OPTIMAL L? ERROR ANALYSIS OF A LOOSELY COUPLED FINITE
ELEMENT SCHEME FOR THIN-STRUCTURE INTERACTIONS
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Abstract. Finite element methods and kinematically coupled schemes that decouple the fluid velocity
and structure displacement have been extensively studied for incompressible fluid-structure interaction (FSI)
over the past decade. While these methods are known to be stable and easy to implement, optimal error
analysis has remained challenging. Previous work has primarily relied on the classical elliptic projection
technique, which is only suitable for parabolic problems and does not lead to optimal convergence of numerical
solutions for the FSI problems in the standard L2 norm. In this article, we propose a new stable fully-discrete
kinematically coupled scheme for incompressible FSI thin-structure model and establish a new approach
for the numerical analysis of FSI problems in terms of a newly introduced coupled non-stationary Ritz
projection, which allows us to prove the optimal-order convergence of the proposed method in the L2 norm.
The methodology presented in this article is also applicable to numerous other FSI models and serves as a
fundamental tool for advancing research in this field.

Key words. Fluid-structure interaction, finite element method, kinematically coupled schemes, energy
stability, error estimates, coupled non-stationary Ritz projection

AMS subject classifications. 65M12, 35K55

1. Introduction. There has been increasing interest in studying fluid-structure inter-
action due to its diverse applications in many areas [[12,[18 25,31, B4]. Numerical simulations
are crucial in this field, and over the past two decades, numerous efforts have been devoted
to developing efficient numerical algorithms and analysis methods.

This paper focus on a commonly-used academic model problem, where an incompress-
ible fluid interacts with thin structure described by some lower-dimensional, linearly elastic
model (such as membranes in 3D, strings in 2D). This thin-structure interaction model is
described by the following equations

prou —divo(u,p) =0, in (0,7) x Q,
divu =0, in (0,7) x Q, (1.1)
u(0,-) = ug(x), on

psesatt n— Es'r] = —a(u,p)n, in (07 T) X 27
n(0,z) = no(x), on 3, (1.2)
9¢m(0,z) = uo(x), on ¥

with the kinematic interface condition
on=u on(0,T)xX (1.3)
and certain inflow and outflow conditions at 3; and X,; see Figure @ The unknown

solutions in ([l.1f) —([l.3) are fluid velocity u, fluid pressure p and structure displacement 7.
The following notations are also used in the model:

€s: The thickness of the structure.
75 The fluid viscosity.
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P The fluid density.

Pst The structure density.

n: The outward normal vector on 0f2.

o(u,p) = —pl + 2uD(u): The fluid stress tensor.

D(u) = 3(Vu+ (Vu)7?): The strain-rate tensor.

Lg: An elliptic differential operator on X, such as L3 = —T+Ag,

where Ay is the Laplace-Beltrami operator on X..

2:l Q Er

Y

Fig. 1.1. The computational domain in the thin-structure interaction problem

In general, two strategies can be employed to construct numerical schemes for solving
fluid-structure interaction problems. Monolithic algorithms solve a fully coupled system,
which can be expensive for complex fluid-structure problems. Various studies have focused
on the numerical simulation and analysis of monolithic algorithms, as can be found in [24,
26-29,82,B4]. Alternatively, the fluid and structure sub-problems can be solved separately
by partitioned type schemes. A strongly-coupled partitioned scheme often requires extra
iterations for the sub-problems at each time step to obtain the solution which at convergence
coincides with the monolithic one [[13,B4], while the extra iterations are not needed in
loosely-coupled partitioned schemes. However, the stability is a key issue for loosely-coupled
partitioned schemes, which may be hard to be ensured for highly added mass effect problems
such as hemodynamics (e.g. [11]). The development and study of stable loosely-coupled
partitioned schemes have been an active area of research (e.g. [2,4,14,20,21]).

Among those loosely-coupled partitioned schemes, the kinematically coupled scheme
is the most popular one due to its modularity, stability, and ease of implementation. The
scheme was first studied in [21] for the fluid-structure interaction problems and subsequently
by numerous researchers [(,8,09,83,85]. However, the analysis of kinematically coupled
schemes has been challenging due to the specific coupling of two distinct physical phenomena.
In [15], Fernandez proposed an incremental displacement-correction scheme, which proved
to be stable, and the following energy-norm error estimate was established using piecewise
polynomials of degree k for both u} and n} in ([L.4), i.e.,

n 1
" = wi ey + (D0 7l = ug?l3) = wh e + ™ = mills < C(r + B9).
m=1

(1.4)
The above estimate is optimal only for the velocity in the weak H!'-norm (more precisely,
L?(H"Y)-norm) and not optimal in L?-norm. Several different schemes were investigated,
and similar error estimates, such as those given in [§, B5], were provided. The kinematic
coupling has been extended to other applications, such as composite structures and non-
Newtonian flow [[7,33], by many researchers. Additionally, a fully discrete loosely coupled
Robin-Robin scheme for thick structures was proposed in [[L0], where they showed that the
error estimate in the same energy norm as in ([1.4) is in the order of O(y/7 + h) for k = 1.
Recently, a splitting scheme was proposed in [} for the fluid-structure interaction problem
with immersed thin-walled structures. The scheme was proved to be unconditionally stable,
and a suboptimal L2-norm error estimate was presented.
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Optimal L?-norm error estimates play a crucial role in both theoretical analysis of
algorithms and development of novel algorithms for practical applications. However, to the
best of our knowledge, such results have not been established due to the lack of properly
defined Ritz projections for fluid-structure interaction problems. This is in contrast to the
error analysis of finite element methods for parabolic equations, where the Ritz projections
have been well defined since the early work of Wheeler [37]. For instance, for the heat
equation dyu — Au = f, the Ritz projection is a finite element function Rju that satisfies
the weak formulation:

/ V(u — Rpu) - Vopdz =0 for all finite element functions vy, (1.5)
Q

With this projection Ry, the error of the finite element solution can be decomposed into two
parts:

u—up = (u— Rpu) + (Rpu — up,).

In the analysis of the second part, the pollution from the approximation of the diffusion
term is not involved, thus enabling the establishment of an optimal-order error estimate
for ||Rpu — up||r2(q). The optimal estimate for ||u — up||12(q) can be derived from the fact
that the projection error ||u — Rpul[2(q) is also of optimal order. However, formulating and
determining optimal L?-norm error estimates for a suitably defined Ritz projection in fluid-
structure interaction systems remains a challenge. The standard elliptic Ritz projection for
the Stokes equations, while widely employed for obtaining error estimates in the energy norm,
no longer produces optimal L2-norm error estimates for such fluid-structure interaction
systems; see [[I,8,[15,28,85].

