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HIGH-ORDER MASS- AND ENERGY-CONSERVING SAV-GAUSS
COLLOCATION FINITE ELEMENT METHODS FOR THE NONLINEAR
SCHRODINGER EQUATION

XIAOBING FENG*, BUYANG LIf, AND SHU MAT

Abstract. A family of arbitrarily high-order fully discrete space-time finite element methods are pro-
posed for the nonlinear Schrodinger equation based on the scalar auxiliary variable formulation, which
consists of a Gauss collocation temporal discretization and the finite element spatial discretization. The
proposed methods are proved to be well-posed and conserving both mass and energy at the discrete level.
An error bound of the form O(hP 4 75+1) in the L>°(0,T; H')-norm is established, where h and 7 denote
the spatial and temporal mesh sizes, respectively, and (p, k) is the degree of the space-time finite elements.
Numerical experiments are provided to validate the theoretical results on the convergence rates and conser-
vation properties. The effectiveness of the proposed methods in preserving the shape of a soliton wave is
also demonstrated by numerical results.

Key words. Nonlinear Schrodinger equation, mass- and energy-conservation, high-order conserving
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1. Introduction. This paper is concerned with the development and analysis of high-
order fully discrete numerical methods for the following initial-boundary value problem of
the nonlinear Schrédinger (NLS) equation:

(1.1a) i0;u — Au — f(|u]*)u =0 in 2 x (0,7,
(1.1b) u=0 on 012 x (0,7,
(1.1c) u =g in 2 x {0},

where 2 C R? is a polygonal or polyhedral domain with boundary 9f2, and u : 2 — C is a
complex-valued function, with i = /—1, and f : Ry — R is the derivative of some function
F : R, — R. The best known examples are

- 2
(1.2) f(s) = +5'  and F(s)==+ m 13%, with ¢ > 1,
q
where the “—” and “+” cases are often referred to as defocusing and focusing models, re-

spectively. In the focusing case, the solution will blow up in L°°({2) within finite time when
the initial energy is negative; see [7, 35]. The NLS equation (1.1) arises from many applica-
tions in physics and engineering, and is one of the fundamental equations in mathematical
physics [7, 35, 43, 27, 29].

It is well known that the solutions of (1.1) conserve mass and energy in the sense that
forallt >0

d
(1.3) — / lu|?dx = 0, (mass conservation)
dt Jo
d 1 1
(1.4) T /Q (§|Vu|2 — §F(|u|2)>dx =0. (energy conservation)

The development of numerical methods that can retain these conservation properties in
numerical solutions is important for long-time numerical simulation, and therefore has been
one of the research focuses in numerical approximation to the NLS equation.
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2 X. FENG, B. LI AND S. MA

There exists a large amount of literature on numerical solutions and numerical analysis
of the NLS equation, see [10, 33, 28, 22, 1, 2, 4, 5, 6, 36, 21, 25, 38, 14, 28, 13]. To the best of
our knowledge, all the existing mass- and energy-conserving methods have only second-order
accuracy in time and is of the Crank—Nicolson type. No higher-order time-stepping schemes,
which conserve both mass and energy, have been reported in the literature. Moreover, the
existing error estimates for nonlinearly implicit schemes for the NLS equation generally
require certain grid-ratio conditions. The standard grid-ratio conditions in the literature are
7 = o(h%) for the cubic NLS equation and 7 = o(h?) for general nonlinearity, where h and 7
denote the spatial and temporal mesh sizes. Karakashian and Makridakis [22, 23] proposed
some continuous and discontinuous space-time Galerkin finite element methods for the cubic
NLS equation and proved optimal-order convergence under a weaker grid-ratio condition
7= In h| — 0 in two dimensions, where k > 2 is the degree of finite elements in time. For
the defocusing cubic NLS equation (or the focusing cubic NLS equation with sufficiently
small initial data), using the energy conservation of the numerical scheme, error estimates
were established without grid-ratio condition in [17, 37]. For general nonlinearity (possibly
focusing), Wang [36] established an error estimate for a linearized semi-implicit scheme
without grid-ratio condition; Henning and Peterseim [20] established an error estimate for
the nonlinearly implicit Crank—Nicolson finite element method without grid-ratio condition.
Both [36] and [20] used an error splitting technique in which they proved boundedness of the
numerical solutions by establishing an L°°-norm error estimate between the fully discrete
and the semidiscrete-in-time numerical solutions. The error splitting technique allows to
avoid grid-ratio conditions in using the inverse inequality.

The objective of this paper is to develop a family of arbitrarily higher-order mass-
and energy-conserving fully discrete space-time finite element methods based on the scalar
auxiliary variable (SAV) formulation of the NLS equation, and to establish the existence,
uniqueness and optimal order convergence of numerical solutions without grid-ratio con-
dition. Two key ideas are utilized in our construction of the method. First, the SAV
reformulation of the NLS equation is used. This approach was introduced in [31, 30] as an
enhanced version of the invariant energy quadratization (IEQ) approach [39, 40, 41, 42],
for developing energy-decay methods for dissipative (gradient flow) systems. Here we adapt
the SAV approach to the dispersive NLS equation, and the SAV reformulation is essential
to enable our methods to maintain the energy conservation property at the discrete level.
Second, the Gauss collocation method is used for time discretization in the SAV formula-
tion of the NLS equation. The method can be viewed as an efficient implementation of the
space-time finite element methods for the SAV formulation with Gauss quadrature in time.
The Gauss collocation method was combined with IEQ and SAV to preserve energy decay
in solving phase field equations in [3, 18, 19]. We adopt this method here to preserve mass
conservation without affecting the energy conservation structure of the SAV formulation.

The SAV formulation introduces new difficulties to error analysis for the NLS equation
due to the presence of d;u in the equation of r, see equation (2.2b), which leads to a con-
sistency error of sub-optimal order in time and introduces new difficulty in obtaining the
stability estimate. These difficulties are overcome by combining three techniques. First,
inspired by the error analysis of Karakashian and Makridakis [23], our proof makes use of
properties of the Legendre polynomials on each interval I,, rewriting the Gauss collocation
method into a space-time Galerkin finite element method, which makes it easier to choose
suitable test functions in the error estimation. Second, we introduce a temporal Ritz projec-
tion and use a super-approximation result of the temporal local L? projection to eliminate
the sub-optimal temporal consistency error caused by O;u in the equation of r. Third,
we estimate the time derivative of the error in H~1({2) using a duality argument, which
leads to an optimal-order H'-norm error estimate. We prove the existence, uniqueness and
optimal-order convergence of numerical solutions based on Schaefer’s fixed point theorem in
an L*°-neighborhood of the exact solution. This allows us to avoid grid-ratio conditions for
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HIGH ORDER SAV-GAUSS COLLOCATION METHODS FOR THE NLS EQUATION 3

the NLS equation with general nonlinearity.

