NUMERICAL APPROXIMATION OF DISCONTINUOUS SOLUTIONS OF
THE SEMILINEAR WAVE EQUATION
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Abstract. A high-frequency recovered fully discrete low-regularity integrator is constructed to approx-
imate rough and possibly discontinuous solutions of the semilinear wave equation. The proposed method,
with high-frequency recovery techniques, can capture the discontinuities of the solutions correctly without
spurious oscillations and approximate rough and discontinuous solutions with a higher convergence rate
than pre-existing methods. Rigorous analysis is presented for the convergence rates of the proposed method
in approximating solutions such that (u,d:u) € C([0,T]; HY x HY~1) for v € (0,1]. For discontinuous
solutions of bounded variation in one dimension (which allow jump discontinuities), the proposed method
is proved to have almost first-order convergence under the step size condition 7 ~ N~1, where 7 and N
denote the time step size and the number of Fourier terms in the space discretization, respectively. Numer-
ical examples are presented in both one and two dimensions to illustrate the advantages of the proposed
method in improving the accuracy in approximating rough and discontinuous solutions of the semilinear
wave equation. The numerical results are consistent with the theoretical results and show the efficiency of
the proposed method.
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1. Introduction. This article concerns the construction and analysis of numerical
methods for approximating rough and possibly discontinuous solutions of the semilinear
wave equation

Ouu — Au = g(u) in (0,7] x Q
(1.1)

ul,_o =u’ and Gul,_, =v" inQ

in a domain © = [0,1]? with the periodic boundary condition (i.e.,  is regarded as a d-
dimensional torus), where g : R — R is a given nonlinear function. For example, equation
(1.1) is often referred to as the sine-Gordon equation when g(u) = sin(u), and often referred
to as the nonlinear Klein-Gordon equation when g(u) = —mu — Au?; see [13, 14, 23].
Since the waves described by the semilinear wave equation propagate with finite speed, the
problem in the whole space with compactly supported initial values can also be reduced
to a bounded rectangular domain (with periodic boundary condition) which contains the
support of the solution on the whole time interval [0, T].

As the relativistic version of the Schrédinger equation, the semilinear wave equation
has been wildly used in many physical areas such as quantum field theory, nonlinear op-
tics, dislocated crystals, etc. During the last few decades, the numerical approaches for
solving the semilinear wave equation have been extensively investigated, such as trigono-
metric/exponential integrators that are based on the variation-of-constants formula (for
example, see [7, 22, 28, 17, 52]), splitting methods (for example, see [2, 3, 7, 21, 16, 46]),
symplectic methods [11, 12, 25], and finite difference methods (such as the Crank—Nicolson,
Runge-Kutta and Newmark methods, see [10, 27, 33, 37, 39, 40, 45, 49, 51]). These classi-
cal numerical methods have been shown convergent with optimal order to the sufficiently
smooth solutions of the semilinear wave equation. However, due to the dispersion feature
of (1.1), roughness of the solution may be brought in by randomness or discontinuity of the
initial data. This would cause significant challenges in constructing convergent numerical
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methods for approximating rough solutions, possibly discontinuous and with unbounded
energy, of the semilinear wave equation.

Many recent efforts were devoted to the construction and analysis of low-regularity inte-
grators for nonlinear dispersive equations, such as the KdV equation [29, 54, 56, 57] and the
nonlinear Schrédinger equation [6, 41, 42, 48]. In these articles, several different approaches
have been developed for constructing numerical methods that are convergent under low-
regularity conditions, with higher-order convergence than the classical methods, including
the resonance-based approach which uses variation-of-constants formulae and twisted vari-
ables [6, 29, 41, 44, 54, 55, 56, 57], the semigroup based technique using the cancellation
structures in the solution representations [48, 34|, and low-regularity integrators based on
discrete Bourgain/Strichartz estimates [42]. Recently, based on new schemes to approxi-
mate the nonlinear frequency interaction and a new harmonic analysis technique by using
the Littlewood-Paley dyadic decomposition, first-order low-regularity schemes for the cubic
nonlinear Schrédinger equation were introduced in [36] and [1] to allow almost first-order
convergence in the L2 norm for H! initial data with periodic and Neumann boundary con-
ditions respectively. Moreover, based on a temporal averaging technique and more careful
high order resonance analysis, a new second-order scheme was proposed in [8], which can
have second-order convergence in the L? norm with initial data strictly below H2. These
newly developed approaches have significantly improved the convergence rates of numerical
solutions to these nonlinear dispersive equations under low regularity conditions.

Low regularity integrators for the semilinear wave equation was addressed by Rousset &
Schratz in [48] by using transformation w = u—i(—A)~2d;u, which converts the semilinear
wave equation into a first-order formulation, i.e.,

iatw:-(-A)%w+(—A)—%g(w;w). (1.2)
They constructed a low-regularity integrator for the first-order equation in (1.2) with
second-order convergence in the energy norm H' x L? under the regularity condition
(u®,v°) € Hi x H3 in three dimensions.

A different low-regularity integrator for (1.1) was constructed in [35] directly based on
the discovery of a new cancellation structure, also with second-order convergence in H* x L?
under the regularity condition (u°,v°) € H'4% x H% for spatial dimension d = 1,2, 3. For
the nonlinear term g(u) = mu+Au® with given constants m > 0 and A € R, a symmetric low-
regularity integrator was constructed in [53] for the semilinear Klein-Gordon equation on
a one-dimensional torus, with second-order convergence in HY x H”~! under the condition
(u%,0%) € HY x H'=! for v > 1.

These low-regularity integrators all require the solution (u,d;u) to be in HY x HY~!
with v > g, thus requiring the solution u to be continuous. However, the semilinear wave
equation can be well-posed even for discontinuous solutions below the energy space. For
example, the sine-Gordon equation is well-posed in H” x HY~! for all v > 0 and the semi-
linear Klein—Gordon equation is well-posed in HY x HY~! for v > % in the one dimensional
case [5], and for v > 1 in the high dimensional cases [19, 20]. The construction and analysis
of convergent numerical methods for approximating such rough and discontinuous solutions
of the semilinear wave equation are still interesting and challenging.

The aim of this paper is to construct a more efficient fully discrete low-regularity inte-
grator for approximating possibly discontinuous solutions of the semilinear wave equation
in one and two dimensions. To improve the convergence rates of numerical solutions in
approximating rough solutions, we design a numerical scheme which could approximate the
low-frequency and high-frequency parts of the solution separately, by approximating the
low-frequency part with a time-stepping scheme and the high-frequency part with a recov-
ery technique. The high-frequency recovery, which has equivalent computational cost as the
approximation to the low-frequency part, could significantly improve the accuracy of the
numerical solutions and therefore could capture the discontinuities in the rough solution
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by significantly reducing spurious oscillations. The advantages of the proposed method
are demonstrated numerically in Section 7 and proved rigorously in a particular setting,
for approximating discontinuous solutions of bounded variation (such as piecewise smooth
solutions) in one dimension.