In this article, we propose a new kinematically coupled scheme which decouples (u,p)
and 7 for solving the thin-structure interaction problem, and demonstrate its unconditional
stability for long-time computation. More importantly, we establish an optimal L?-norm
error estimate for the proposed method, i.e.,

[u™ = a2 + 0" =iz + 0" =132 ) < Clr + M, (1.6)
by developing a new framework for the numerical analysis of fluid-structure interaction
problems in terms of a newly introduced coupled non-stationary Ritz projection, which is
defined as a triple of finite element functions (Rpu, Rnp, Ryn) satisfying a weak formulation
plus a constraint condition (Rpu)|s = 0;Rpn on ¥ x [0,7]. This is equivalent to solving an
evolution equation of Rpn under some initial condition Rp,n(0). Moreover, the dual problem
of the non-stationary Ritz projection, required in the optimal L?-norm error estimates for
the fluid-structure interaction problem, is a backward initial-boundary value problem

—Lsp+¢d=00(p,gn+f on Xx[0,T) (the boundary condition) (1.7a)
—V.0(p,q) +¢=0 in Qx[0,7) (1.7b)
V.¢=0 in Qx[0,7) (1.7¢)
o(¢,gn=0 at t=T (the initial condition). (1.7d)

which turns out to be equivalent to a backward evolution equation of £ = ¢(¢, ¢)n, i.e.,

—LNEFNE—FE =T on X x[0,T), with initial condition £(T) = 0, (1.8)

where N : H=2 (%)% — Hz ()% is the Neumann-to-Dirichlet map associated to the Stokes
equations. By choosing a well-designed initial value Ryn(0) and utilizing the regularity
properties of the dual problem (JL.7), which are shown by analyzing the equivalent formu-
lation in ([L.§), we are able to establish optimal L? error estimates for the non-stationary
Ritz projection and, subsequently, optimal L?-norm error estimates for the finite element
solutions of the thin-structure interaction problem.

The rest of this article is organized as follows. In Section 2, we introduce a kinemati-
cally coupled scheme and present our main theoretical results on the unconditional stability
and optimal L2-norm error estimates of the scheme. We focus on a first-order kinematically
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coupled time-stepping method and the class of H'-conforming inf-sup stable finite element
spaces, including the classical Taylor-Hood and MINI elements. In Section 3, we introduce
a new non-stationary coupled Ritz projection and present the corresponding projection error
estimates (with its proof deferred to Section 4). Then we establish unconditionally stabil-
ity and optimal L2-norm error estimates for the fully discrete finite element solutions by
utilizing the error estimates for the non-stationary coupled Ritz projection. Section 4 is
devoted to the proof of the error estimates of the non-stationary coupled Ritz projection.
We present a well-designed initial value of the projection and the corresponding error esti-
mates based on duality arguments on the thin solid structure. In Section 5, we provide three
numerical examples to support the theoretical analysis presented in this article. The first
example illustrates the optimal L?-norm convergence of the proposed fully-discrete kinemat-
ically coupled scheme. The second example demonstrates the simulation of certain physical
features, which are consistent with previous works. The third example is the 3D simulation
of common cardiac arteries in hemodynamics.

2. Notations, assumptions and main results. In this section, we propose a stable
fully-discrete kinematically coupled FEM for the FSI problem (EI)*(@) Then, we present
main theoretical results in this work.

2.1. Notation and weak formulation. Some standard notations and operators are
defined below. For any two function u, v € L?(Q), we denote the inner products and norms
of L?(2) and L?(X) by

(u,0) = / W) dx,  ul? = (u,w),

(w, &)y = / wEEX) Ax, w3 = (w,w)s.

We assume that Q € R? (d = 2,3) is a bounded domain with 9Q = ¥; U X, U ¥, where
Y denotes the fluid-structure interface, ¥; and 3, are two disks (or lines in 2-dimensional
case) denoting the inflow and outflow boundary. Moreover, ¥, = {(z,y,z2 + L) : (z,y,2) €
¥, for some L > 0}.

For the simplicity of analysis, we consider the problem with the periodic boundary
condition on ¥; and X,.. Assume that the extended domains €2, and X, are smooth, where

Qoo == {(z,y, 2) : Ik € Z such that (z,y,z+ Lk) € QU ;},
Yoo := {(7,y,2) : Ik € Z such that (z,y,z + Lk) € X}.
We say a function f defined in ), is periodic if
flx,y,2) = f(z,y,z+ kL) VY(z,y,2) e QUYE, VkeZ.

The space of periodic smooth functions on Q. is denoted as C*° (€2 ). The periodic Sobolev
spaces H*(Q2) and H*(X), with s > 0, are defined as

H?(Q) := The closure of C*°(Q) under the conventional norm of H*(2),
H?(%) := The closure of C*°(X) under the conventional norm of H*(%),

which are equivalent to the Sobolev spaces by considering €2 and ¥ as tori in the z direction.
The dual spaces of H*(Q2) and H*(X) are denoted by H~*(Q2) and H*(X), respectively.

We define the following function spaces associated to velocity, pressure and thin struc-
ture, respectively:

X(Q):= HY(D)?, Q) :=L*Q), S(¥):=H' (D)L

Correspondingly, we define the following bilinear forms:

as(u,v):=2u(D(u),D(v)) for u,v € X(9), (2.1)
b(p,v):=(p, V-v) for v € X(Q2) and p € Q(9), (2.2)
as(n,w) := (=L, w)s for n,w € S(X).



We assume that L, is a second-order differential operator on ¥ satisfying the following
conditions:

||£5W||Hk () < C||W||Hk+2(2) Vw e Hk(Z d, Vk > -1, k eR, (23)
as(n,w) = as(w,n) and as(n,n) >0  Vne H' (), (2.4)

[nlls + [0l ~ lInll g ) for [|Inl[s := v/as(n,n). (2.5)

In addition, we denote ||u||s := y/(D(u), D(u)) and mention that the following norm equiv-

alence holds (according to Korn’s inequality):
[ally + [[all ~ flull71@)-

For the simplicity of notations, we denote by ||v||zrx the Bochner norm (or semi-norm)
defined by

(f0||v |pdt)/p 1<p<oo

[viLrx ==
supefo,r) V(¢ -)llx p =00,
where ||-||x is any norm or semi-norm in space, such as ||-|[f, ||-[|s or [|-||z2(x). The following
conventional notations will be used: || - |[x = || - [Ix@), [ [| = | - |22, | - |l£ == || - |22z
and || - [l = Il g |- lls : h\lH
For smooth solutions of ), one can verify that (via integration by parts) the

following equations hold for all test functions (v,q,w) € X x @ x S with v|g =w
on=u on X,
pr(Owu,v) +ayr(u,v) —b(p,v) + b(g,u) + pses(Oun, w)s + as(n, w) = 0. (2.6)

2.2. Regularity assumptions. To establish the optimal error estimates for the finite
element solutions to the thin-structure interaction problem, we need to use the following
regularity results.

o We assume that the domain € is smooth so that the the solution (u,p,n) of the
fluid-structure interaction problem (@)7(@) is sufficiently smooth.
e The weak solution (w,\) € H' ()% x L?(Q) of the Stokes equations
—V.ow,\)+w=f~f
V-w=0
has the following regularity estimates:
HWHHk+3/2 + H)\HHk+1/2 < C’HfHHk—1/2 + Ha(w,)\) . nHHk(E) for k > 71/2, ke R,
(2.7)

H(UHHk+1/2 + H)\ — 5\||Hk—1/2 < C||fHHk—3/2 + ||UJ||Hk(2) for k > 1/2, ke R,
(2.8)
where \ := ﬁ Jo A is the mean value of A over Q. The estimates in (@) and
(@) correspond to the Neumann and Dirichlet boundary conditions, respectively;
see [19, Theorem IV.6.1] for a proof of (@) in smooth domains, with a similar
approach as in [19, Chapter IV] one can prove (R.1). We also refer to [23, Theorem
4.15] for a proof of (R.1) in the case of polygonal domain.
e We assume that operator L, possesses the following elliptic regularity: The weak
solution £ € H(X)? of the equation (in the weak formulation)

as(& W) + (€ W)z = (g, W)z Vw € HI()",
has the following regularity estimate:
€]l 245y < Cligllae(sy for k> -1, k€R. (2.9)
2.3. Assumptions on the finite element spaces. Let 7, denote a quasi-uniform

partition on Q with Q = J ke, K. Each K is a curvilinear polyhedron/polygon with
diam(K) < h. All boundary faces of 7 on ¥ form a partition 75 (X), £ = Uper, () D- All
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boundary faces of 7;, on ¥; or ¥,. form a partition for ¥; or ¥,., respectively, and these two
partitions coincide after shifting L in z-direction. To approximate the weak form (R.) by
finite element method, we assume that there are finite element spaces (X}, S}, ,Tfl) on Tp
(where r > 1) with the following properties.