The rest of this paper is organized as follows. In Section 2, we present the SAV refor-
mulation of the NLS equation and introduce our SAV space-time Gauss collocation finite
element method. In Section 3, we first present an integral reformulation of the proposed
method and then establish its mass and energy conservation properties. We also derive a
consistency error estimate for the method, which is vitally used to prove an error estimate in
the subsequent section. In Section 4, we first establish the well-posedness of the numerical
method and then prove an error bound of the form O(h? +7%*1) in the energy norm, where
7 and h denote the temporal and spatial mesh sizes, respectively, with (p, k) denoting the
degree of polynomials in the space-time finite element method. Finally, in Section 5, we
present a few numerical tests to validate the theoretical results, and to demonstrate the
effectiveness of the proposed method in preserving the shape of a soliton wave.

Throughout this paper, unless stated otherwise, C' will be used to denote a generic
positive constant which is independent of 7, h, n and N, but may depend on 7" and the
regularity of solution.

2. Formulation of the SAV—Gauss collocation finite element method. In this
section, we construct a Gauss collocation finite element method based on the SAV reformu-
lation of the NLS equation.

2.1. Function spaces. Let H*(£2), k > 0, be the conventional complex-valued Sobolev
space of functions on {2, and denote

L*(2)=H2) and H}(N2)={vec H(N2):v=0o0n 0N}

We denote by (-, ) and || - || the inner product and norm of the complex-valued Hilbert space
L?(92), respectively, defined by
(u,v) := / uvdr and ||u] := v/ (u,u).
2

For m,s > 0 and 1 < p < oo, the notation W™P(0,T; H*({2)) stands for the space-time
Sobolev space of functions which are W™? in time and H*® in space; see [11, Chapter 5.9].
We abbreviate the norms of H*(£2) and W™ P(0,T; H*(£2)) as || - || g+ and || - [[ym.r(1,;m59),
respectively, omitting the dependence on {2 in the subscripts.

2.2. The SAV reformulation of (1.1). The SAV formulation of the NLS equation
(cf. [30]) introduces a scalar auxiliary variable

: f(ul?)
(2.1) r=1/[o  F(ul?)dz+ ¢y with g(u) = ,
Vo O VI F(lul?)dz + co

with a positive ¢y (which guarantees that the function r has a positive lower bound), and
reformulate (1.1) as

(2.2a) i — Au —rg(u)u =0 in 2 x (0,77,
d

(2.2b) d—: = Re(3g(u)u, du) in 2 x (0,7,
(2.2¢) u=0 on 92 x (0,7,
(2.2d) u=wug, T=1p in 2 x {0},
where rg = \/ [ 3F (Juo|?)dz + co. The mass and energy conservation in the SAV formula-
tion are

d d /1
(2.3) T /Q |u|?dz = 0, and T <2 /Q |Vu|*dz — r? + co) =0.

2.3. Space-time finite element spaces. Let 7, be a shape-regular and quasi-uniform
triangulation of {2 with mesh size h € (0,1) and {t,,})__, be a uniform partition of [0, 7]
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4 X. FENG, B. LI AND S. MA

with the time step size 7 € (0,1), where N is a positive integer and hence 7 = L. For an

integer p > 1 we denote by QP the space of complex-valued polynomials of degree < p in
space, and we denote by S;, the complex-valued Lagrange finite element space subject to
the triangulation of {2, defined by

Sp={vel(2): v|x €Q? forall K €T, v=0 on 912},

where C(§2) denotes the space of complex-valued uniformly continuous functions on 2. Then
Sp, is a complex Hilbert spaces with the inner product (-,-) and norm || - ||.

For an integer k > 1, let P* denote the space of real-valued polynomials of degree < k
in t. For a Banach space X, such as X = L?(2) or X = S}, we define the following
tensor-product space:

(2.4) PF® X = Span{p(t)gb(x) peP e X} = {Zfzotwj L ¢ € X}.

Moreover, let Py, : L?(§2) — S}, denote the L? projection operator defined by
(w — Phw,vh) =0 VYo, €Sy Ywe LQ(Q).

The following stability properties are well-known (cf. [8]):

(2.5a) |1 Prw| < |Jwl| Yw € L*(02),

(2.5b) 1Pvwlln < Cllwllm Vw e Hy(£2),

where C' depends only on the shape-regularity and quasi-uniformity of the mesh.
We also introduce the global space-time finite element spaces

(2.6) Xon = {vy, € C([0,T]; Sp) : 11h|]n ePt@ Sp for n=1,...,N},
(2.7) Yrn = {qn € C([0,T)) : qn|s, €P* for n=1,...,N}.

2.4. SAV-Gauss collocation finite element method. Let ¢; and w;, j =1,...,k,
be the nodes and weights of the k-point Gauss quadrature rule in the interval [—1,1] (see
[32, Table 3.1]), and let t,,; = tp—1+ (1+¢;)7/2, j =1,..., k denote the Gauss points in the

interval I, = [tp—1,t,]. We define the following Gauss collocatlon finite element method for
(2.2).

Main Algorithm
Step 1: Set u?L := Ipug and r2 := 1o, where I}, is the Lagrange interpolation operator
onto the finite element space. Determine (up,rp) € X, 5 x Y by the following two steps.

Step 2: Forn = 1,2,--- , N, define {(uh(tnj),rh(tnj))}jzl C S, X R by solving recur-
sively (in n) the following nonlinear (algebraic) system:

(2.8&) i(@tuh(tnj), ’Uh) + (Vuh(tnj), Vvh)

- (Th(tnj)g(uh(tn ) )
(2.8b) Oprp(tn;) = 1Re(g(uh(tnj))uh( 8tuh(tnj )
1

(2.8¢) up(tn-1) = up~ Y oand g (te-1) =ry"

0, Yy GSh,

Step 3: Set up 1= up(tn) and rj = rp(tn).

REMARK 2.1. (a) We note that in (2.8a) and (2.8b), Oyun(tn;) = Oun(t)|s=t,, and
Oyr(tng) = Oprn(t)]i=¢,,;- Main Algorithm actually computes {(uh(tnj),rh(tnj))}§:1
each n > 1, however, since any kth order polynomial on I, is uniquely determined by its
initial value at ¢,,—; and its values at the k Gauss points t,;, j = 1,...,k, then the Gauss-
point values generated by Main Algorithm uniquely determine the pair (un,7) € X7 p X Y7 p.