By utilizing the cancellation structure of the semilinear wave equation discovered in
[35] and the new techniques developed in this paper, we prove the following error bounds
in the L? x H~! norm for approximating a solution (u,d;u) € C([0,T]; HY x HY~1):

O(N™F 4 7N1=27) for v € (0, %},

1
O(N_Af+ + 7N 4 min(r, T2N2(1_7)+)) for v € (57 1],

where N denotes the number of Fourier terms used in each dimension of the space dis-
cretization. Therefore, the error is O(77) under the step size condition 7 ~ N~!, and the
convergence rate could be further improved by choosing a different step size condition which
depends on the regularity of the solution.

More importantly, we prove that for discontinuous solutions with bounded variation
in one dimension (e.g., piecewise smooth solutions with jump discontinuities) the proposed
numerical scheme has better convergence rate (i.e., almost first-order convergence) in L? x
H~! under the step-size condition 7 ~ N1,

Extensive numerical experiments, including both one- and two-dimensional examples,
are given to illustrate the effectiveness (higher-order accuracy and reduction of spurious
oscillation) of the proposed method in approximating rough and discontinuous solutions of
the semilinear wave equation.

The rest of this article is organized as follows. In Section 2, we introduce some basic
notations and present the main theoretical results of this article on the convergence rates
of the proposed numerical method. In Section 3 we present some preliminary and technical
results have will be used in the construction and analysis of the method. The construction of
the numerical scheme is presented in Section 4. The proof of the main theoretical results are
presented in Section 5 and Section 6, respectively. Finally, we present extensive numerical
examples in Section 7 to support the theoretical results and to illustrate the effectiveness of
the proposed method in approximating rough and discontinuous solutions of the semilinear
wave equation.

2. Notations and main results. In this section we present the basic notations and
main results of this paper, including the proposed numerical scheme and the convergence
of the numerical approximations to rough solutions of the semilinear wave equation.

2.1. Notations and numerical scheme. We rewrite the second-order semilinear
wave equation in (1.1) into a first-order system of equations, i.e.,
U — LU =F(U) in (0,T] x Q,
U(0)=U%in Q,

() (2 () (3 )),

where we have used the following notations:

(2.1)

with

f(u)=g(u)+mu and A=A —m with some fixed constant m > 0.
The fixed constant m > 0 is introduced to make sure that the linear operator L is reversible
on the d-dimensional torus Q = [0, 1]¢.
We denote by e’ the solution operator of the linear wave equation (i.e., the map from
U° to U(t) in the case F(U) = 0). By defining the a-norm of a function W = (wy,ws)T €
3



H(Q) x H*1(Q), i.e.,
IWla = (lwn e + wsl3e1)?, acR.
the following properties hold:
e Wllo S IWllo, e Wil S IW ], (2.2)
IF@) S 1f@)llzz < £0) + [1f |z [1Ulo- (2.3)
It is known that any function in the Sobolev space L?(£2) can be expanded into a Fourier

series. Accordingly, we introduce the finite-dimensional subspace
N
Sy = { Z Cny. e g €XP (2n1mx11) - - - €Xp (2ngTTql) @ Cpy oo my € C},
ni, - ,Ng=—N
and approximate functions in H*(Q) by using the finite-dimensional subspace Sy. We
denote by Iy the L? projection operator onto Sy defined by
(w—=TIyw,v) =0, Yve Sy, weH(Q),

and denote TI.y := I — Iy and H(NMNQ] = IIn, — IIn, for No > N;. We denote by
Iy : H® — Sy the trigonometric interpolation such that for any function w € H®, s > %,
(Inw) () = w(x) for x € D?, with

D= {%:n:0,~~ ,2N—1}.

We define the sequence of grid points ¢, = n7, n = 0,1,..., M, in the time interval
[0, 7] with step size 7 = T/M, and denote by U™ = (u™,v")T the numerical solution at
time t = t,,. Then the high-frequency recovering low-regularity integrator for the equation
(2.1) constructed in this article reads (the detailed construction is presented in Section 4):

Ut = ONURT + Oy, ne) U, (2.4a)

MNURT = e INUR + 7e™ INFINUY)

+(2L) " [re™F — (2L) M (e™F — e TH)H(LINUR)] (2.4b)
Iy naUnt = ™™y nag U, (2.4c)
with
_ —In f(u)

and initial value UY = IyaU(0) for o > 1. This scheme introduces an additional high-
frequency part to the low-regularity integrator in [35], and uses a different definition of
H(U) to obtain the desired convergence rates for approximating discontinuous solutions.
It is the combination of the filtered low-regularity integrator (2.4b) and high-frequency
recovery process (2.4c), ensures the accuracy of the proposed method for approximating
rough solutions under lower-regularity conditions than [35].

REMARK 2.1. In (2.4) we see that the high- and low-frequency parts of U}\L,H are
computed separately, independent of each other, where the low-frequency part is computed
by a time-stepping scheme and the high-frequency part is recovered directly from its initial
value via (2.4c) (without time steppings). Since the nonlinear terms in (2.4b) can be
computed by using the Fast Fourier Transform (FFT), the computational cost at every
time level is O(N?log(N)). Therefore, the total cost for computing the low-frequency
part at time 7" is O(N?log(N)T/7). In contrast, the high-frequency part of the numerical
solution needs not be computed every time level. Instead, we only need to compute (2.4c)
once to recover the high-frequency part of U]’\L,Jrl for any particular time level of interest.
Therefore, the cost of computing the high-frequency part at time 7" is O(N®?), which is
comparable to the cost of computing the low-frequency part if we choose N(@—1d ~ T/
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Under the step size condition 7 ~ N1, this suggests to choose a = 1+é in the computation.
The advantages of this choice is analyzed rigorously in Theorem 2.2 in one dimension and
illustrated numerically in Section 7 in both one and two dimensions.

REMARK 2.2. The trigonometric interpolation operator Iy is used in (2.4b) and (2.5)
to approximate nonlinear functions by Fourier series using FFT. This makes the algorithm
more efficient than using the projection operator Iy, but also increases the difficulty of
convergence analysis under low-regularity conditions.