e (A1) X7 CX, S CSand RC Q! CQ, with S} = {vy|s: vy € X}
e (A2) For X}, and Qz_l, the following local inverse estimate holds on each K € T},
for 0<I<k,1<p,q< oo
||VhHWk,p(K) < Ch_(k_l)+(d/p_d/q)||VhHWL,q(K) Vv, € X}, or inl, (2.10)
For S}, the following global inverse estimate holds:
||Wh||HS(E) < Chk_SHWhHHk(E) Vwp € S); Vk,se Rwith0<k<s<1.
(2.11)
e (A3) There are interpolation/projection operators I,f( : X — X and I,? Q=
Qz_l which have the following local LP approximation properties on each K € Tp,
forall 1 <p < oo:
117w = ul ey + Rl w = ullwrr ) < CRFHullpisina,y VO<E<r,
(2.12a)

112D = pl o) < CR" HIpllwrs1m(ar) VO<k<r-1,
(2.12b)
where Ak is the macro element including all the elements which have a common
vertex with K. And there is an interpolation/projection operator I,? : S = 8}
satisfying (I;Xu)|s = I} (ulx) for all u € X with uls; € S. Moreover, we require the
following optimal order error estimate

5w = wls + Bl TEw = Wl 5y < OV Wl o) WO Sk <r, (213)
where || - HH’,j“(E) is the piecewise H*T!-norm associated with partition 73, (). We

will use I, to denote one of the operators I ﬁ( , ;f and I}? when there is no confusion.
o (A4) Let X} := {vj, € X} : vi|x = 0} and QZ,_Ol = {qn € Q)" : g € L3}
The following inf-sup condition holds:

(div v, qn)

lgnl|< € sup Van € Qpy! (2.14)

0#v,eX] [Vnl

Remark 2.1. Examples of finite element spaces which satisfy Assumptions (A1)—(A4)
include the Taylor-Hood finite element space with I;¥, I }? and I} being the Scott-Zhang
interpolation operators onto X}, Q’,fl and S} respectively. We refer to [f, Section 4.8]
and the references therein for the details on constructio d properties of Scott-Zhang
interpolation, and refer to [3, Section 8.8] for a proof of w) for the Taylor-Hood finite
element spaces. The following properties are consequences of the assumptions (A1)-(A4).

1. From (A2) and (A3) we can derive the following estimate for v;, € XJ:

DEanls=( Y IDEnlm)

DeTw (%)
d—1 2 1/2 ;
< C( Z h ||VhHW1,OQ(K)> (K € Tp contains D)
DeTy(%)
<C Z h—1|| 2 1/2 —-1/2
= ( Vh||H1(K)) < Ch ||Vh||H1-
DeTy(E)
Therefore, we can obtain the following inverse estimate for the boundary term
O'(Vh7Qh)n5
lo(va,an)nlls < Ch™Y2([vallar + llanll). (2.15)
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2. From (A3) and (A4) we can see that when r > 2, the mixed finite element space
(X}, Q h_l) can be realized by the (r,r —1) Taylor-Hood finite element space. When
r=1, (X},Q%) can be realized by the MINI element space.

3. From inf-sup condition w), we can deduce the following alternative version of
inf-sup condition (involving H*(¥)-norm in the denominator)

(div vy, qn)

Vil + [Vl s)

lanl< € sup Yan € QL (2.16)

0£vLEX)

A

An inf-sup condition similar to (R.16) was proved in [B&, Lemma 2], though thick
structure lem is considered there, For the reader’s convenience, we present a
proof of (R.1¢) in the Appendix C of [30].

4. For each wy, € S}, we denote by E,wj, € X} an extension such that E,wy, := I,i(v,

where v € H'(Q)? is the extension of wy,_by trace theorem, satisfying ||v| g1 <
Cllwh| g1/2(s) and v|s = wy. Combining (R.12) with () we see that

| Enwhllmz < Ch™2 [wh|s. (2.17)
5. Combining () with () we have for any uj, € X}, pp, € Q!

o(u—uap,p—pr)nls

<lle(u—Ipu,p — Ipp)nls + o(Ipu — up, Inp — pr)n|s

< C(lu = Ipullwre + [lp = Inpll=) + [lo(Ipu — up, Inp — pp)nls

< O+ Ch™ (| Ivu = up || + || Tnp = pa)

< Ch V2 4+ Ch 2 (lu = wpl g + [lp = pal), (2.18)
where we have used () with p = co and () in the second to last inequality.

2.4. A new kinematically coupled scheme and main theoretical results. Let
{tn}fLO be a uniform partition of the time interval [0,7] with stepsize T = T/N. For a

sequence of functions {u”}»_, we denote

n _ n—1
D.u" = i, forn=1,2,..., N.
T
With the above notations, we present a fully discrete kinematically coupled algorithm.

Step 1: For given uZﬁl,pzfl,nzfl, find 0} and s} € S}, such that

, Wh) + (Is(’lﬁz, Wh) = 7(0’2_1 ‘N, Wh)g, Ywy, € S; (219)
b

mh= s

Step 2: Then find (u}l,p}) € X5 x Q; " satisfying

ps(Druyy, vi) +ar(ag, via) = b(pp, va) + blan, ui) — (05 -1, va)s (2:20)
up —sp T
+ pPs€s (hh, Vi + o(Vh, qn) - n)
T Ps€s >

_ T(1+
+ <(UZ —op ) m, vy + MU(WL,%) 'n> =0
Ps€s )
for all (vp,qn) € X} x Qz_l, where o} = o(u},p}) and f > 0 denotes a stabilization
parameter.

Initial values: Since 0'2_1 depends on both uZ_l and pz_l, the numerical scheme in
()7() requires the initial value (u?,p?,n%) to be given. We simply assume that the
initial value (u,g, p%, 172) are given sufficiently accurately, satisfying the following conditions:

[ujy — Rpu®|| + uh — Rau®|ls + [Inf, — Run®[lm (m) < CR™,

(2.21)
Iph — Rup’|ls < C,



wher@Rhuo, Ryup®, RynY) satisfies a coupled non-stationary Ritz projection defined in Sec-
tion .

Remark 2.2. Kinematically coupled schemes were firstly proposed in [6,8,21] with the
following time discretization: Find (s™,n™) such that

n _ n—1
psesi —Ly(n")=—0""1-n on ¥ (2.22)
T
nn _ nn—l 4 P on ¥
and then find (u™, p™) satisfying
prDu"+V.-0"=0 and V-u"=0 in Q, (2.23)
psesu+(0"—a”_l)~n:0 on X.
T

The extension to full discretization was considered by several authors [§, B5], while the
analysis for full discretization is incomplete and the energy stability is proved only for time-
discrete schemes.
Remark 2.3. Our scheme in ()7() is designed with two new ingredients. First,
we have added two stabilization terms
n n
Ps€s <uhsh, T o(Vh,qn) - n> and ((UZ — 0'271) -n, ma(vh,qh) . n) ,
T Ps€s ) Ps€s )
which guarantee unconditional energy stability of the scheme in ()7() Otherwise the
unconditional energy stability cannot be proved in the fully discrete finite element setting.
Second, we have introduced an additional parameter 5 > 0 to the scheme, and this additional
parameter allows us to prove optimal-order convergence in the L? norm (especially optimal
order i ce). More specifically, this parameter 5 > 0 leads to the following term in the
El Of (@?