(b) Each of (2.8a) and (2.8b) consists of nonlinear algebraic equations, note that the

test function vy can be different for different j, and one “initial condition” is prescribed for

for
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HIGH ORDER SAV-GAUSS COLLOCATION METHODS FOR THE NLS EQUATION 5

each of up and r,. The number of equations imposed is the same as the degree of freedoms
which equals the dimension of the space P* ® S), for each n.

(c) Main Algorithm can be obtained by applying the Gauss quadrature rule (in time)
to a (continuous) space-time finite element method for (2.2); see Section 3.1.

(d) In practical computation, we solve the solution of the nonlinear scheme (2.8) by

Newton’s method: For given {(uj ™" (tn;), 75 1(tnj))};€:1 C Sp x R, find
k

{(ufl (tnj)’ Tfl (tnj)) }j:1

satisfying the linearized equations
(2.92) i(0puf,(tni),vn) + (Vup (tng), Vor)

CcS, xR

=(rh(tn P)a(uy” l(tnj))uiil(tnj)vvh)
+ ( 1( n])gl(uﬁ 1(tm)) ufl(tm) - “iﬁl(tm))avh)
+ ( ) g2( p (tn;) — ﬂﬁil(tnj))avh); YV € Sh,

(
up ™ ()

(2.9b)  Oyrh(tey) = Re(<“<t I (tng), Oy ()
+ 5Re(gl<uf;*1(tnm(uﬁ(tnj) — 1l (b)), Ol (tny)

1 _ _ o _
+ iRe(gz(ui (tng)) (@ () — @y (tng)); Oy, (Enj)
(2.9¢) uﬁ(tn_l) :uz_l and rﬁ(tn 1) = rﬁ_l,

where
g1(u) := Oufg(u)u] and  ga(u) := Oalg(u)u],
and Jyz denotes the differentiation with respect to @ in the expression of
fuw)u
\/IQ%F(uﬁ)dx + ¢

The iteration in £ is set to stop when the desired tolerance error is achieved.

g(uu =

3. Conservation, stability and consistency analysis.

3.1. A reformulation of scheme (2.82)—(2.8b). In this subsection, we present several
integral identities and inequalities, including a reformulation of Main Algorithm. These
identities and inequalities will be used in the subsequent analysis of existence, uniqueness
and convergence of numerical solutions.

Consider the interval I,, = [t,,_1,t,], then we define P" : L?(I,,; L?(2)) — P*~1® L2(12)
to be the L? projection defined by

(3.1) / (u— Plu,v)dt =0 Yve P 1o L3(0).
I

Thus v — Pl'u is orthogonal to all temporal polynomials of degree < k — 1, which means

that if u € P* ® L2(§2) then

(32) u — P:’U, = ¢n,1Lk,
where ¢,,_1 € L?(£2) and

~ (2t —1p_1 —1n
(3.3) Li(t) := Ly <Tl>

is the shifted Legendre polynomial (orthogonal to polynomials of lower degree on I,,). The
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6 X. FENG, B. LI AND S. MA

temporal L? projection operator P" has the following approximation property (cf. [9]):

(3.4) mex lv—Plv||x <CT™ max 107 v|lx, 0<m<k,

for all v € C*([0,T]; X), where X = R or X = H*({2) for some s € R.

Since the k-point Gauss quadrature holds exactly for polynomials of degree 2k — 1 (cf.
[16, p. 222]), and the Gauss points ¢,,;, j = 1,..., k, are the roots of the Legendre polynomial
Li(t) (cf. [24, p. 33]), it follows that the following two identities hold:

k
(3.5) /1 o)t =73 wltgu;  Yoe PR oS,
n j:1
(3.6) v(tn;) = Pro(ty;) Yo ePF®S,.
Setting vy, = Zvp(tnj)w; in (2.8a) and summing up the results for j = 1,...,k, and
using (3.5)—(3.6) in the first two terms yield the following integral identity:
(37) / i(atuh, ’Uh)dt + / (VPT”uh, V’Uh)dt
I, In

k
- gZwj('rh(tnj)g(uh(tnj))uh(tnj)vUh(tnj)) =0 Vo, €eP*® S
j=1

Similarly, multiplying (2.8b) by Zqn(tnj)w; and summing up the results for j = 1,...,k,
and using (3.5) in the first term, we have

k
T W
(3.8) /I Ornandt = 5 > < Re(g(un(tng))un(tny), Orun(tns) an(tny))  Van € P*.
(3.7)-(3.8) provides a reformulation of Main Algorithm. The above reformulation will be
crucially used later to show mass and energy conservations, as well as existence, uniqueness
and convergence of numerical solutions.

From (3.2) we get

[fn—all = |||uh(tn71) = Prup(tn-1)]|

-
‘Lk(tn—l)

! }
<C’||uh(tn1)||+C(T/ ||P]fuh(t)||2dt> ,
In

where we have used the inverse inequality in time. Thus, by using (3.2) again, we obtain
the following inequality:

(39) / ||uh||2dt < C/ ||Pfuh||2dt + C’T”’Lbh(lfn,l)”2 Yuy € Pk ® Sh.
I I,
By using the two identities (3.5)—(3.6), one can also prove the following inequality:

k
.
G10) >l = [ PP < [P Yo, e P,
= I, I

The inequalities (3.9)—(3.10) will be frequently used in the subsequent error analysis.

3.2. Mass and energy conservation properties. In this subsection, we prove the
following conservation properties of the numerical solution, which comprise of the first main
theorem of this paper.

THEOREM 3.1. Let (up,rn) € Xrp X Yo be a solution of Main Algorithm, then the
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HIGH ORDER SAV-GAUSS COLLOCATION METHODS FOR THE NLS EQUATION 7
following mass and energy conservations hold:
St = 3 Juno) forn>1,
IVt = I )P+ o = 3 Tun o) = [rn(to) P + o forn > 1.
Proof. Setting vy, = uj, € P¥ ® S}, in (3.7) and taking the imaginary part yield

(3.11) Im/ 1(Opup, up)dt = —Im/ (VP up, Vuy)dt
I, I,

k
1] 23wyl o) o)) =0
j=1
where we have used the definition of the projection operator P, which implies
Im/I (VP up, Vuy)dt = Im/l (VP up, VPluy)dt = 0.
Then the mass conser;ation follows from (3.11) ;nd the identity
t [ i(0run. )t = 5l (t)|F = 5t -

Alternatively, setting vy, = Oyup, and g, = 27y, in (3.7) and (3.8), respectively, and taking
the real parts yield

n

k
(3.12) Re/ (VP up, Voruy)dt = % Re Z wj (rp (tnj)g(uh (tnj))un (tnj), 8tuh(tnj))
I o

k
(3.13)  |ra(ta)® = rn(tn—1)* = %Reij (rn(tng)g(un(tng))un(tn;), Osun(tng))-
j=1
Since
Re/ (VP up, VOorup)dt :Re/ (PT"Vuh,Vatuh)dtzRe/ (Vup, Vopuy)dt
I In I,

1 1
= SITun () = 5V,
it follows that
1 1
(314) SV = SIFun(tn )P

k
-
=5 Re > w;i (ra(tng)g(un(tng))un(tng), Ortin (tnj)).
j=1
Subtracting (3.13) from (3.14) yields

1 1
(315) IVt = ) = 5IVun(t-n) 2 = nlta-a) P for 0> 1.