2.2. Main theoretical results. For the simplicity of notation, we denote by A < B
or B 2 A the statement A < CB for some constant C' > 0. The value of C' may depend
on T and ||U||,, and may be different at different occurrences, but is always independent
of step size 7, degrees of freedom N (in each dimension), and time level n. The notation
A ~ B means that A < B < A. If a statement contains s+ or s— for some number s, it
means that the statement holds with s + € or s — ¢ for arbitrary € > 0; see Theorem 2.1.

The convergence of the proposed algorithm in (2.4) in the general setting is presented
in the following theorem.

THEOREM 2.1. Let d = 1,2 and v € (0,1], and assume that the nonlinear function
f: R — R satisfies the following condition:

[P+ 1)+ [ () S 1. (2.6)
Then, under the regularity condition U € C([0,T]; HY(Q) x H'1(Q)) and the step size
condition N < FT T (for an abitrary e € (0,1]), the numerical solutions given by (2.4)
for each o > 1 converge to the solution of (2.1) with the following error estimates.
(i) For~ € (0, 3], there exist constants 7o € (0,1) and Co > 0 such that, for step size
T E (0,7’0},
tn) = Upllg < Co(NT7F + 7N1=27H), 2.
nax [[U(ta) = Uy < ColN 7+ 7V1=27%) (27)
(ii) For~y € (3,1], there exist constants T € (0,1) and Cy > 0 such that, for step size
T € (0,79],

0 U (t) = URlly < Co(N ™% 4+ 7N 4 min(r, 72N2070%)). (2.8

to (when ey is

The constants Cy and 19 may depend on €y in the condition N < T
smaller, 1o is smaller and Cy is bigger).

REMARK 2.3. Under the condition (2.6), by constructing a contraction map, standard
techniques can be used to prove that problem (2.1) admits a unique solution U = (u, Oyu) €
L>°(0,T; HY x H"~1). This solution is automatically in C([0,T]; HY x HY~1).

REMARK 2.4. The theoretical error estimates in Theorem 2.1 implies that, by choos-
ing 7 ~ N~! (independent of the regularity of the initial data) and a = 1 (without
high-frequency recovery), the errors of the numerical solutions is bounded by O(77~) for
approximating solutions in H?(Q)) x HY~1(Q) with v € (0,1]. However, in practical com-
putation, the errors of the numerical solutions can often be significantly reduced by using
high-frequency recovery with o = 1+ é under the step size condition 7 ~ N~! with equiv-
alent computational cost; see Remark 2.1. Such advantages of the high-frequency recovery
technique proposed in (2.4) is demonstrated numerically in Section 7 and proved rigorously
in the following theorem in a particular setting, for approximating discontinuous solutions
of bounded variation (such as piecewise smooth solutions) in one dimension.

Let BV(f) denote the set of functions with bounded variations on  with norm
lullBv = ||u|lz1 + || Vul|ar, where M denotes the norm of M (), the space of Borel measures
on Q (the norm of M () is equivalent to the L! norm for integrable functions).

THEOREM 2.2. Let d = 1 (i.e., consider the one-dimensional problem) and assume
that the solution has the following regularity:

(u,0u) € C([0,T; H2~(Q) x H27(Q)) and u € L=(0,T; BV(Q) N L>®(Q)).
5



Then, under the step size condition T ~ N~1, the numerical solutions given by (2.4) with
a = 2 converge to the solution of the continuous problem in (2.1) with the following rate:
Ulty) —Uplly ST 2.9
O<m2X [U@n) —Unllo S 7 (2.9)
REMARK 2.5. For an initial value in (ug,v9) € BV (Q2) x M(Q), the additional reg-
ularity condition w € L*°(0,T; BV (Q) N L*>*(Q)) in Theorem 2.2 naturally holds for the
one-dimensional sine-Gordon equation

{3ttu — Oz = sin(u) in (0,7] x

2.10
ulp—o = ug, Opul—p =vo on Q. ( )

For example, we consider (2.10) with initial value ug € BV () on the interval 2 = [0, 1]

with the periodic boundary condition. Let w4, @ig and 9y be the periodic extensions of u, ug

and vy to R, respectively. Then d’Alambert’s formula and Duhamel’s formula imply that
x+t

r+t—s 1 1
/ / sin(@)(s, y)dyds + = (to(z +t) + Go(x — t)) + = / Do(y)dy.
r—t+s 2 2 x—1
(2.11)

By taking the BV and L® norm on both sides of (2.11) and then summing up the two
results, we can see that u(t) € BV(Q) for all ¢t € [0, T] and

lu@®llv + l[u@®)ll = £ T+ |luoll sy + [luoll L= + [lvollnr-
This shows that the regularity condition in Theorem 2.2 naturally characterizes the regu-
larity of the solutions with discontinuous initial data in BV ().

REMARK 2.6. Without the high-frequency recovery, the convergence rate of the pro-
posed method would reduce to half order from first order. This can be seen from the proof
of Theorem 2.2 and can also be observed in the numerical tests.

REMARK 2.7. From the numerical examples in Section 7.2 we can see that the high-
frequency recovery in (2.4), with o = % under the step size condition 7 ~ N~ also
improves the convergence rates in approximating discontinuous solutions from half to % in
two dimensions.

3. Preliminary results. In this section we present some preliminary results to be
used in the proofs of Theorem 2.1 and Corollary 2.2. These include Bernstein’s inequalities
in the L? norm (Lemma 3.1), approximation properties of the trigonometric interpolation
(Lemma 3.2), LP? error of trigonometric interpolation (Lemma 3.3), and negative-norm
estimates for the product of two functions (Lemma 3.4 and Lemma 3.5). The proof of
Lemma 3.3 and Lemma 3.4 can be found in the arXiv version of this paper [9], which
contains the complete proofs of some technical lemmas.

LEMMA 3.1 (Bernstein’s inequality; cf. [24, Theorem 2.2 and pp. 22]). Let f be a
function such that JYf := (1 — A2 f € LP(Q) for some v > 0 and 1 < p < co. Then the

following results hold:
IDen " fllee S N[ fllzes Hsnflle S N7l e

~

LEMMA 3.2 (Standard error of trigonometric interpolation; cf [32, Theorem 11.8]).
Let f be a function such that f € HY(Q). For 0 <s <~ andy > ¢ 5, we have

1f = In fllzre S N7 £l
LEMMA 3.3 (Error of trigonometric interpolation in the LP norm; see [9]). Let d =1
and f € WHP(Q) for 1 < p < oo then

If = Inflle S N7 fllwro.