Ps€s
27

Boo—=lsh —upll% with fo =1~ (V4+ 52— 5)/2,

which is used to absorb other undesired terms on the right-hand side of the inequalities in
our error estimation. Therefore, the optimal-order L? error estimate does benefits from our
scheme (with the parameter 8 > 0).

Remark 2.4. For the Taylor-Hood finite element spaces, the conditions in () on
the initial values can be satisfied if one chooses uy and p to be the Lagrange interpolations
of u® and p°, respectively, and chooses ) = R,,1(0), where Ry,n(0) is defined in Section

; see Definition @ and estimate (4.15).
The main theoretical results of this article are the following two theorems.
Theorem 2.1. Under t sumptions in Section (on the finite element spaces),

the finite element system in (12.19)-(12.24) is uniquely solvable, and the following inequality
holds:

.
Eo(uy,ppomp) + > TE(upt, st nit) < Eo(u),pf.mp), n=1,2,..,N, (2.24)
where " ,
Bo(uf o) = Sl + 512+ T8 D 25 . (225)
By (o s 1) = 2+ 22k — 1 2 — g+ L w2
+ 5o = i) mlfe + S ID I, (226)

with Bo=1— (\/4+ 62 —5)/2 and 8 > 0.

eorem 2.2. For finite elements of degree r > 2, under the assumptions in Sections
@«@ (on the regularity of solutions and finite element spaces), there exist positive constants
70 and hg such that, for sufficiently small stepsize and mesh size T < 19 and h < hg, the
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finite element solutions given by )*/@) with initial values satisfying () and >0

has the following error bound:

max ([u(tn, )~ whl + It )~ 7R + () uflls) < O+ 7, (227)

where C' is some positive constant independent of n, h and 7.
The proofs of Theorem and Theorem are presented in the next section.

3. Analysis of the proposed algorithm. This section is devoted to the proof of
Theorems dand . For the simplicity of notation, we denote by C' a generic positive
constant, which is independent of n, h and 7 but may depend on the physical parameters
Ps: €, 1, py and the exact solution (u,p,n).

3.1. Proof of Theorem @ We rewrite () into
u? — s?
pf(DTuZa Vh) + af(u;LLv Vh) - b(pZa V;,l) + b(Qh, u;zl) + Ps€s (hThv Vh) (31)
by

(1+8)

e ((op —op™")-n, 0(Va,qn) -m)s .

Taking v, = u}, g, = pj in (@) and wp = s} = D.ny in (), respectively, gives the
following relations:

Pf 2 n—12 n—12 2 uj — sy
n - n — n n
2 (i 12 + st = i 12) + 2l + e (M )
2

= (O-Z_l - n, Vh)E - (UZ - 527 U(Vh,gh) : n)Z -

1
— (ot enus (= sh o ms = 70 (0 - o) m o s
S*+s
and
1
i( (n n)i (n—l n—1)+2 (n n))+ Sh_uz n 77( n—1 n)
o0 as\My,, M, as\My, >Ny T Gs\Sp, Sp, Ps€s pu » Sh . = —(0y n, sp)s.

By summing up the last two equations, we have
14 - - Ps€ -

gf (gl = oy =1 + ok = wi=H1) + 2prflag |7 + =55 (llsh = w7 S + [lay = spl3)
/)565 (

1 n n n— n— n n n—
+§(Gs(77h777h)—@s(77h lanh 1)+72@8(Shvsh> | hHQE_”uh 1‘@3)

=7((o} "t —of) -n,up —s)s — e ((op —o?™Y) -m, o - n)y

72(1+ﬂ_/80) 1 2 Ps€s
<— (e} =07 ) 'n _— -8
< P o ) mi + g k- s

7-2(1 +/8) n n— n n—
= (loi - nl% = oy -l + (o} — o} ™") - nl%)
Ps€s

Ps€s(1 - 50) n n (1 + B n— T /BO n—

S =5 nosplE - T (lok - nl% = oy ™" - nllz) = 5—=ll(o} —o77") - nl3,
‘? S
which leads to the following energy 1nequahty.
EO(uzva7nZ> - EO(uZﬂapzflaﬂzfl) + El(uZﬂpganZ)T <0. (32)

This implies () and completes the proof of Theorem @ |

3.2. A coupled non-stationary Ritz projection. To establish L?-norm optimal
error estimate as given in Theorem P.2, we need to introduce a new coupled Ritz projection.
Since the FSI model is governed by the Stokes type equation for fluid coupled with the
hyperbolic type equation for solid, the coupled projection, which is non-stationary and
much more complicated than the standard Ritz projections, plays a key role in proving the
optimal-order convergence of finite element solutions to the FSI model.

Definition 3.1 (Coupled non-stationary Ritz projection). Let (u,p,n) € X X
Q x S be a triple of functions smoothly depending on t € [0,T) and satisfying the condition
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uly = 0. For a given initial value Rpn(0), the coupled Stokes—Ritz projection Ry (u,p,n)
is defined as a triple of functions (Rpu, Ryp, Rpn) € X} x Qz_l x S} satisfying (Rpu)|y =
OtRym and the following weak formulation for every t € [0,T]:
af(u— Rpu,vp) = b(p — Rpp,va) + b(gn, u — Rpu) + (u — Rpu, vy)
+ as(n — Rhn,Vh) + (’17 — Rh’l’],vh)z =0, V(Vh, qh) S Xz X Q;il.
(3.3)
Remark 3.1. Given an initial value R,n(0), there exists a unique solution (Ryu, Ryp, Rnn:)

for the finite element semi-discrete problem (B.3). To see this, we firstly introduce a lin-
ear operator Sp, : (X7)* x (Q,71)* — X; x Q) !, where (X})* and (Qr_l) denote the
dual space of X} and Q) ', respectively. For a given (¢,£) € (X})* x (Q}~")*, denote by
(up,pr) € X5 x Q)" the solution of the following Neumann-type discrete Stokes equation

af(un, v) = b(pn, vi) + (Un, vi) = ¢(vi) Vv, € X},

b(gn,up) = L(qn) Yan € Q"
and define Sy(¢,0) = (SE(9,0),Sh (4, := (up,pn)- The well-posedness of the above
equation follows the inf-sup condition (|

Next, we denote
Gupn) (Vi) = ag(u, vi) = b(p, vp) + (u,vy) + as(n, vi) + (0, va)s,
¢Rh (Vi) = as(Rpn, vh) + (Rpn, va)s,

Lu(qn) = b(gn, ).