Thus, the energy conservation holds. The proof is complete. 0

3.3. An upper bound of mass at internal stages. In this subsection, we prove
that the average mass of numerical solutions at internal stages has an upper bound uncondi-
tionally (independent of the regularity of solutions). This property furthermore strengthens
the stability of numerical solutions when the exact solution is not smooth (for example, close
to blow up).

THEOREM 3.2. Let (up,ry) € Xrp X Yo be a solution of Main Algorithm, then the
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following inequalities hold:

. - n < 2
(3.164) [Pz P < )
(3.16b) max mas[[un (1) < Clus (0)]

1<n<N 1<j<k
where C' is a constant independent of T, h and the regularity of the solution.

Proof. By the definition of the temporal L? projection P", we get

(3.17) /I | P™up (1)]2dt = Re / (up(t), Prup(t))dt

n

= Re (up (tn_1), P up (tn_ ))TJrRe/I (Dyun(t), (tn — t) P up(t))dt

n

+ Re/ (uh(t), (tn — t)atpfuh(t))dt = Jl + Jg + Jg,
I

where we have interchanged the order of integration in deriving the second to last equality.
It can be shown that (cf. [12]) that J» = 0 and

T T
i< Zlunlta )P+ Pt

T 1
Ja= =g NPPun(ta 0l + [ G 1PRun(e) Pt
Substituting the estimates of Jy, Jy and J3 into (3.17) gives (3.16a).
Substituting (3.16a) into (3.9) and using the mass conservation property again, we
obtain [, [Jusl/?dt < C7|lup(0)]?, which and an application of the inverse inequality yield
(3.16b). The proof is complete. O

3.4. Temporal and spatial Ritz projections. Let I7u and I”r be the temporal

Lagrange interpolation polynomials of w and r, respectively, interpolated at the k4 1 points
tn—1 and tn;, j = 1,..., k. It is well known that the following approximation property (cf.

9):
(3.18) mae(lo = 7ollx + 7|0 (0 = 7o) 1x) < C7™ max 97 ol x

for all v € C™*1([0,T); X), 0 <m < k, and X =R or X = H*({2) for some s € R. We also
define a temporal Ritz projection operator R? : W1°(I,,; L?(£2)) — P* ® L?(£2) as follows:

(3.19) / (@u(u— RMu),v)dt =0 Vo e Pl @ 12(0),
I,
(3.20) w(ty 1) — RMu(by 1) = 0.

By using this property and the shifted Legendre polynomials defined in (3.3), we can express
the temporal Ritz projection as

. k— 1f )dS
(3.21) RMu(t) = u(ty_ )+J_O Iff |L |2ds /t L;(s)ds,

which implies that if X C L?(f2) is a Banach space and u € W1>°(I,,; X), then R"u is
automatically in P¥ ® X. It can be shown that R" satisfies the following approximation
property, see [12, Lemma 3.3].

LEMMA 3.3. Let X = R or H*(2) for some s > 0. For w € W™mHLo([,,: X)), with
0 <m <k, the following approximation property holds:

lu = Rl oo (1,:x) + 718 (u — REw)l| Lo (1,,x) < CT™ | wmst. (1)

In addition to the above optimal-order approximation result, we also have the following
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HIGH ORDER SAV-GAUSS COLLOCATION METHODS FOR THE NLS EQUATION 9

super-convergence result.

LEMMA 3.4 (A super-approximation property). Let X =R or H*(2) for some s > 0.
If w e WFe(1,; W*>®(£2)) and v € PF~1 @ X, then

[wo — Pl (wv)|p2(r,:x) < CTlvllL2(1,:x)-
Proof. We only give a proof for the case X = H?({2) because the other cases are similar.
By applying (3.4) with m = k, we have
lwv = PP (wo)l| 21,0y < C72 v — PP (wo)| oo 1,07
< O3 10f (wo) | L 1,501
<C kzl TR OE M w0 oo (1, p1e)  (since Fv = 0)

m=0
k—1

1 _
<C Y EOF W] Lo (1w o) [0 0l e (1,500

m=0
k—1
1_
<CY Tl poe 1m0
m=0

3
< C72|ollpee(r,;me)
S CT||,I)HL2(I71,;HS)'

here we have used the inverse inequality in time twice above. The proof is complete. ]

Finally, we also recall the (spatial) Ritz projection operator Ry, : H}(£2) — Sy defined
by

(V(w — Rhw),Vvh) =0 Y, € Sp, Yw € Hy(92),

and the discrete Laplacian operator Ay : Sy, — Sy, defined by

(3.22) (Andn, xn) = —(Von, Vxn) VY ¢n,Xn € Sh.

It is known [8] that there hold the following identities:

(3.23a) Pp,Av = ApRpv Vv € Hy(92),

(3.23b) R"Rpv = R, R™ Yo € Whe(I,; HY (2)),
(3.23c) R'Apvp, = ApR™y, Yo € WH(1,; Sp).
Moreover, there holds the following approximation property (cf. [8]):
(3.24) v — Rpv|lgr < ChP||v| gosr Vv € Hy(£2) N HPT($2).

3.5. Consistency of scheme (2.82)—(2.8b). We define a pair of intermediate solutions
(for comparison with the numerical solutions)

up = R'Rpu and r; = Rl'r,
and the following consistency error functions:
(3.25) dyy :=10; RZ (Rpu — u) + Ap Ry (u — RIu) + rg(u)u — I [r} g(uf, )uy],

(3.26) dy ::%Re[(g(u)uﬁtu) — I7? (g(up,)uy, Our)].
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It is easy to check that there hold

(3.27) /i(@tuz,vh)dt—i—/ (VPIuy, Vop)dt
I I

n n

k
wj (17, (tng ) g (i, (tng) ), (tng), Ui (tn;)) =/ (P dy, vn)dt,

1 In

NV

J

k
T * * * n n
(3.28) /1 Oyrrqndt = 1 Zije(qh(tnj)g(uh(tnj))uh(tnj),atuh(tnj)) —l—/} Prd?qpdt.
n j=1

n

THEOREM 3.5. Suppose that the solution of (1.1) is sufficiently smooth, then dI €
C(I,; H}(£2)) and there hold

(3.29) sup || | < C(WF +7"1) and  sup [PPd}| < CO(h + 7).
tel, tel,

Proof. Since the spatial Ritz projection Rj, maps H}(£2) into S, C H}(£2), and the
temporal Ritz projection R maps W1°°(I,,; H}(£2)) into P* @ HZ(£2), it follows that every
term in (3.25) is in C'(I,,; HE(£2)). This implies d? € C(I,,; H3 (£2)).