LEMMA 3.4 (Negative-norm estimates for the product of two functions; see [9]). For
d = 1,2, the following estimates hold:

gl S llglla— ([fllzee + [ fllm+)

gl S WA 11 gl s,
6

—~~
w w
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1fglla- S 1 flle2llgl e+ (3.3)
In addition, for any v € (0,1] and function h € L, the following estimate holds:

£ gl S I1f 12 llgll e 1ol e (34)
LEMMA 3.5. Let (u,v)T € HY () x H'~1(Q) and assume that f satisfies the conditions
in (2.6). Then the following estimates hold:
I/ (Myu)yol -2 S NPT for v €(0,3], (3.5)
If' (Myu)Iyv|g- S 1 for v e (3,1].
Proof. Without loss of generality, we assume that log, N is an integer (otherwise we
replace log, N by the smallest integer larger than it). Then, by using the triangle inequality,

we have
logy N—1

I (Myw) - Tnollgs < Y 1 (Harriu) = f(Hyrw) ol g1 3.7)
k=1
The right-hand side of (3.7) can be estimated by using (3.2), i.e.,

||(fl(H2k+1u) - fI(H2kU))HN”||H—1
S Maesrwe) — f (Mognw)|| Lo |/ (Marsrw) — f (o) ) v ol o1
1—
SN e Mgnirw — Towul| oy - (1 (Mapr )| s + (1 (Marw) [ e ) [Ty o]l g
< @)Y T S (29,

here in the third inequality, we have used the boundedness of || f”|| L~ and ||[IInv]|| g~-1, and
the following estimates:

IMgrr1w — Morw|| g2+ < || Morr1u — szquL;HHQkHu — HgkuH(}{t

< (@) M) (@) i) S @97
and
1 (M) [ g+ S I (o) 372 1L (o) | 2
S U e + 177 | oo I Mawul| 771)

0+
2
P Vi P s e P IV 1 (e 2 )

— 1-— _ d_ 2] 0%
S0+ Tl ) {1+ @) el + ((2’6)”4 ”|u||m> ]

< (@)
For v € (0, %], we sum up the above estimate for k = 1,...,logy N — 1. This leads to the
following result:
logy, N—1
I (i) Ty o) S > (25)170% S N1727% L log, N,
k=1

This proves the first result of Lemma 3.5, where the term log, N can be absorbed into the
N1727F with the presence of the “+” in the exponent.

For 7 € (3,1], we have 1 — 2y+ < 0 and therefore ||y (f(In@) - IIn®)|| -1 < 1. This
proves the second result of Lemma 3.5. 0

Next, we present some useful properties/structures of the vector-valued function F(U)
that play important roles in the convergence of the proposed low-regularity integrator for
approximating rough solutions below the energy space. Since F(U) = (0, f(u))7, it is
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straightforward to verify that, for W = (wy,ws)? and W* = (w¥,w3)T,
0 0 0 0
F'(U) = F(UW = F'UYW - W* = ]
©) (f’(u) 0) ’ @) (f/(u)wl) ’ @) (f”(u)wlw{)

(3.8)

The next lemma is a fundamental ingredient in the construction of the second-order
low-regularity integrator proposed in [35].

LEMMA 3.6. Let U = (u,v)T and U(s) := LU = (a(s),9(s))T. Then the following
identities hold

d —s 7 —s —f(a(s
75€ LF(U(S)) =e oL (f’(ﬂ(s())( 27)(5)) , (3.9)
and
d 2s d —s 7 _ s 0
i P OO = (pago oo 19+ m 060 - 361
(3.10)
Moreover,
[ et r @ sts = rer R @) + 20 et - ) et e (H{0)
T T—258 *d o d —0o ry
+/O e(T—2 )L(T—s)/o %[62 L%(e LF(U(U)))}dUd(ZH)

Equation (3.10) is the cancellation structure in the semilinear wave equation discovered
by [35]. This cancellation structure ensures that all spatial second-order derivatives on
the right-hand side of (3.10) are canceled out, allowing us to construct suitable numerical
approximations for the nonlinear term using Equation (3.11), while avoiding higher-order
derivative terms in the error analysis. The proof of the above lemma involves the application
of the chain rule, the Fubini theorem, and integration by parts. For detailed proofs and
further information, refer to [35, (2.23) and (2.26)]. Furthermore, the following result, which
can be found in [35, (2.44)] will be useful later,

| e [P @ e W] [ < 1wy T+ 17l (3.12)

4. Construction of the numerical scheme. In this section, we demonstrate the
construction of the high frequency recovered low-regularity integrator in (2.4). We start
with the variation-of-constants formula, i.e.,

Ultny1) = e ™ U (t,) +/ eTILE (U (t, + 5)) ds (4.1)
0
and employ the following high- and low-frequency decomposition:
Utne1) =e™ U (t,) + / "IN F (TINU (t, + 5)) ds + Ry (ty), (4.2)
0

where the remainder R;(t,) is given by

Ri(ty) = /0 eI P (U (tn + 5)) — INF (IINU (t, + 5))] ds. (4.3)

Then we approximate the low-frequency term.
Since Iy commutes with L, by using the Taylor expansion of F(U) at U = e**TInU(t,,),
we have
F(MIINU(t, + s)) = F(e* TINU(t,)) + F'(e*ITINU (1)) / G INF(LINU (t, + 0))do
0
+ Ry(s) + Rs(s),



where

Ro(s) = F'(e*LTyU (1)) / QRGN [F(U(tn o) — F(INU(ty + a))] do, (4.4)
0
Rs3(s) = Rp(s) / ) G NF(U(t, + 0))do - / ) G~ NF(U(t, + 0))do, (4.5)
0 0

1 1
Rp(s) = /0 /o OF" [(1 - 0)e* " TINU (t,) + o (1 — 0)e* TN U (t,) + 0oTINU (t, + 5)] dodo.