Then (Rpu, Rpp, Rpn) is a solution to (@) if and only if the following equations are satisfied:

atRh"? = Sﬁ(d)(u,p,n) - d)R}ma éu)|27 (343‘)
Rhu = S;:((é(u,p,n) - ¢Rm]a eu)v th = S}f((b w,p,m) (thnvzu)' (34b)
Therefore, the uniqueness and existence of solution to (@) follows the uniqueness and

existence of solution to (iince Sy is a linear operator on (X})* x (Q71)* and ¢g,,, is
linear with respect to Ryn, (B.44) is an in-homogeneous linear ordinary differential equation
for Rypn and thus admits a unique solution for a given initial value Rpn(0). Next, we can
obtain Rpu and Rp from ()

In order to guarantee that the coupled non-stationary Ritz projection Rj possesses
optimal-order approximation properties, we need to define R,7(0) in a rather technical way.
Therefore, we present error estimates for this projection in Theorem and postpone the
definition of Rpn(0) and the proof of Theorem B.1| to Section

Theorem 3.1 (Error estimates for the coupled non-stationary Ritz projec-
tion). For sufficiently smooth functions (u,p,n) satisfying u|s, = Oy, there exists wy, € S},
such that when Rpn(0) = wp, the following estimates hold uniformly for ¢t € [0,T):

e, (I = Ranlls: + [lu — Rpul| + [[u — Rpulls + hllp — Rupll) < Ch7HY, (3.5)
nax, (10:(a = Rpw) || s + [10¢(w = Ry) || sy + [18:(p — Rap)ll) < CR, (3.6)
10 (0 — Rpu)||z2r2(s) + [|0¢(u — Rpu)||p2p2 < Ch 1. (3.7

3.3. Proof of Theorem @ For the solution (u,p,n) of the problem (@)f(@), we
define the notations:
u” =u(tn,), N"=n(tn-), p"=pltn,-) (3-8)
For the analysis of the kinematically coupled scheme, we introduce s™ € H'(X) and Rj,s" €
S}, by
s" = 0m(tn, ) =u(ty,) and Rps™:= (Rpu)(t,) = 0:Rpn(t,) on X,
which satisfy the estimate:
|s"™ — Rps™||z < Ch™H! (3.9)
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according to the estimates in Theorem @

By Taylor’s expansion, we have n* = 7" ~1 4+ 78"+ 7, with a truncation error 7;* which
has the following bound:

175 sy < CT2 V> 1. (3.10)
By (@)7(@), we can see that the sequence (u™,p™,n", s™) satisfies the following weak
formulations

n _ n—1
Ps€s (STua Wh) +as(n", wip) + (0" n, wy)s = E(wr),  Yw, €S) (3.11)
b

and
u” — s
DA 1)+ asla va) = 0 va) + 0w+ pees (T v )
b))
= ("' m, vi) — (" =", 0(vi,qn) - n)s — (pﬁﬂ)((ff — 0" 1) n, o(vh,qn) -0)s
+ E}I(Vh, qh), V(Vh, qh) S Xz X inl (312)

where 0" = g(u”, p") and the truncation error functions satisfy the following estimates:

€& (wWa)l < C7llwalls, (3.13)
€7 vaan)l < Cr([valls +[Ivall) + C72llo(vi, an) s '

For given (u”,p”,n™,s"), we denote by (Rpu™, Ryp"™, Rpn™, Rps™) the corresponding
coupled non-stationary Ritz projection and define R} 7" satisfying
Riyn™ = Rpn™ Y + 7Rps™ + Ry T30 Yn > 1.
Then we introduce the following error decomposition:

ey :=u" —uy =u" — Ryu” + Rpu” —uy =0, + 9y, in Q.
ey :=p" —py =p" — Rpp" + Rpp™ — pj, := 0, + 5y, in €.
eg i=o(u",p") —o(uy,py) = 0(0y,0,) +0(d,,0,) :== 05 + 47, in Q.
ey :=s" —sy =s" — Rys" + Rys" —sp, =07 + 4y, on 3.
en =n"—np =" — Rpn™ + Rpn" —np, =0, + 6y, on ¥.

Since u”|y = s™, it follows that 6|x = 07. Moreover, the following relations hold:
(0 =) (s w0 A g o

(0" —u") — (uf —s}) = 0% + 0% — 0 — 67 =67 — 57 on %

By using ()f() and ()7(), we can write down the following error equa-

tions:
6? — 63_1 n n—1 n n r
Ps€s f7 Wh + as((s,r], Wh) + (60- -1, Wh)E = 58 (Wh) — };‘S (Wh)7 th € Sh
)
(3.14)
op =6, '+ 760 + RyTg',  on% (3.15)
§no— §n §no— §n
Pf ( “ T . ) Vh) +af(635 Vh) - b(éga V}TZL) +b(qh7 53) +ps€s ( “ - 2 ) Vh)
)
_ n " 7(1+ n .
=@ m s = 07— 03 0w an))s = T (0 62 (v ) s
+EF (Vs an) — Ff (V. an), V(Vh,qn) € Xj, x Q) (3.16)
where
an(wh) = pses(DTHZa Wh)E + as(ez’ Wh) + (92_1 -1, Wh)z (317)

Fy(vh,qn) = pr(D-0y,vi) +ap(0y, vi) = b(6, vi)
11



T(1+8)

e (o7 — 9271) ‘n,0(Vp, gr) -0y (3.18)

- (0271 ‘1, Vh)z +

Moreover, we have the following result:
O = Oy 7]+ (T3 — RaTg),
where the last term can be estimated by using (@)7 ie.,

||76n - Rh%n”Hl(g) S CT2H8t(Rhu — u)||LooH1(g S CTth. (319)

Therefore, by the triangle inequality with estimates () and (@), we have
IR TS sy < 175 sy + 175" = BT sy < O Wn > 1 (3.20)
We take (vi,qn) = (0,05) € XJ, x Q7 in (B.16) and wy, = 67 € S _in (),

respectively, and then sum up the two results. Using the stability analysis in (E) and the
relation
6% = D.6) — 7 'Ry TS,
we obtain
D, Eo(87, 67, 67) + By (87, 67, 07)

< EJ(0Y) — F(05) + EF (045 6) — Ff (0, 0,) + T’las(ég,Rh%”) . (3.21)

urrp urrp
To establish the error estimate, we need to estimate each term on the right-hand side of

() From () and () we can see that
[EL(68)] < Crll6d]1s
€705, o)l < Cr(lloglls + loz1D) + 72[167 - nlls (3.22)
7 as (0, RuTg")| < Crl0y]s
It remains to estimate F'(ds) + F'}'(0u, dp) from the right hand side of ()
1. The second term in () plus the second and third terms in () can be estimated
as follows. Let &} := 0 — Ep () —07), where Ej, (I — %) is an extension of d;; — §7
to ) satisfying estimate (R.17) and |y, = 7. By choosing v, = &' and g5, = 0 in
(B.3) (definition of the coupled Ritz projection), we obtain the following relation:
af(93763) - b(egv 62) + as(egv 6‘?)
=ag(0y, En(0y — 0%)) — b0, En(dy; — 65)) — (07, &) — (67, 0%)s
< CH(|En (0 = 69)lly + CR €N + 168 12)
< Ch 2|07 — 67 | + ChT (62| + 1167 1), (3.23)
where we have used estimate (@)7(@)
2. The third term in () plus the fourth term in () can be estimated as follows:
(057" 0,00)s = (077" 0, 0)s
<[~ nls)67 —&tlls
<O Y2+ n 2100 i + 165 D) 10F — Sl
<O 2|5 — 62l (3.24)

where we used () in the second inequality and (@) in the last inequality.
3. For the first term in () and (), respectively, we have

C tn
pecs(D,0%, B2 < SN2l [ 10100 s, (3.25)
tn—1
c tn
pr(DoL 5 < 21Tl [ s ot (3.26)

4. The last term in () can be estimated by using (@) and (), ie.,

T n n—1 n
pse((ecr—ea )'1’1,0’(5”, 5p)'n)2
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tn
<Cr (/ 000w, 0:0p)(t) -nlzdt> lo(ds, 6;) - nlls

tn—1
<C7T2h"V2|a (o7, 67) - nl|x. (3.27)
Now we can substitute estimates ()f(@) into the energy inequality in () This
yields the following result:
D+ Eo(6y,6,,65) + E1(0y, 04, 0,)

< Cr(l18¢1ls + 100 s + 1831l + N85 1ls) + Ch" =218 — 8|5 + CR™ (67| + 162 12)