By using the triangle inequality, from (3.25) we get

(3:30)  max||dy]m <max (|0:R7(Rhu = u)llms + |80 Rn(u = Ryu)llm)

+max ([rg(uyu — I {rg(uwu]llm + [lIrg(w)u — rig(ui)ui | m)
=: DY+ D3+ D3 + Dy.
Choosing m = 0 in Lemma 3.3, we obtain the following stability result:
(3.31) | Rrullwice (1) < Cllullwros(r,,;me)-
Using (3.31) and (3.24), we can estimate D" as follows:

Dif = ItIéE}X ||8tR¢(Rhu — u)||H1 < ||Rhu - U”Wl,oo(In;Hl)

< ChP||Rpu — ullwoo (1, 1oy,
Similarly, using identity (3.23) and Lemma 3.3, we have

Dy = max || Ap R (u — Rru)|g < max|lu — Rzull g

< CT* M |ullwseroo (1,,11)
and
DY = max rg(u)u — I2frg(ujul|l: < Cr.
e n
By using the triangle inequality, we decompose D} into two parts,

Dy < max (Ilrg(u)u — rg(Ryw) Rpul gy + |Irg(Ruw) Ryu — R rg(RY Ryw) R? Ryul| )

<Ch? 4+ CrF*1.

Then, substituting the estimates of D}, j = 1,2,3,4, into (3.30), we obtain the desired
estimate for ||d?| g:.
To estimate |Pd"|, we rewrite (3.26) as

dn :%Re {(g(u)u, O(u—up)) + (g(u)u — g(up)up, 316“2)]

1
+ 5 Re| (g(ui)ui drui) — 2 (g(u7 )y, D)
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392 and test this expression by P"v in the time interval I,,, with v € P*. This yields

393 (3.32) / Prdivdt =/ d;Plvdt
In In
1
394 < gRe/ (9(w)u, Op(u — upy)) Prodt
I
1 K\ ok *
395 + C72|[(g(w)u — g(up)up, Oeup) Lo (1) 1Vl L>(2,,)
396 +CTHE 08 (g(uh ), O ) e (1 10l £2(2,)
1 * n 5
o = 5Re/, (g(w)u, 8, (w — ) Prodt + Cr (7 + 754 oll 2o, .
399 The first term on the right-hand side of (3.32) can be estimated as follows.
1
400 (3.33) ERe/ (g(w)u, 8y (u — uy,)) Plodt :/ (9(w)u, O¢(u — RIu))Prodt
In In
401 + / (9(w)u, O R} (u — Rpu))Prvdt
In

1 =+Di+ D
405 D7 :/ (9(w)uPlv, 8 (u — RIu)) dt

I
406 :/ (9(w)yuPrv — P (g(w)uPlv),d(u — RI'u)) dt

I"L
w7 <Cr lg(u)uP2v — PE(guuPo) | ar, o 10w — B2w)l| e 1,012)
108 <Cr? | Pr vl L2 (1,502 10 (u — Rwu)|| poo(1,;22)  (We have used Lemma 3.4)
109 <O 2 ||o|l 21 108 0| oo (1,112 (we have used Lemma 3.3),
410 D}y <C77 || g(w)ul oo (1,.02) 1w — Rullwroe (1,:22) 0] 221,

1
43 <CT2RP||vl| L2 (1) llullwroe (1,041
413 Substituting these estimates into (3.32), we obtain
414 ‘/ P_:Ld?’l}dt‘ SCT%(hP+Tk+1)||v||L2(In).
415 In
116 Since this inequality holds for arbitrary v € L?(I,,), it follows that
1

413 |PEd? | p2r,) < Cr2 (WP + 7511,
419 Then, using the inverse inequality in time, we obtain the desired estimate for |P™d"|. 0
420 4. Well-posedness and convergence analysis. We define the error functions e}l =
421 up — uj, and e}, = rp — r}, with the following abbreviations:
422 ezj = ez(t"j% evrzj = 62(75@)’ Unj = uh(tnj)v Tnj = rh(tnj)a
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Subtracting (3.27)—(3.28) from (3.7)—(3.8), we obtain the following error equations:

k
i/ (Oveft,vn) dt = — / (VPej, V) dt + %Z w; (efwﬂg(unj)unj7 vnj)
I, In Jj=1

(41a) 453wy (12 [atunen = gt i) o) = [ (PR ot

j=1 In

N9

k
| orehande = 3 wyRe(an atiny sy = gt )us). B (1)

j=1
_ ok
(4.1b) + 1 ijRe(qnjg(unj)unj,ateﬁ(tnj)) —/ Prd’qpdt,
=1 Ln

which hold for all test functions v, € P* ® S}, and ¢, € P*.

REMARK 4.1. If (4.1) has a solution (e},e},) € Xrpn X Y; 4, then up, = uj + €}l and
ry, = r} + e} give a solution of the numerical scheme (2.8). In the following, we prove
existence of (e}, e}) to (4.1) by using Schaefer’s Fixed Point Theorem, which is quoted
below.

THEOREM 4.1 (Schaefer’s Fixed Point Theorem [11, Chapter 9.2, Theorem 4]). Let B
be a Banach space and M : B — B be a continuous and compact mapping. If the set

(4.2) {¢p€ B: 30 €[0,1] such that ¢ =6M(¢)}
is bounded in B, then the mapping M has at least one fized point.