Inserting the above results to (4.2), we obtain
Ultns1) = ETLU(tn) + I1(tn) + I2(tn) + Ru(tn) + Ra(tn) + Ra(tn),

where

L(t,) = / TN F(TINU (t, + 5))ds,  Ul(t, + s) = e*LU(t,), (4.6)
0

L(t,) = / Ty [F’(HNU(tn-i-S)) / G INF(IINU (t, + 0))do | ds,
0 0

Rolty) = / (T Ry (s)ds,  Ra(ty) = / e(T=9)LTL\, Ry (s)ds. (4.7)
0 0
The approximation of I (¢,) combines the filtering technique and Lemma 3.6. Using (3.11)
with U = IINyU(t,) and interchanging Iy and L in order, we obtain

Li(t,) = re" INFIINU (t))

+(20)7! [TeTL —(2L) (™" - eiTL)] <HN(];1(_II_JIV]\{1EES;)L§2)3(75”))> + Ra(tn),
where
T T—28 *d 20 d -0 7
Ry(ty) :/0 e(T=2) L (1 s)/o o {e L%e My F(MyU(t, —i—a))] dods.  (4.8)

For I(t,), by approximating IINU (t, + o) with I ye?LU(t,), we obtain

L(ty) :/ eIy {F’(H;ﬂ?(t,ﬂ-s))/ e(S”)LHNF(HNU(tn+U))do—] ds (4.9)
0 0

= /OT SGTLHN [F/(HNU(tn))HNF(HNU(tn))] ds + R5(tn) + Rﬁ(tn) + R7(tn),
(4.10)

where the first term is equal to 0 due to (3.8) and the remaining terms are as follows

Rs(t,) = /0 ’ Ty {F’(HNU(tn +5))

- / eIy [F(UNU (tn, + 0)) — F(INU (t, + a))]da} ds,
0

Rs(tn) = /0 ’ Ty [F’(HNU(tn +5))

: /0 ) (e<S*v>LHNF(HNU(tn o)) — eSLHNF(HNU(tn))> da} ds,

Rq(t,) = /OT se™ Ty (e’SL[F’(HNU(tn +8)) - e TINF(TINU (t))]

— F/(IINU (£ F(TINU (t)) ) ds.
Finally, replacing Il F' by IxF', we obtain
Ultps1) = eFU(t,) + e ™ INF(MINU(t,))
9



+ (L) [re™ — (2L) N — e )| HIINU(t,)) + L7, (4.11)

where £" is the consistency error and is given by

9
L =" Ri(tn), (4.12)
Rg(tn) = T_eTL(HN — IN)F(TINU(ty)), (4.13)

—1 T -1/ 7 -7 _(H -1 )f(H U(tn))
Rg(tn) = (QL) [Te L _ (2L> (e L_, L)} (HN((] v gv)f’é\{INu(gL))HNU(tn))> .

(4.14)

By dropping the remainder £" and taking initial value UY = IIn«U(0), we obtain the
following numerical scheme:
Uptt = e UR + 7 INFINUR) + (20) 7! [re™ — (20) M (e™ — e ™M) HIINUR)] -

(4:15)

We recall the expression of H(IIxyUR) in (2.5) and apply the equality IIxyIny = Iy. This

yields the following algorithm for the low- and high-frequency parts of the numerical solu-

tion, respectively:

ONURt =™ TINUY + re™ INF(TINUR)

+(2L) 7 [re™F — 2L) N (e™F — e THYH(LINUR)] (4.16)
H(N7NQ]U]7\L[+1 = eTLH(N,Na]U}\l]. (417)

This is algorithm (2.4), where (2.4c) is obtained by iterating (4.17) with respect to n.
The expressions of the remainders R;(t,), j = 1,...,9, in this section are used in the

error analysis in the next section.

5. Proof of Theorem 2.1 . Let E}, = U (t,) — UR denote the error of the numerical
solution and consider the difference between (4.11) and (4.15). This yields the following
error equation:

EYT = eV ER + e Iy (F (IINU (1)) — F (IINUR))
+@2L) " [re™ — 2L) 7 (e — eI (HIINU(t,)) — H(TINUR)) + L7, (5.1)
with EY = (I — I ya)U?. The remainder £" in the expression above is estimated below.

PROPOSITION 5.1. Under the conditions of Theorem 2.1, the remainder L™ in (5.1)
satisfies the following estimates:

e < TNV 4 2N1=27F for v €(0,3] (5.2)
O™ 7Nt + 22N=27F 4 min(r2, P3N0 for v e (3,1] .
and
£, S TN AN (5.3)

where the constant is independent of T.

Proof. In view of the definition L™ = Z?zl R;(t,), we present estimates for R;(t,),
7=1,...,9, respectively.

ESTIMATE OF R;(t,). We decompose Rj(ty) into the following parts:

Ry (ty) :/ eI N F(INU (t, + 5))ds (5.4)
0

+ /T eI [F (U (t, + 5)) — F(IINU (t, + )] ds. (5.5)
0

Lemma 3.1 (Bernstein’s inequality) can be used to show that
16 S TN max [F(InU(tn + )iy S TN max [Tk, + )]y
s€[0,7] s€[0,7]

10



By the mean-value theorem, we can rewrite (5.5) into the following expression:

(5.5) = AT e(r=a)L /01 [F' <9U(tn +8)+ (1— OIINU(t, + s)) e nU(tn + s)] dfds.

Then, according to (3.8) and Lemma 3.1, we obtain

IG5 S ma F (6U(tn +5) 4 (1= OTNU (b +5)) - T xU b +9)la

=7  max Il f (Qu(ty, +s) + (1 — OUyu(t, + 5)) - Us yul(t, + 5)| 2
s€[0,7],0€[0,1]

S max s yu(ty, +5)|p2 STNT max |[|U(t, + s)||5-
s€[0,7] s€[0,7]

Therefore, by collecting the estimates (5.4) and (5.5), we have the following estimate of
([ (En) 12

[Ra(tn) 2 S 7N ma Ut o+ 5) (56)

ESTIMATE OF Rj(t,) FOR j = 2,...,7. Following the same discussions as in [35]
(details can be found in [9]), one get

IRz (tn) Il + | Rs(ta)lls S 7*N7Y 472, (5.7)

|Ra(tn)ll1 S T2N'T7, (5.8)

[Ra(tn)]lo S T° N2, (5.9)

IRs(tn) + Ro(tn) + Ry(t) 1 = | I2(ta) |1 S min(7?, 72 NZ2177), (5.10)

On the other hand, we can also estimate R4(t,) by using its following reformulated
expression:

Ry(t,) = / T2 (7 — ) [e* LG (tn + 5) — G'(tn)] ds, (5.11)
0
with
Gty t5) =L (e Iy PN T (1, + 5)))
ds
_ G_SL _HNf(HNa(tn + 8)) (5 12)
Oy (f(TInu(t, + ) Ino(t, +5)) ) '
by using(3.9) in Lemma 3.6, where U(t,, 4+ s) = e*“U(t,,) is defined in (4.6). In this way,
using the definition of G’ in (5.12), we have

[Ra(tn)llo < 72 P IG' (tn + 5)lo
sc(0,T

<7 sup (Il f(Mii(tn + )2 + T (Wit + DI (En +5) [l-2)-
se|0,7

According to (2.2), @ is bounded in L? and therefore the first term on the right-hand
side above is O(72). By employing Lemma 3.5, we can estimate the second term on the
right-hand side above as follows:

TENITHU()]5 for v € (0, 5]
U5 for v € (5,1,
This, together with (5.9), yields the following estimate of R4(t,) in the 0-norm:
PN )2 for y € (0, 4]

[ Ra(tn)llo < { (5.13)

min (72, PP N20DF) (U (8,) ]2 for v € (3, 1].