C b C b
+ 2182 [ 1000l + TISL [ 1080+ OISyl (328)
tn—1 tn—1
Since ||67]|s <67 — 07 ||s + ||0||s, by using Young’s inequality, we can re-arrange the right
hand side of (B.2§) to obtain
D:Ey(0y,6,,6,) + E1(dy;, 05, 6,7)

- I r— n n n Ce n n
< Ce7H(r? + CRPUD 1 7h 1)+ Ce(|67 1% + 193117 + oy 112) + — o = 8313

Ce1 tn tn
+ p- (/ ||8t9u(t)||22dt+/ 10:0.(t)||dt | + CT?||67 - n||%, (3.29)
tn—1 tn—1
where 0 < € < 1 is an arbitrary constant.
We can choose a sufficiently small € so that the term <€||67 — 67[|% can be absorbed by
E1(dy, 05, 6;) on the left-hand side. Then, using the discrete Gronwall’s ineiuahty and the

estimates of 6, in (@), as well as the definition of Fy and E; in ()7( ), we obtain

Eo(87,07,67) + > _ TEW(6},67",67) < CEo(8y,09,69) + C(7% + Ch?U ) 72—,
m=1

u’rvpren u’s 1Vn ur)Vprvn

(3.30)
Since the initial values satisfy the estimates in (), the term E (05, 0, d9) can be estimated
to the optimal order. Thus inequality (| ) reduces to
18l + N167 11 + Nldlls + 167 = 6%l < C(R™ 12712 7 B, (3.31)
It follows from the relation 8} = 0, 4+ 707 + R, 75", n > 1, that

n n
1671l <lidplls + D 760 ls + D IR TS I < C(h™ V272 47 1 B7HY), (3.32)
m=1 m=1
where we have used () and () Then, combining the two estimates above with the
following estimate for the projection error:
10211+ 1102 [Is: + (167 |s: < CR™FY Wn >0,
we obtain the following error bound:
lezll + llezlls + lleplls < C(h™ 2712 47 4 h7H) < C(r + b7,

where the last inequality uses h"~'/271/2 < 7 4+ h?"~1 and r > 2. This completes the proof
of Theorem PR.2. [ |

4. The proof of Theorem @ We present the proof of the Theorem @ step-by-step
in the next three subsections.

4.1. The definition of R,7(0) in the coupled Ritz projection. In this subsection,
we focus on designing the initial value R;n(0) for our coupled non-stationary Ritz projection.
We first present two auxiliary Ritz projections Ry and RP associated to the structure
model and the fluid model in Definitions 1.2, respectively. Next, in terms of these
two auxiliary Ritz projections, we define the initial value Ryn(0) in Definition which is
only for our theoretical purpose. Finally, an alternative definition of R,n(0) for practical
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computation is given in Definition @

Definition 4.1 (Structure—Ritz projection R’f ). We define an auxiliary Ritz pro-

jection Rf : S — Sj, for the elastic structure problem by
as(Rys —s,wy) + (Ris —s,wp)x =0 VYwy, € S7. (4.1)
This is the standard Ritz projection on X, which satisfies the estimate || Ry's —s||s < Ch"+!
when s is sufficiently smooth. Moreover when r > 2, there holds the negative norm estimate:
|Rys —s||g-1(s) < Ch™F2. (4.2)

Let X7 := {v; € X} : vi|x = 0} and Q;z)l = {gn € Q;7 " : g € LE(Q)}. We denote
gz = {vp, €8} : (vp,n)y =0} and by P the L?(X)-orthogonal projection from S to gz

Definition 4.2 (Dirichlet Stokes—Ritz projection R}’). Let X :={ue X :u|g €
S}. We define an auxiliary Dirichlet Stokes-Ritz projection RY : X xQ — X7 x Qz_l by

ar(u— RPu,vy,) —b(p — RPp,vi) + (u— RPu,v,) =0 Vv, € X}, (4.3a)

b(gn,u— RPu) =0 Vg, € Q;jol; with RPu = PR} (uly) on %, (4.3b)
In addition, we choose R}? p to satisfy RE p—p € L3(2). This uniquely determines a solution
(RPu, RPp) € X7 x Q,Tl, as explained in the following Remark.

Remark 4.1. In order to see the existence and uniqueness of solution (Rf u,R,? D)
defined by (@), we let 115, € X} be an extension of PR;u to the bulk domain € and let p, be
the L2(Q)-orthogonal projection of p onto Qz_l. Then G,—RPu € X%, and p,—RPp € QL.
Replacing (u,p) and (RPu, RPp) by (1 — . p — pn) and (RPu — ., B2p — pn) in (13-
(@) respectively, we obtain a standard Stokes FE system with a homogeneous Dirichlet
boundary condition for (RE u— ﬁh,RE p — pn). The well-posedness directly follows the
inf-sup condition ()

Remark 4.2. The projection P in () is introduced to guarantees that the b(gn, u—
RPu) = 0 holds not only for g, € QZ}} but also for g, € Q};fl. That is,

b(gn,u— RPu) =0 Vg, € Q; " (4.4)

Since Q;;l ={1}a QZTJ, this follows from the first relation in () and the following
relation:

b(l,u— RhDu) = (R}?u,n)g = (IBR;ju,n)g =0,

where b(1,u) = 0 for the exact solution u which satisfies V - u = 0. Especially, when u is
replaced with dyu(0), we have
b(gn, (Oyu — RP9;u)(0)) =0 Vg, € Q) 1. (4.5)
The relation (% is needed in error estimates between (9.Ryu(0), 0; Rpp(0)) and (9;u(0), 9;p(0))
in the Lemma {.4 below. Furthermore, in the Definition .3, we defined (Rpu(0), Rpp(0)) via
a Dirichlet-type Stokes-Ritz projection with the boundary condition Ryu(0)|z = PRy,u(0).
To facilitate further use of P in the following analysis, here we derive an explicit formula

for P. We denote by n; € S} the L?(X)-orthogonal projection of unit normal vector field n
of ¥ to S}, ie.,

(Il, Wh)g = (nh,Wh)g; Ywy, € SZ (4.6)

Then for any wy, € S}, we have

(Wh,n)z
[0 13

From ||n — nyls < ||n — Iynllg < Ch™! (since n is smooth on ¥), especially we have

Ingl|s ~ C and

Pwy, = wj, — Mwp)ny, € S; with A(wy,) := (4.7)

Rju—u,n)s|

IMRyw)| = I T < Ch™*' and ||PRJu— Rju| < Ch™t, (4.8)
hlls
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Therefore we obtain the estimate ||[RPu—ulls < Ch™1. The following lemma on the error
estimates of the Dirichlet Stokes—Ritz projection is standard. We refer to [22, Proposition
8, Proposition 9] for the proof of (4.9). The negative norm estimate of pressure in ()
requires a further duality argument, which is presented in the proof of Lemma B.3 of the
Appendix B in [B0] . We omit the details here.
Lemma 4.1. Under the reqularity assumptions in Section @, the Dirichlet Stokes—Ritz
projection RP defined in (.3) satisfies the following estimates:
lu— RYulls + [lu — RYull + A (Jlu - RYulm + p — RYpll) < CR7HY - (4.9)
IREp = pllg—+ < CR™H. (4.10)
We define an initial value Rpn(0) as follows in terms of the Dirichlet Ritz projection
RD.
Definition 4.3 (Initial value R,n(0)). Firstly, assuming that the function RYd,u(0)
=)

and RP9;p(0) are known with operator RY defined by , we define R,,u(0) € S}, to be
the solution of the following weak formulation:

as((u = Rspu)(0), wp) + ((u = Rep)(0), wa)s + ay((dyu — Ry 9yu)(0), Epwy)

—b((8yp — RP0,p)(0), Exywy) + ((0u — RP9,u)(0), Eywy) =0 Vwy, € ST, (4.11)
v%e E),w;, denotes an extension of wy, to the bulk domain 2. From the definition of R,? in
(

( we can conclude that this definition is independent of the specific extension. Therefore,
) still holds when replacing both wj, and Ew;, with v;, € X7 .