We define
* * 1
(4.3) Xia = {on € Xop s max max [on(tog) — v ()| e < 5}
1
(4.4) Sn={on € You s max max Jgn(tag) = ri(ta)] < 3 )
where the norm || - ||peong: is defined as

|6l Losnars = max ([|onl|Los, ||l m1)-
For any element (¢, 1) € X, 5 X Yr.p, we define two associated numbers
1
(45 plon] = i 1),
a0 {|0n (bn)l| oo
1

max max @h(tnv)|’1>’
1<n<N 1<j<k J

(4.5b) plen] == min (

which are continuous with respect to (¢, ¢n) (because all norms are equivalent in the finite-
dimensional space X;p X Y;p). Furthermore, the two numbers defined above satisfy the
following estimates:

. m m ; oo <
(4.6) 1§r?§XN1§?§(k llplénldn(tnj)llLoenmr <1,

. nj <1
(4.7) 1217%}(]\, 1I§n]?l§xk lplenlen(tng) <1

Then we define
(4.8) u? == uj, + plgnlon  and ¥ =7} + plon]en,
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with the following abbreviations:
uls =y (tny) and  @n; = onltng),
and define (e}, e},) € X, x Y, 1, to be the solution of the following linear equations:

k
_ T
(4.9) 1/In (Oveyt,vp) dt + /In (VPep,Vuy,) dt = 3 j;wj ((pnjg(u‘ﬁj)uﬁj,vnj)

T k * * n _Ju
+ 9 E Wi (Tnj [g(uij)uij - Q(Unj)unj]an) _/1 (Prd", vy)dt
=1 n
and
k

(4.10) / Orerqn dt = i ijRe<qnj (Q(U‘ﬁj)uzj - g(ufm) ) Opup, (t nj))

I =

k
T n Jr
+ Z Z R (ang( nj) njs at(bh n] / P d hdt

j=1

forallv, € P*® S, and ¢, € P, n=1,...,N. We denote by M : XenxYrp = Xop xYop
the mapping from (¢p, p) to (e}, e} ), and define the set

(411) B = {(¢n,on) € Xep X Yrp o 30 €[0,1] such that (¢, on) = OM(dn, ¢n)},
and the following norm on X, j, X Y, p,: for any (¢n,on) € Xrp X Yo

(4.12) [(bn, en)llx, 0 xve s = IOnllLos 0, 1:m1) + llonllLos0.1)-
It is straightforward to show the following result (see [12, Proof of Lemma 4.2]).

LEMMA 4.2. The mapping M : X;p x Yo = X x Y5, is well defined, continuous
and compact.

Moreover, there holds the following key technical lemma.

LEMMA 4.3. Let 1 < d < 3 and assume that the solution of the NLS equation (1.1) is
sufficiently smooth. Then there exist positive constants 79 and hqg such that when T < 179 and
h < hg, the following statement holds: If (¢n,on) € B and (e}, e}) = M(dn, ¢n), then

(4.13) et lzmostny + lebllzmom) < CIELO) e + 1€ (0)])
+C maleinax(Hd e + |PRdY),
(4.14) et (tug) <1 and €5 (tng)| < =
' 12non 1oy 1erEngJllLoenmat = 5 and ., B 20K 16 ng )l = 5>

(4.15) plon] =1,  plen] =1.

Proof. Since the proof is very long and technical, below we only outline the main steps
and ingredients of the proof and refer the interested reader to [12] for the details.
If (&, on) € B and (e}, e},) = M(dn, on), then

(d)ha @h) = 0M(¢h7 Sph) = (062’ er)a
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which implies ¢, = e}l and ¢, = f¢},. In this case, (4.9)-(4.10) can be rewritten as
k
: u n _u 07— T
(4.16) 1/1 (Owejy, vp) dt = —/ (VPlej,Vuy) dt + 5 Zw]— (enjg(uij)uﬁj,vnj>

I =

423wy (v ol udy — g(ury )y o) — [ (PR o)t

j=1 In

k
T T * * *
(4.17) Orepqndt = 1 Z ije(an (Q(Uij)uij - g(unj)unj)vatuh(tnj))

k
ot
+T > " wjRe(gnjg(uf; s, dyep(tng)) —/I Prdy qndt,
=1 "

which hold for all v, € P* ® S}, and ¢, € P*, n = 1,..., N. It remains to derive estimates
for e} and e} based on the above equations.
From (4.6)—(4.7) and definition (4.8) we get

bt . Pt .
(4.18)  max max [u®(tn;)llenm + max  max |r¥(tn;)]

< * . * .
< max  max [luj(tn;)llenm: + max  max |} ()]

+ max . max {p(én]én(tnj)llzenm + max  max |plon]en(tn;)]

IN

lunllzos 0, 7;L00nmY) + T3l Loe (0,7) + 2-

Thus ||u®(tn;)|| Lenmr and |r#(t,;)| are bounded uniformly with respect to 7 and h.
The major part of the remaining proof is devoted to proving the following three inequal-
ities:

@19) [ eklipae < Orlei(tar)ln +Cr [ it + O a4

(4.20) / len*dt < Crllef (tn-1) 7 + leh (bn)* + 77 max (|| 7|7, + [P7d7[?)].

n

(421)  [IVep(ta)l* + [eh(ta)|* — IIVeﬁ(tn—l)IIZ—IEZ(tn—1)|2+/I 10veR ]I dt

<C [ (el +1P)a+C [ (1 +1Prazar

In particular, (4.19) can be obtained by substituting vy, = (—Ay) P2 [Prej(t)(t, —t)] into
(4.16) and considering the imaginary part; (4.20) can be obtained by substituting ¢, =
Pr[Prep(t)(t, — t)] into (4.17); (4.21) is obtained by setting vy, = e}t in (4.16) and
considering the real part, setting g, = 2¢j, in (4.17), and estimating [, |0cep|3,-dt via a
duality argument using (4.16). More details can be found in [12, Proof of Lemma 4.3].

To complete the proof, substituting (4.19)—(4.20) into (4.21), we obtain

(422)  (IVer(ta)ll* + leh (ta)l?) — (IVer (tn-n)” + lef (tn-1)I?) +/1 10eer ]I dt

< Cr(IVen(ta-1)lI* + leh (ta-1)I?) +0/1 (17 + [Prdy|?)dt.
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It follows from Gronwall’s inequality that

T
(4.23)  max ([[Vei(t DII? + leq (ta)l?) +C/ 19eei |7 dt

< C(IVeL )] + e}, (0 +cz/ (142120 + [P ?)dt

Then, substituting the above inequality into (4.19)—(4.20) and using temporal inverse in-
equality, we obtain

(4.24) Hﬁx](lleh( Wi +1en®1) < Cller(0)llF + le, (0))

n n gn|2
+C1£naxN£réax(||d 130 + |Prdr[?).

Hence, (4.13) holds.
When 7 and h are sufficiently small, inequality (4.24) implies that

1
(425) o ROl <5 and max (0] < 5.

On the one hand, by the inverse inequality, we have
4.26 )| < CY it
(4.26) e, ek (@)l < h max llen @)l

< Clu|len(0)ll + e, (0)] + max maX(IId"IIHlJrIP"d?I)}

<N tel
where
1 if d=1,
0, =4 In(2+1/h) if d=2,
h~3 if d=3.