My (f My a(t, + 8) ANty + 8)) [|7-1 S {

ESTIMATE OF Rg AND Rg: By using Lemma 3.1 and Lemma 3.2, we obtain
IRslly € 7l (M = In) f(Myulta))lc: S TN f Mvulta)) s S TN (5.14)

11



For ||Rgl|o, by using (3.3), Lemma 3.1 and Lemma 3.2, we obtain
1Rollo < 72 (I — In)f (Mnvults))lze + (1 = In) f' (Wyu(tn)) - Dyvo(ta)lla-1)
ST (NN @vata) e + 1 = In) f' (Mvu(ta)) | o2 [ Tvo () | 2+)
< PNV 4 2N (5.15)
For ||Ry||, according to (3.4), we derive
[Roll < 72 (1M = In) F(Tnu(ta)) v + (1 = In) f' (v u(tn)) TLao(tn) || -1
S TN F(Mvu(ta)) e + 721 = In) f (vulta)) g2 [Tvo () || v+
S 2NOT £ 2N o () || gt - (5.16)
By summing up (5.6), (5.7), (5.13), (5.10), (5.14) and (5.15), we get the estimate (5.2) in

the proposition 5.1. And combining (5.6), (5.7), (5.8), (5.10),(5.14) and (5.16) we finish the
proof of (5.3) in the proposition 5.1. d

By using the estimates of the remainder in Proposition 5.1, Theorem 2.1 can be proved
similarly as the error analysis in [35]. The details can be found in [9]. The proof of Theorem
2.2 (higher-order convergence rate in approximating discontinuous solutions with bounded
variation) is more different from analysis in [35] and therefore presented below.

6. Proof of Theorem 2.2. From the estimates of the remainders in Section 5 we can
see that || Ry (t,)|lo and || Rs(t,)]lo are O(7N~7F) while the other remainders are O(7 N ~27F)
under the step size condition 7 ~ N~!. In the case v = %—, all the remainders except
|R1(tn) o and ||Rs(ty)|lo are O(727), which leads to almost first-order convergence. There-
fore, we only need to show the following improved error estimates for remainders R (t,,)
and Rg(t,) (see Lemma 6.1 and Lemma 6.2).

LEMMA 6.1. Under the regularity condition U € C([0,T]; H(Q) x H'1(Q)) with
v € (0,1], the remainder Ry (t,) defined in (4.3) satisfies the following improved estimate:
max |[[Ra(tn)llo S TN (6.1)

0<n<M

Proof. We decompose R (t,) into the following two parts:

Ri(tn) = / eI NF(HNU (t, + 5))ds (6.2)
0

b [T E W (b +9) — F WU (4 5)] ds, (6.3)
0
where (6.3) can be further decomposed dyadically as follows (with m = [logy N'| below):

(6.3) = /OT T F(U(ty + 5)) — F(HamnU(ty, + 5))] ds

m—1 T m—1
+ ) / T [Py yU(tn + 5)) — F(Iyy N Uty + 5))] ds =: Go + > G
j=0 70 7=0

By applying the mean-value theorem, we obtain
1Gjllo S 7 sup [|[F(a+1nU(tn +5)) — F(Is nU(tn + 5)) o

s€[0,7]
< 7 max [1£() - (Mastr v — oy )ulty + 8)|| g1,

where & = 0lly+1 yulty, + s) + (1 — 0)Iys yu(t, + s). By estimating the last term above
using (3.1), we have

1G;llo S 7l (Mass v — Mo )u(tn + 8)l| =1 (1 () mr+ + 1| <)
ST N) T ullpe ey (7N Tl poe sy +1) < 7(27N) T ful| Lo o

12



For Gy, we have

[Golr S 7 5€(0.) 6E(0.1] £ (Ou(tn +5) + (1 — O)amnu(ty + 5)) - Msomyu(ty + 5)| 12

S max M ysult + )2 S TN full e
se(0,1

In summary, we have

1(6.3)]lo S TN 2T+ r(2IN) 2 S 7N, (6.4)
§=0
On the other hand, Bernstein’s inequality in Lemma 3.1 implies that
1(6.2) 0 S TN 717 e [F(INU (tn + 8) oy S N7 U (6.5)
Therefore, by collecting (6.4) with (6.5), we obtain (6.1) for v € (0, 1]. 0

LEMMA 6.2. Under the regularity condition U € C([0,T]; H2~(Q) x H~2~(Q)) and
u € L([0,T); L>(Q) N BV(QY)), the remainder term Rg(t,) defined in (4.13) satisfies the
following estimate:

|Rs(tn)llo STN"YF, for each 0<n < M. (6.6)

Note that Rg(t,) is generated by the use of trigonometric interpolation Iy on the
nonlinear function for the implementation of FFT. In order to prove Lemma 6.2, we need
to use the following results for BV functions (see, for example [58, Section 5.3])

LEMMA 6.3. For u € BV(Q) and € > 0, we define uc = Eu * @, as the reqularization
of u based on an extension operator E : L' () — LY(RY) which is bounded from W¥*P(Q)
to WFP(R?) for all k >0 and 1 < p < 0o, and a mollifier . defined on R?. Then, for all
sufficiently small € > 0,

;;n(l)/g |ue — uldz =0, (6.7)
uellBv () S lullBv ) (6.8)

Meanwhile, u. € C*°(Q) and |uc| v (o) = [lucllwr1(0), and [lucllL<@) < [[ullz=(q)-

Proof of Lemma 6.2. By recalling the definition of Rg(t,) in (4.13) and applying the 0
norm, we obtain

[Rs(tn)llo S 7Ty = In) f(Unu(tn))la- S 71y = In) f (Unvu@a)) o (6.9)
In one dimension, we obtain the following estimate by using Lemma 3.1 and Lemma 3.3:
[Bs(tn)llo S 7I(My — In) f(Mnue(tn)) s + 7|y = In) [f (Mnultn)) — f (M ue(tn))] L1+

STN T fF(Myue () wras + 7N f(vu(ta)) — f(vue () |[wers
(6.10)

The first term in the right hand side of (6.10) can be estimated by using the Lipschitz
continuity of f and the Sobolev embedding, i.e.,