Secondly, we denote by (Rpu(0), Ryp(0)) € X; x Q™' a Dirichlet-type Stokes—Ritz
projection satisfying
ap(u(0)—Rpu(0), vi) — b(p(0) — Rup(0),vs) + (u(0) — Rpu(0),vy) =0  Vvy, € X5,
(4.12a)

b(qn, u(0) — Ryu(0)) =0 Vg, € Q)45 Rpu(0) = PRyu(0) on X, (4.12b)

where we require p(0) — R;p(0) € L3(Q).
Finally, with the Rpu(0) and R;p(0) defined above, we define Ryn(0) € S} to be the
solution of the following weak formulation on X:
ar(u(0) — Rpu(0), Epwy) — b(p(0) — Rypp(0), Exwy) + (u(0) — Rpu(0), Epwy)
+ @5("7(0) - Rhn(o)a Wh) + (77(0) - Rhn(0)7 Wh)E =0 vwh € SZ
(4.13)
Again () also holds when replacing wy, and Epwj, with v € X7 .
For the computation with the numerical scheme ()7(@), we can define the initial
value 9 = Rg,m(0) € S} in an alternative way below.
Definition 4.4 (Ritz projection R,n(0)). We define 1) = R,,n(0) € S’ as the
solution of the following weak formulation:
as((Renn —1)(0), wn) + (Rsnn —m)(0), wr)z  Vwp €S,
= —as((Ryu—u)(0), Epwy) + b((RYp — p)(0), Exwy) — (R u —w)(0), Epwy), (4.14)
which does not require knowledge of 9;u(0) or d;p(0). Again, E,wy, denotes an extension
of wj, to the bulk domain 2, and this definition is independent of the specific extension.
Therefore, () holds for all v, € X}, with wy, and Ej,wy, replaced by vy, in the equation.
For r > 2, the following result can be proved in the Appendix B of [3(] :

[ Rsnn(0) — Rum(0) || sy < CR™ (4.15)

In addition, by differentiating (@) with respect to time, we have the following evolution
equations:

as(u — Rpu,vy) + (u— Rpu, vp)s + ap(0:(u — Rpu), vy)
—b(0¢(p — Rrp),vi) + (0s(u — Rpu),vy) =0 Vv, € X7, (4.16a)
b(gn, 0y(u — Rpu)) =0 Vg, € Q) ',  (4.16b)

15



which are used not only to design the above R;n(0), but also to estimate errors in the
following subsections.

4.2. Error estimates for the coupled Ritz projection at ¢ = 0. Firstly, we con-
sider the estimation of Rgpu(0) which occurs as an auxiliary function in the definition of
Rpn(0) in Lemma @ Secondly. we present estimates for u(0) — Rpu(0), n(0) — Rpn(0)
and p(0) — Rpp(0) in Lemma {.3. Finally, we present estimates for the time derivatives
O¢(u — Rpu)(0) and 9:(p — Ryp)(0) in Lemma @

Lemma 4.2. Under the assumptions_in Sections @ and @, the following error
estimate holds for the Rspu(0) defined in ()

1Rsu(0) — u(0)]|5 + Al Rapu(0) — u(0)|s < CA™. (4.17)

Proof. Since we can choose an extension E§;, of §;, € S}, to satisfy that ||Ex&, || g o) <
Cll&nll a1 (s), equation () implies that
as(u(0) — Rspu(0),€,,) + (u(0) = Rapu(0),&,)s < CAT[|€ [ a1 () -
This leads to the following standard H'-norm estimate:
[a(0) = Rsnu(0)[|s + [[u(0) = Rsnu(0)[|z < Ch".
In order to obtain an optimal-order L?-norm estimate for u(0) — R,,u(0), we introduce
the following dual problem:
—Ls + 1Y = Rgpu(0) —u(0), o has periodic boundary condition on 3. (4.18)
The regularity assumption in (@) implies that
as(¥,§) + (¥, §)x = (u(0) — Repu(0),§)s V€ €S and ||| m2(s) < Cflu(0) — Repu(0)]ls -
We can extend v to be a function on {2, still denoted by 1, satisfying the periodic boundary
condition and |[¢||g2q) < C|¢||g2(s). Therefore, choosing § = u(0) — Rspu(0) in the
equation above leads to
[u(0) — Repu(0)[[3; = as(u(0) — Rspu(0),¥) + (u(0) — Repu(0),¢)x
= as(u(o) - Rshu(o)a w - Ihw) + (U(O) - Rshu(0)7 w - I}ﬂﬂ)z
— ay(8yu(0) — Ry 9,u(0), Inyh) + b(8:p(0) — Ry} 9,p(0), In))
— (9pu(0) — RPdu(0), I,4)  (relation () is used)
SO @l w2y + lag (9,u(0) — Ry 9,u(0), ¥))|
+[b(9ep(0) — RE 9p(0), V)| + |(9¢u(0) — Ry 9pu(0), )|
Since
|(D(0:u(0) - R 0ru(0)), Dy)|
=| = (8u(0) — R} 8,u(0),V - DY) + (9u(0) — R} 0,u(0), Dy - n)s|
< CH W2y,
where the last inequality uses the estimate ||| g2(q) < Cll¥|| g2(n) as well as the estimates
of ||9pu(0) — RP9,u(0)|| and ||0;u(0) — RP9pu(0)||sin_(K.9) (with u(0) replaced by d;u(0)
therein). Furthermore, using the H~! estimate in (?@), we have
[b(@p(0) = Ry 9ip(0), ¥)| < C|9ip(0) = Ry 3ip(0) |19l rr2 < CH"FH[[3]] 112 -
Then, summing up the estimates above, we obtain
||ll(0) - Rshu(O)Hg < Chr+1 .

The proof of Lemma @ is complete. |

Lemma 4.3. Under the assumptions in Sections d @, the following error
estimates hold (for the coupled Ritz projection in Definition .4):

17(0) = Rpn(0)l|s: + hlin(0) — Rpn(0)l]s + [[u(0) — Rpu(0)|ls < CR™, (4.19)

[u(0) — Rpu(0)|| + Allp(0) — Rpp(0)|| < Ch™ 1. (4.20)
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Proof. From (1.]) we know that Ryu(0) = PRyu(0) = Reu(0) — A(Repu(0))ny, on 3,
with
MBapu(o))| = et 8Oz [Taal0) = 0O 0)s] o oy o) - u(o)) < on+,

05 0[5
Therefore, using the triangle inequality, we have
lu(0) = Rru(0)s < [lu(0) — Rapu(0)lls + [A(Ranu(0)|[[ns]ls < CAT,
where the estimate () is used.

