : |k| ≤ M}. If the

numerical solution at time level t = tn−1 is known to be

uMn−1 = un−1,1φ01 + un−1,2φ02 +
∑
|k|≤M

un−1,kφk ∈ XM ,

then we seek a numerical solution at t = tn, i.e.,

uMn = un,1φ01 + un,2φ02 +
∑
|k|≤M

un,kφk ∈ XM ,

satisfying the following equation:

uMn + τnPXM
[eτnµAuMn−1 · ∇uMn ] = eτnµAuMn−1. (3.28)

where PXM
: L2 → XM is the L2-orthogonal projection.
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The Fourier spectral method in (3.28) can be computed by the FFT. In fact, direct calcu-
lation yields

eτnµAuMn−1 = un−1,1φ01 + un−1,2φ02 +
∑
|k|≤M

e−τnµk
2
un−1,kk

⊥eik·x

∇uMn =
∑
|j|≤M

iun,jj ⊗ j⊥eij·x

and therefore

eτnµAuMn−1 · ∇uMn =
∑
|m|≤M

(un−1,1φ01 + un−1,2φ02)iun,mm⊗m⊥eim·x

+
∑
|m|≤2M

∑
k+j=m

ie−τnµk
2
un−1,k(k

⊥ · j)un,jj⊥eim·x

=:
∑
|m|≤2M

vme
im·x.

This is a product of two 2M -term Fourier series, and therefore the coefficients vm, |m| ≤
2M , can be computed by FFT with computational cost of O(M lnM); see Appendix. Its
projection onto XM is given by

PXM
[eτnµAuMn−1 · ∇uMn ] =

∑
|m|≤M

vm ·
m⊥ ⊗m⊥

(2π)d|m|2
eim·x,

which is equivalent to cutting the length of a vector and then multiplying the vector by a
diagonal matrix, and therefore can be computed with O(M) operations.

Overall, the matrix-vector product on the left-hand side of (3.28) can be computed by
FFT with computational cost of O(M lnM). Under the condition τn = O(h), the condition
number of the coefficient matrix in (3.28) is O(1). In this case, we can solve the linear system
of (3.28) by using GMRES, which converges well when the condition number of the matrix
is O(1). The errors of the numerical solutions given by this method (versus CPU time) is
shown in the numerical experiments in the next section.

4. Numerical experiments

In this section, we present numerical tests to support the theoretical analysis and to il-
lustrate the advantages of the proposed method in comparison with the semi-implicit Euler
method and classical exponential integrator (i.e., the exponential Euler method).

We solve the NS equations in the two-dimensional torus [0, 1] × [0, 1] under the periodic
boundary condition by the proposed exponential low-regularity integrator (Exponential LRI),
with initial value

u0 = (u0
1(x, y), u0

2(x, y)),

where

u0
1(x, y) = mπ sinm(πx) sinm−1(πy) cos(πy),

u0
2(x, y) = −mπ sinm−1(πx) sinm(πy) cos(πx).
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By choosing m = 2.6, the initial value satisfies u0 ∈ H2+ε(Ω)2 for 0 < ε < 0.1. Therefore, the
initial value satisfies the conditions in Theorem 3.1. The algorithm in [24] is used to evaluate
the exponential operators in the low-regularity integrator and exponential Euler method.

We present the time discretization errors ‖u(τ)
N − u

(τ/2)
N ‖L2(Ω) of the numerical solutions at

time T = 1/8 in Figure 1 for µ = 0.5, 10−2 and 10−4. The NaN in the case µ = 10−4 indicates
that the numerical solution of the exponential Euler method blows up due to instability.
From the numerical results in Figure 1 we see that the proposed Exponential LRI has first-
order convergence in time, as proved in this article. Moreover, the proposed Exponential
LRI is about 1000 times more accurate than the semi-implicit Euler method when µ =
O(1) (similarly as the exponential Euler method in this case), and is more stable than the
exponential Euler method when µ → 0 (similarly as the semi-implicit Euler method in this
case). Either the exponential Euler method or the semi-implicit Euler method only works
well in one of the two cases µ = O(1) and µ→ 1, while the proposed Exponential LRI works
well for both cases as well as the intermediate case µ = 10−2.
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Figure 1. Time discretization errors vs stepsizes, with H2 initial data (m = 2.6).
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Figure 2. Finite element spatial discretization errors vs stepsizes, with H2

initial data (m = 2.6).

The spatial discretization errors by the finite element method is presented in Figure 2,
where we see that the spatial discretization has second-order convergence, which is better
than the result proved in Theorem 3.1. The rigorous proof of second-order convergence in
space is still challenging for this newly proposed method. Moreover, the proposed Exponential
LRI is as stable as the semi-implicit Euler method, unlike the exponential Euler method which
blows up in the case µ→ 0.
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We present the time discretization errors vs CPU time in Figure 3 for the initial value
u0 = (u0

1(x, y), u0
2(x, y)) in the domain [−π, π]× [−π, π] up to time T = 1, where

u0
1(x, y) = −m

2
cosm(x/2) cosm−1(y/2) sin(y/2),

u0
2(x, y) =

m

2
cosm−1(x/2) cosm(y/2) sin(x/2).