N (e () oo S 7N v ()l S 7N e (bl os
S TN e (fa) i
= TN_1+||U8(tn)||BV'
The second term in the right hand side of (6.10) can be estimated as follows:
TN f(Mnu(ta)) = fF (e (ta) lwias < 7N FIvu(te)) = f(vue(ta)) 2+
+ TN VIvu(ty) (f (Myu(tn)) = f'(Myue(tn)) [0+
+ TN f (e () (VINu(ts)) — VIIvuZ) s
S TNTL”U(tn) = ue(tn)ll Lo+
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where the last inequality uses the Lipschitz condition of f and the following result:
TN VIIvu(ts) (f (Myu(tn)) = f (Mnue(tn))) o+
S TNTHIVIIvu(ta) |z | (Mnvultn)) = f/(Mnue ()l 2+

STN ulta) g - ult) = ve(t) o
Combining these estimates, we have
_ 1
[Rs(ta)llo S TN~ Fluc(ta)| v + TN E ¥ [Jults) — e (tn)| L1+ (6.11)

Under the assumption u € L ([0, T]; L*°(2)), since ||ue|| L is uniformly bounded by ||ul| e
and, according to (6.7),

lu(tn) = ue(ta)ll s < llultn) = ue(ta)l75 fultn) — ue(ta)lx =0 ase—0.
Thus, for any fixed N, we can choose ¢ < 1 such that 7Nz ¥ ||u(ty) — ue(tn)]| 1 S TN
This, together with (6.8) and (6.11), yields (6.6). This proves Lemma 6.2. ad

Under the conditions of Theorem 2.2 (with v = %—), Lemma 6.1 and Lemma 6.2 imply
that ||R1(t,)|lo and ||Rs(t,)|lo are both O(727) under the step size condition 7 ~ N~
and the other remainders in the || - ||o norm have been shown to be O(727) in Section 5.
Therefore, the following result holds:

£ S 7% (6.12)

By using the estimate of the remainder in (6.12), the following error estimate can be proved
for the low-frequency and high-frequency parts, respectively (details can be found in [9]):

TN (U (tns1) = U)o < C{HHN(U«» — U)o

+Z( (@) = Ul + I £+ 7) ], (613

I w2y (U (1) = U)o < C (1M vvay (U 0) = URlo + D 1w vy £l ) (6:14)
j=0

Since our choice of initial value U = ITn2U(0) implies that
Iy (U(0) = UR)llo = T2 (U (0) = U)o = 0,

by using the improved estimate on ||£?||o in (6.12) and Gronwall’s inequality, we obtain the
following result from (6.13)—(6.14):

|Tn2U(tni1) — Untlo < OTH. (6.15)
This, together with an estimate of the projection error ||U(t,41) — n2U(tp41)|lo for U° €
Hz(Q) x H=2~(f), leads to the error estimate in Theorem 2.2. d

From the proof of Theorem 2.2 we see that, without introducing the high-frequency
recovery, the numerical solution still satisfies |IInU (1) — Uptlo < C7'~ but only
satisfies ||U(t,11) — U0 < C72~. This reduction of convergence rate (when there is no
high-frequency recovery) can be observed in the numerical tests.

7. Numerical examples. In this section, we present extensive numerical examples
to support the theoretical analysis and to illustrate the effectiveness of the low-regularity
integrator in this paper in capturing the interface of discontinuity in the solutions, as well
as the accuracy (without spurious oscillations) in approximating rough and discontinuous
solutions of the semilinear wave equation.

7.1. The Sine—Gordon equation in one dimension. We consider the semilinear
wave equation in (1.1) with a nonlinear function g(u) = 40sin(u) for the following piecewise

14



smooth discontinuous initial state:

(5,-5), for z € [0.3,0.425],
(u(2),0%z)) =< (2.5,-2.5), for z € [0.575,0.7], (7.1)
(0,0), else where,

which satisfies the conditions of Theorem 2.2. As a result, the low-regularity integrator
HR-LRI in (2.4) with @ = 2 should have almost first-order convergence by choosing N =
O(771). We solve the problem with N = 2!° and 47 = N~!, and present the evolution of
the numerical solution for ¢ € [0,T] in Figure 7.1 (a), which clearly shows the propagation
of discontinuities of the solution.

5] — hi21
— Lie

—— Strang
3 41 — d79
rs21
2 31 — 1sz23
—— HR-LRI
1 % 2
(0] ';
ERRS
-1
ol
-2
-3 -1
2]
x€[0,1]
(a) Propagation of u(¢, ) (b) Comparison of several different methods

F1G. 7.1. Numerical solution of the 1D problem with discontinuous initial value in (7.1).

101,
. .
2 o 10°4
7 10 @
c g
T T
I I
X X —— hi21
g T 10714 = Le
~ ~ —*— Strang
~ ~ 8- d79
rs21
—- 15223
1072 ~@- HR-LRI
0 100 107 107 10° 10t
walk-clock time
(a) L2(Q2) x H~Y(Q) error versus 7 (b) L2(Q) x H~1(Q) error versus CPU time

F1c. 7.2. Comparison of numerical solutions given by several different methods.

In Figure 7.1 (b), we plot the numerical solutions at time T computed by several
different numerical methods, including the second-order low-regularity correction of Lie
splitting method from [38] (which is referred to as 1sz23), the second-order low-regularity
exponential-type scheme from [48] (which is referred to as rs21), the second-order IMEX
method from [27] (referred to as h121), the second-order trigonometric integrators con-
structed by Deuflhard [15] (referred to as d79), and classical splitting methods such as
the Lie splitting scheme and Strang splitting scheme. The time step sizes and number of
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Fourier modes in all these methods are chosen to be 7 = N~!/4 and N = 27, respectively.
From the numerical results in Figure 7.1 (b) we can see that the discontinuities in the exact
solution may lead to significant oscillations in the solutions of the pre-existing methods,
while the proposed method in HR-LRI can substantially reduce the numerical oscillations
with equivalent computational cost.

In Theorem 2.2 and Remark 2.5 we have shown that, since the initial value of the
solution is in BV (Q) N L> (), the error of the numerical solution is O(7'~). In Figure 7.2
we compare the L?(Q) x H~ () errors of the numerical solutions at T' = 0.25 computed by
the several different methods with step size 7 = N~!/4 and the reference solutions are given
by the proposed method with a sufficiently large N = 2'4. The numerical results Figure 7.2
are consistent with the theoretical results proved in Theorem 2.2 and demonstrates that the
proposed method has a higher convergence rate (with respect to both step size and CPU
time) than pre-existing methods in approximating discontinuous solutions of the semilinear
wave equations.