On the other hand, by choosing a test function v in (4.16) satisfying the properties v(t,;) = 1
and v(t,;) = 0 for i # j, and using property (3.6), we obtain

(4.27) |Ane i0yets; — 0P [eh;g(uf ul,] + Pydy;
= Pu[ri,(otuf uly — gl |

—1 u n n n
< Or ™ [, + 1eh,(0)| + | max o[zl + |P7d7)]

n]H -

where we have used (4.23)—(4.24) and an inverse inequality in time in estimating dej;;. By
the discrete Sobolev embedding inequality, for 1 < d < 3 we have

(4.28) Ul < Clle

len;] R AV

ng” n]”2

< O e )l + 165, (0)] + max max (|3l + [P7a])].

where we have used (4.24) and (4.27) in the last inequality. Then, combining (4.26) and
(4.28) yields

. o < : -1 u r
s max ()l < Comin(t, ) [I5O) i+ eh(0)

mn n _gn
+ max max(||d | + | PPd)|

< C’(hp_% +Tk+§),

where we have used the consistency estimate from Theorem 3.5. When 7 and h are suffi-
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ciently small, the inequality above implies

. i <
(4.29) 2y 28 1 (g <

This together with (4.25) gives (4.14).
Furthermore, since ¢5, = e}l and ¢y, = ey, it follows that

N)M—l

16 (tn) | < = and o (Eng)] < »
1£rila<ler£1ax ltng)liLeenst = 5 an 1213<XN1I23<X1¢ Pritnj)l = 5>

which imply p[én] = pler] =1 in view of the definition in (4.5). This proves (4.15). O

We now are ready to state and prove existence, uniqueness and convergence of numerical
solutions, which comprise of the second main theorem of this paper.

THEOREM 4.4. Let 1 < d < 3 and assume that the solution of the NLS equation (1.1) is
sufficiently smooth. Then there exist positive constants 79 and hg such that when T < 19 and
h < hg, the numerical method (2.8) has a unique solution (up,rp) € X, xY*,. Moreover,
this solution satisfies the following error estimate: ’ ’

(430) e (llun(e) = i ()l + ru(6) = i (0)]) < OO0 4 7447).

Proof. Step 1: Euxistence. By the definition of B, if (¢n,pn) € B and (e}, e}) =
M (¢n, @n) then ¢, = e} and ¢, = Oe},. Thus (4.13) implies
(4.31) [(Dns )l x, 0 ven = IOnllLee 0,11y + IRl L 0.1y < C,
which together with Schaefer’s fixed point theorem imply the existence of a fixed point
(¢n, on) for the mapping M (corresponding to § = 1), with

(eeh) = (Pn,on), u® =uj+¢p and ¢ =1+ pp,
satisfying (4.9)—(4.10), where we have used (4.15) in the expression (4.8). Consequently,
(e}, €}) is a solution of (4.1) with (up,rp) = (ui,r}f) = (u}, + e}, ri + €}). Hence, in view
of the discussions in Remark 4.1, (up,rp) is a solution of the numerical scheme (2.8), and
(4.14) implies (up,7) is in the set X>, x Y*, defined in (4.3)—(4.4). This proves existence
of a numerical solution in X*, xY*,.

Step 2: Uniqueness. Suppose that (up,rp) and (up,7p) in X7, X Y, are two pairs
of numerical solutions, and set e} = wuj, — @y, and €}, = r;, — 7, (abusing the notation).
Subtracting the corresponding equations satisfied by (u,7) and (wp, r,) shows that (e, e})
satisfies equations (4.1) with e}(0) = €} (0) = 0 and d} = d} = 0. In the meantime, the
definition in (4.3)—(4.4) implies
(4.32) llew (tnj)llpenm <1 and |ep(tn;)| < 1.

Accordingly, (e}, e},) is a fixed point of the mapping M (corresponding to § = 1 in B) in
the case e} (0) = €}, (0) = 0 and dj} = d* = 0. Hence, an application of (4.13) yields

ekl o,z + lehllzo.m) < C[lekO)ll +1e50)

v P } = 0.
+ max (| +Pd)
Thus, (up,rr) = (dp,7s) and the uniqueness of the numerical solution is proved.

Step 3: Error estimate. Since the error functions e}l = u, —uj, and e}, = r, — r}, satisfy
(4.1) and (4.32), it follows that (e}, e},) is a fixed point of the mapping M (corresponding
to # =1 in B). Hence, an application of (4.13) yields

et~ + el < CIek O +1eh(O)] + max max(dzllms +|P7ar)].
Substituting the consistency error estimates from Theorem 3.5 into the above inequality
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yields the desired estimate (4.30). The proof is complete. |

REMARK 4.2. For the periodic and Neumann boundary conditions, the mass and energy
conservations in Theorem 3.1 and the error estimate in Theorem 4.4 can be proved similarly.

5. Numerical experiments. In this section, we present some one-dimensional nu-
merical tests to validate the theoretical results proved in Theorems 3.1 and 4.4 about the
mass and energy conservations, and the convergence rates of the proposed method. All the
computations are performed using the software package FEniCS (https://fenicsproject.org).

We consider the cubic nonlinear Schrodinger equation

10pu — Oppu — 2|ul?u =0 in (=L, L) x (0,7],
ult=0 = up in (-L,L), with L =20,
subject to the periodic boundary condition. We choose ug = sech(z) exp(2iz) so that the
exact solution is given by
(5.2) u(z,t) = sech(z + 4t) exp(i(2z + 3t)).

This example contains a soliton wave and is often used as a benchmark for meansuring the
effectiveness of numerical methods for the NLS equation; see [34, 38, 26].

(5.1)

5.1. Convergence rates. We solve problem (5.1) by the proposed method (2.8) and
compare the numerical solutions with the exact solution (5.2). Newton’s method is used to
solve the nonlinear system. The iteration is set to stop when the error is below 10710,

The time discretization errors are presented in Table 1, where we have used finite ele-
ments of degree 3 with a sufficiently spatial mesh h = 2L/5000 so that the error from spatial
discretization is negligibly small in observing the temporal convergence rates. From Table
1 we see that the error of time discretization is O(7**1), which is consistent with the result
proved in Theorem 4.4.

The spatial discretization errors are presented in Table 2, where we have chosen k = 3
with a sufficiently small time stepsize 7 = 1/1000 so that the time discretization error
is negligibly small compared to the spatial error. From Table 2 we see that the spatial
discretization errors are O(hP) in the H! norm. This is also consistent with the result
proved in Theorem 4.4.