The Fourier collocation method is used for the spatial discretization under the CFL condition
τ = 2/M , which is used to guarantee the fast convergence of the GMRES solver for the linear
systems. We see that the proposed Exponential LRI is about 1000 times more accurate than
the semi-implicit Euler method in the case µ = O(1) when using the same CPU time (similarly
as the exponential Euler method in this case), and is more stable than the exponential Euler
method when µ→ 0 (similarly as the semi-implicit Euler method in this case). Again, either
the exponential Euler method or the semi-implicit Euler method only works well in one of
the two cases µ = O(1) and µ→ 1, while the proposed Exponential LRI works well for both
cases as well as the intermediate case µ = 10−2.
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Figure 3. Time discretization errors vs CPU time, with the fast Fourier
collocation method in space.

The time discretization errors for H1, H2 and H3 initial data with Fourier collocation
method in space. are presented in Figures 4–6 for the three cases µ = 1, µ = 10−2 and
µ = 10−4, respectively. The spatial discretization is performed by the Fourier collocation
method with FFT, with a sufficiently large M so that the spatial discretization errors is
negligibly small in observing the temporal discretization errors. From Figures 4–6 we see
that the regularity of the initial data does not affect the first-order convergence of the time
discretizations. However, the theoretical analysis of first-order convergence for all range of
µ with initial data below H3 is still challenging. In this paper, we have set a first step
towards weakening the regularity condition of the NS equations for first-order convergence
and improving the accuracy of classical methods in both viscous and inviscid cases as well as
the intermediate case.

5. Conclusions

In this paper we set a first step towards weakening the regularity condition of the NS
equations for first-order convergence and improving the accuracy of classical methods in
both viscous and inviscid cases. We have proposed a semi-implicit fully discrete low-regularity
integrator for the NS equations under both periodic and Dirichlet boundary condition. This
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Figure 4. Time discretization errors with µ = 1.
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Figure 5. Time discretization errors with µ = 0.01.
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Figure 6. Time discretization errors with µ = 0.0001.

is the first time a low-regularity integrator is coupled with a finite element method in space.
The proposed method can be shown to have first-order convergence under weaker regularity
conditions than the semi-implicit Euler method and classical exponential integrators. Under
periodic boundary conditions, the numerical results show that the proposed method combines
the advantages of the semi-implicit Euler method and classical exponential integrator in both
viscous and inviscid cases. In particular, the proposed method is as good as the classical
exponential Euler method (much more accurate than the semi-implicit Euler method) in
the viscous case µ = O(1) when diffusion dominates, and more robust than the classical
exponential Euler method in the inviscid case µ→ 0 when convection dominates.

In the practical computation, whether diffusion dominates not only depends on the size
of µ but also depends on other factors, such as the size and shape of domain, and the
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largeness of the velocity. It is also possible that convection dominates in one region but
diffusion dominates in another region. One advantage of the proposed method, in addition
to its theoretical value which weakens the regularity condition for first-order convergence, is
that one does not need to distinguish whether diffusion dominates or not, and whether the
solution is sufficiently smooth as required by the classical exponential integrator. In either
case, µ = O(1) or µ << 1, the proposed method is automatically as good as the better method
between the classical exponential integrator and the semi-implicit Euler method.

The semi-implicit exponential low-regularity integrator constructed in this paper is more
expensive than typical popular projection methods (for example, see [8,33,34]) as it requires
the computation of an exponential of the Stokes operator. The development of low-regularity
integrators which have similar feature of the projection methods is interesting and challenging.
The construction of a low-regularity integrator which allows low regularity approximations
and simultaneously resolves the boundary layer effect under the Dirichlet boundary condition
in the inviscid case µ→ 0 is an interesting and challenging future research direction.
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Appendix: Fast Fourier transform

For any positive integer N , we denote by I2N the (4N+1)-point trigonometric interpolation
operator, which can be obtained through the discrete Fourier transform

I2Nf(x) =
2N∑

k=−2N

eikxf̃k with f̃k =
1

4N + 1

2N∑
n=−2N

e−ikxnf(xn) (A.1)

where

xn =
2πn

4N + 1
for n = −2N, · · · , 2N.

If the Fourier coefficient f̂k of the function f satisfies that f̂k = 0 for |k| > 2N , then I2Nf = f

and therefore f̃k = f̂k in the formula (A.1). In this case, both

f(xn) =
2N∑

k=−2N

eikxn f̂k, n = −2N, · · · , 2N, (A.2)

and

f̂k =
1

4N + 1

2N∑
n=−2N

e−ikxnf(xn) k = −2N, · · · , 2N,

can be computed with cost O(N lnN) by using the fast Fourier transform (FFT).
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Let SN be the subspace of functions f ∈ L2([0, 2π]) such that f̂k = 0 for |k| > N .
If w, v ∈ SN and their Fourier coefficients ŵk and v̂k, k = −2N, · · · , 2N , are stored in
the computer (with ŵk = v̂k = 0 for N < |k| ≤ 2N), then the values w(xn) and v(xn),

n = −2N, . . . , 2N , can be computed exactly by using (A.2) and FFT. Since (̂wv)k = 0 for
|k| > 2N , it follows that wv = I2N (wv). If we denote by Fk[v] the kth Fourier coefficient of
the function v, then

Fk[wv] =
1

4N + 1

2N∑
n=−2N

e−ikxnw(xn)v(xn), k = −2N, . . . , 2N,

which can also be computed exactly by using FFT.
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