To further demonstrate the effectiveness of the proposed high-frequency recovery pro-
cess, we compare the numerical solutions before and after high-frequency recovery at time
T = 0.25 in Figure 7.3 (a). Here, HR-LRI represents the high-frequency recovery algorithm
proposed in this paper, with N = 27, 7 = N~!/4, and a = 2. The “Without recovery”
corresponds to the algorithm (2.4) without undergoing the high-frequency recovery process,
with N =27 and 7 = N~!/4. The reference solution in Figure 7.3 (a) is obtained by using
the proposed algorithm with sufficiently large N = 2'4. And, in Figure 7.3 (b), we com-
pare the errors of numerical solutions before and after high-frequency recovery under the
condition 7 = N~1/4. As rigorously proved by Theorem 2.2, the numerical experiments
show that the high-frequency recovery process significantly reduces the oscillations of the
solution, resulting in a higher order of convergence accuracy, whereas in the absence of the
high-frequency recovery process, the numerical algorithm’s order of convergence decreases
significantly.

10t
5 —— without recovery
— HRLRI
— reference
N
"
4]
34 [
e T ™
R 2 g
~ |
3 14 I
X
~ 107!
0! g
Q
] —- without recovery
-1 i - HR-LRI
,/f’ —_ O(rDS)
21 w2] -=- o)
x€[0,1] 10 10 1o+
T
(a) Comparison before and after high-frequency (b) L2(Q) x H~1(Q) error versus 7

recovery process

F1G. 7.3. Numerical results of the 1D problem with the initial value in (7.1).

7.2. The Sine—Gordon equation in two dimensions. In this section, we consider
the semilinear wave equation with g(u) = 4sin(u) for the initial states:
(i) Propagation of one discontinuous wave:

2
(@) 0(a)) = { O30, forae [0.375,0.625],
(0,0), else where.
16



(ii) Propagation of two discontinuous waves:

(0.5,0), for z € [0.3,0.425]%,
(u’(2),0°(2)) = § (0.25,0),  for = € [0.575,0.7]°,
(0,0), else where.
(iii) A rough initial value in H= x H~%:
1 : 1 .
(w(2),0°(@) = (5 D2 aulk)bu(Oe BrHm, = 37 a, k)b, (e =172 ),
U klez Y ke
(7.2)
where

ay (k) = rand(0, 1)[k[~101, b, (1) = rand(0, 1)|| =101,
a,(k) = rand(0, 1)|k|7%%L,  b,(1) = rand(0, 1)|7| 7001,

and C, and C, are constants such that [|[u’| 1 = 00 1 =1.

N e

We solve the semilinear wave equation by the Strang splitting method and the proposed
low-regularity integrator HR-LRI in (2.4) with o = % for the initial values in (i) and (ii), and
plot the numerical solutions in Figure 7.4-7.5 by choosing 7 = N~!/4 = 278, The results
show that the proposed method can effectively eliminate the high oscillation of numerical
solutions in approximating discontinuous solutions of the semilinear wave equation.

0.0 0.25 05 0.75 1.0 0.0 0.25 05 0.75 1.0
0.0 ; ‘ ; 0.0
0.2 0.2
025} o1 0.25 o1
> 05 0.0 > 05 0.0
075} -01 0.75 -01
-0.2 -0.2
1.0 A w w 10 : ‘ ‘
X X
(a) Strang splitting (b) The proposed method (HR-LRI)

Fic. 7.4. Comparison of the numerical solutions at t = 0.25 computed by two different methods

0.0 0.25 0.5 0.75 1.0 0.0 0.25 0.5 0.75 1.0

0.0 0.0
= 0.2 . 0.2
— —_—

0.25F 0.1 0.25 0.1

> 05 0.0 > 05 “ 0.0
075} —0.1 0.75| | -0.1
-0.2 -0.2
1.0 : : : 1.0
X X
(a) Strang splitting (b) The proposed method (HR-LRI)

Fic. 7.5. Comparison of the numerical solutions at t = 0.25 computed by two different methods
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Fic. 7.6. Comparison of numerical solutions given by several different methods in two dimensional cases.

The errors of the numerical solutions computed by several different numerical methods
are presented in Figure 7.6 with 47 = N~!, where the reference solution is given by the
proposed method with sufficiently large N and sufficiently small 7. The numerical results
in Figure 7.6 are again consistent with the theoretical results proved in Theorem 2.1, i.e.,
the proposed method has convergence order % while the other methods have convergence
order % or smaller. The convergence rate of the proposed method with respect to CPU
time is also faster than pre-existing methods in approximating the discontinuous solution

of the two-dimensional semilinear wave equation.

7.3. The Klein—Gordon equation in one dimension. In the last example, we con-
sider the one-dimensional Klein—-Gordon equation with a locally Lipschitz continuous (not
globally Lipschitz continuous) nonlinear function g(u) = u?, with the following piecewise
smooth discontinuous initial state:

(4,0),  for € [0.3,0.425],
(u(2),0%(x)) =< (2,0),  for z € [0.575,0.7], (7.3)

(0,0), else where,

which leads to a bounded piecewise smooth discontinuous solution. Since the Lipschitz
continuity condition (2.6) can be satisfied when w(t,x) is uniformly bounded for (¢, z) €
[0,T] x Q, the theoretical results in Theorem 2.1 and Theorem 2.2 are also applicable to
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this problem.
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(a) Evolution of numerical solution (b) Comparison of several different methods

F1G. 7.7. Numerical solution with the initial value in (7.3).
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Fi1G. 7.8. Errors of the numerical solutions with the initial value in (7.3).

We solve the Klein—-Gordon equation with 7 = N~!/4 = 2712 and present the evolution
of the numerical solution in Figure 7.7 (a), which shows the propagation of discontinuities
of the solution. In Figure 7.7 (b) we compare the numerical solutions at T' = 0.25 computed
by several different methods. Here the symmetric low-regularity integrator for semilinear
Klein—Gordon equation in [53] is also taken into comparison and referred to as wz22. The
numerical results in Figure 7.7 (b) indicate that the proposed method indeed improves the
accuracy and reduces spurious oscillations.

In addition, we present the errors of the numerical solutions computed by the several
different methods in Figure 7.8, which shows that the proposed method has first-order
convergence with respect to the step size 7 in approximating such discontinuous solutions,
and the usual methods have half-order convergence in this case. This is consistent with the
convergence rate proved in Theorem 2.2 and demonstrates the efficiency of the proposed
method in approximating rough and discontinuous solutions.
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