5.2. Mass and energy conservations. We denote the mass and SAV energy of a
numerical solution by

(5.3) My (t) = /Q lup(t)]?dz  and Eh(t):% /Q V(1) 2da — ()2,

respectively. The evolution of mass and SAV energy of the numerical solutions is presented
in Figure 1 with 7 = 0.2 and h = 0.2. It is shown that

mass = 2+ O(107'%) and SAV energy = —7.33358048516 + O(10~'?),

which are much smaller than the error of the numerical solutions, as shown in Figure 2. This
shows the effectiveness of the proposed method in preserving mass and energy (independent
of the error of numerical solutions). The number of iterations at each time level is presented
in Figure 3 to show the effectiveness of the Newton’s method.

5.3. Comparison of different methods in preserving the shape of a soliton.
The graph of |u(x,t)| is a soliton propagating towards left. Its shape remains unchanged for
all t > 0. The graphs of numerical solutions given by several different numerical methods
using the same mesh sizes are presented in Figures 4 and 5. All the methods preserve mass
and energy conservations. The numerical results show the effectiveness of the proposed
method in preserving the shape of the soliton.
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TABLE 1

MA

Time discretization errors of the proposed method, with h =

2L gnd T = 1.

5000

k T p=3

lu(z,t) — un(z, )|l oo (0,7;m1) order

1/60 3.7964E-05 -
1/70 2.3429E-05 3.1312
2 1/80 1.5460E-05 3.1132
1/90 1.0733E-05 3.0985
1/100 7.7542E-06 3.0853

1/20 3.4019E-05 -
1/25 1.3821E-05 4.0364
3 1/30 6.6322E-06 4.0275
1/35 3.5689E—-06 4.0200
1/40 2.0886E—-06 4.0123

1/8 1.2291E-04 -
1/12 1.5120E-05 5.1681
4 1/14 6.8492E-06 5.1369
1/16 3.4634E-06 5.1067
1/20 1.1555E-06 4.9192

TABLE 2
Spatial discretization errors of the proposed method, with T = 1(}% and T = 1.
p M k=3

lu(z,t) — un(z, )l Loo (0, 1;m1) order

1400 5.8670E-02 -
1600 5.1134E-02 1.0295
1 1800 4.5330E-02 1.0229
2000 4.0719E-02 1.0183
2200 3.6964E-02 1.0149

240 1.9306E-02 -
260 1.6438E-02 2.0094
2 280 1.4167E-02 2.0062
300 1.2338E-02 2.0041
320 1.0842E-02 2.0027

90 1.6147E-02 -
100 1.1661E-02 3.0894
3 110 8.7112E-03 3.0599
120 6.6844E-03 3.0436
130 5.2435E-03 3.0334

5.4. Capability of solving focusing nonlinearity. We consider the cubic nonlinear

Schrédinger equation

(5.4)

in two-dimensional space 2 = [0, 1] x [0, 1] subject to the periodic boundary condition. We

10w — Opzu — Oyyu + 2|ulu

0

Ult=0 = U

in 12
in {2,

x (0,77,

choose ug = exp(2wi(x + y)) so that the exact solution is given by
(5.5) u(z,t) = exp(i(2mx + 27y + (2 + 87)t)),

which admits a progressive plane wave solution; see [38].

We solve problem (5.4) by the proposed method (2.8) and compare the numerical solu-
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Fi1c. 1. Evolution of mass Mp(t) — My (0) and SAV energy Ep(t) — En(0), with p=3 and 7 = h = 0.2.
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F1c. 2. Evolution of error of the numerical solution, with p =3 and 7 = h = 0.2.
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Fic. 3. Number of iterations at each time level, with p =3 and 7 = h = 0.2.

tions with the exact solution (5.5). Newton’s method is used to solve the nonlinear system.
The iteration is stopped when the error is below 10710,

The time discretization errors are presented in Table 3, where we have used finite ele-
ments of degree 3 with a sufficiently spatial mesh A = 1/80 so that the error from spatial
discretization is negligibly small in observing the temporal convergence rates. From Table
3 we see that the error of time discretization is O(7**1), which is consistent with the result
proved in Theorem 4.4.

The spatial discretization errors are presented in Table 4, where we have chosen k = 3
with a sufficiently small time stepsize 7 = 1/1000 so that the time discretization error
is negligibly small compared to the spatial error. From Table 4 we see that the spatial
discretization errors are O(h?) in the H! norm. This is also consistent with the result
proved in Theorem 4.4.

The evolution of mass and SAV energy of the numerical solutions is presented in Figure
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F1G. 4. Soliton propagation when t € [0, 2]: numerical solutions with p =1, M = 1200 and At = 0.1.
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Fi1c. 5. Soliton propagation when t € [0,2]: numerical solutions with p =1, M = 1200 and At = 0.05.
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TABLE 3
Time discretization errors of the proposed method, with h = % and T = 0.1.

k T p=3

||1L({£,t) _uh(xvt)HLoc(O,T;Hl) order

1/460 5.0023E-04 -
1/480 4.3780E-04 3.1321
2 1/500 3.8572E-04 3.1027
1/520 3.4198E-04 3.0686
1/540 3.0504E-04 3.0290

1/60 1.6206E-02 -
1/80 4.9792E-03 4.1022
3 1/100 2.0173E-03 4.0490
1/120 9.6960E-04 4.0183
1/140 5.2530E-04 3.9761

1/30 3.6941E-02 -
1/40 8.0993E-03 5.2750
4 1/50 2.5534E-03 5.1731
1/60 1.0078E-03 5.0989
1/70 4.6554E-04 5.0104

TABLE 4
Spatial discretization errors of the proposed method, with T = ﬁ and T =0.1.
P h k=3

llu(z,t) — un(z, )l Loo (0,7 m1) order

1/70 5.6297E-01 -
1/80 4.8304E-01 1.1466
1 1/90 4.2346E-01 1.1178
1/100 3.7726E-01 1.0964
1/110 3.4035E-01 1.0803

1/10 4.9467E-01 -
1/15 2.0992E-01 2.1141
2 1/20 1.1748E-01 2.0178
1/25 7.5177TE-02 2.0005
1/30 5.2233E-02 1.9972

1/12 2.1955E-02 -
1/14 1.3738E-02 3.0412
3 1/16 9.1747E-03 3.0236
1/18 6.4327E-03 3.0144
1/20 4.6849E-03 3.0092

6 with 7 = 0.01 and h = 0.1. It is shown that

mass = 1.000397142598 + O(107*?) and SAV energy = 80.45628698537 + O(10~ 1),
which are much smaller than the error of the numerical solutions, as shown in Figure 7. This
shows the effectiveness of the proposed method in preserving mass and energy (independent
of the error of numerical solutions). The number of iterations at each time level is presented
in Figure 8 to show the effectiveness of the Newton’s method.
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