Since (Rpu(0), Rpp(0)) is essentially a Dirichlet Ritz projection with a different bound-
ary value, i.e., PRy,u(0), the error estimates for [|u(0) — Ryu(0) and |[p(0) — Ryp(0)]| are
the same as those in Lemma {.1. With the optimal-order estimates of |u(0) — Rpu(0)|s,
[[u(0) — Rru(0)]| and ||p(0) — Rpp(0)||, the estimation of ||n(0) — Rxn(0)||s and ||n(0) —
Rpn(0)]|s would be the same as the proof of Lemma ¢.2. |

Next, we present estimates for the time derivatives 9;(u — Rpu)(0) and ;(p — Rpp)(0).
To this end, we use the following relation:

(u— Rpu)(0) = (u — Rspu)(0) + A(Rspu(0))n;, on X. (4.21)
Replacing (u — Rspu)(0) by (u — Rpu)(0) — A(Rspu(0))ny, in (), we have
as((u = Ryu)(0),vi) + ((u = Rpu)(0), vi)x + ag ((9pu — Ry 0pu)(0), va)
—b((0p — RE9:p)(0), vi) + ((Oyu — R 94u)(0), vy)

= MRspu(0))(as(np, vy) + (0, vi)s) Vv, € XJ. (4.22)
Let (u”,p”) € X x @ be the weak solution of
ar(u?,v) — b(p*,v) + (u#,v) = as(n,v) + (n,v)s Vv e X, (4.23a)
b(g,u?) =0 Vg € Q. (4.23Db)
Denote by (u#, p#) € (X7,Q;™1) the corresponding FE solution satisfying
ap(uf,vy) — b(p#,vh) + (u#,vh) =as(np, vy) + (0, vi)s Vv € XG, (4.24a)
ban, uff) =0 Yo € Q) ', (4.24b)

where ny, is defined in (@)
Note that () is equivalent to the weak solution of

~V o(u”,p?) +u” =0 in Q with o(u?,p)n=—-Ln+n on ¥
V-u# =0 in Q.

Therefore, from the regularity estimate in (@) (with k =7 — 1/2 therein) and assumption
(R.3) on L, we obtain the following regularity estimate for the solutions of ()

||117&’£||HT+1 + ||p#||H* < C||n||H"'+3/2(E) <C.

By considering the difference between () and ()7 the following estimates of ef =

Iyu# — uf and m# = Ipp# — p# can be derived for all v;, € X} and ¢, € Qz_lz

ag(ef,v) = b(mi,vi) + (e ,vi) < Ch"||[vill () + CHT[[Vall g < CH 2| va
b(an, e} ) < Ch"|lanl,
where we have used the inverse estimate in () and the following trace inequality:
Vil sy < ChY2 Vil ey < CRTY2 lva

From Korn’s inequality and inf-sup condition (), choosing vy, = e# yields the following
result:

e s +llmf ) < O,

which also implies the following boundedness through the application of the triangle inequal-
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ity:
il s+ 07 1l < C

By using the boundedness of H'()-norm of u# and L?(Q)-norm of pf, we can estimate
O0¢(u — Rpu)(0) and 0:(p — Rpp)(0) as follows.

Lemma 4.4. Under the assumptions in Sections @ and @, the following error
estimates hold (for the time derivative of the coupled Ritz projection in Definition [{.4):

10 (a = Ryw)(0)[| + [10¢(u — Rpu) (0)|[ + k|9 (p — Rup)(0)]] < Ch™. (4.25)

Proof. By comparing (M) with (M), and comparing (@) with (), we obtain
as((u = Rpu)(0),vy) + ((u— Rpu)(0), vi)s

+ap (9 — R 0)(0) — A(Rapu(0)ufl, va) — b(9ip — R 0,p)(0) — A(Rana(0))p]; , vi)
+ ((9u — RP9,u)(0) — A(Rpu(0))uf ,vi,) =0 Vvj, € X} (4.26)

b (an, (9 — RYOu)(0) ~ )\(Rshu(O))ufﬁo Van € Qp (4.27)
Then, by comparing ()—() with ()—(), we find the following relations:

8 (u — Rpu)(0) = (9yu — RPdu) (0) — A(Repu(0))uf,

0:(p — Rip)(0) = (9 — RY,9:p)(0) — A(Ran(0))pj: -

Since |A(Rgpu(0))] < Ch™' and |Juf|| + |uf||s + |Ip]|| < C, the result_of this lemma
follows from the estimates of the Dirichlet Stokes—Ritz projection in Lemma (with u and
p replaced by d;u and O;p therein).

4.3. Error estimates of the coupled Ritz projection for ¢t > 0. In this subsection,
using the results in the subsection we present the proof of the H'-error estimates and
L2-error estimates results in Theorem B.1[.

We first present H'-norm error estimates for the coupled Ritz projection by employing
the auxiliary Ritz projections R; and RP defined in (@) and (@), respectively. From
(@) we see that

RPu— Rju=PR)u— Ryu=—-AR;u)n, with A\(Rju) € R,
where the last equality follows from relation (@) Therefore, with the relation above we
have

as(u - Rfua Vh) + (11 - RhDua Vh)E
=as(u— Ryu,vy) + (u— Rju,vy)s + AR ) (as(np, vi) + (np, vi)s)
< Chr+1th”H1(E) < Ch”‘+1/2||Vh|H1/2%S C’h’l“+1/2||vh||Hl vvh c Xz’ (428)

where we have used the inverse inequality in ( ) and the trace inequality in the derivation
of the last two inequalities. Moreover, since the auxiliary Ritz projection R defined in (}.3)
is time-independent, it follows that (9, RPu, 0;RPp) = (RP8,u, RPd;p). Therefore, in view
of estimate (4.9) for the Dirichlet Stokes—Ritz projection, the following estimate can be
found:

as(u— RPu,vp) + (u— RPu,vp)s +ap(0:(u — RPw), vy,)
—b(0:(p — RPp),vi) + (0:(u — RPu),vy,) < Ch"||villmr Vv € X5, (4.29)
By considering the difference between (E.IGQ) and (M), we can derive the following in-
equality:
as(Rpu — RPa,vy) + (Rpu — RPw, vi)s + ap (0 (Rpu — RPa), vy,)
— b(0:(Rup — REp), vi) + (0u(Rpu — RPw), vy) < CR™||vpllmn Vv € X5, (4.30)
Then, choosing vy, = 8t(Rhu—R}?u) in () and using relation b(@t(th—pr), O (Rpu—
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RPu)) = 0 (which follows from (@) and ())7 using Young’s inequality
Ch™||0s(Rpu — RPW) || g < Ce™ 'A% + ¢]|0;(Rpu — RP)|3
with a small constant € so that e[|0;(R,u— RPu)||%,: can be absorbed by the left hand side
of (), we obtain
[Rpu — R ul|p gri(s) + |10, (Rpa — R a)|| g2
< Ch™ + C|[(Rpu — Ry w)(0)||s + Cll(Ryu — R w)(0)]|2 < CR7, (4.31)
where the last inequality uses the estimates in Lemma @ and Lemma @ Then, by applying

the inf-sup condition in () which involves || v g1(x) in the denominator), we can obtain
the following estimate from (}.30):

10:(Bup — R )| < CllRpu — R ull () + Cll0c(Rpa — RPw)l| g + CH7, - (4.32)
which combined with the estimate in (), leads to the following estimate:
10:(Rnp — R)p)l| 2> < Ch'. (4.33)

Therefore, using an additional triangle inequality, the estimates in ()f() can be
written as follows:

||8t(Rhu — u)HL2H1 + ||Rhll — u”LooHl(z) + ||8t(th — p)HL2L2 < Ch". (434)
With the initial estimates in Lemma Y.3, the estimate of ||0;(Rpu — u)|| 25 above further
implies that
IRru —u||pe gt < |[(Rpu—u)(0)|| g1 + C||0:(Rru —u)||p2gr < CR”. (4.35)
Since 0;(Rpn —n) = Rpu — u on the boundary ¥, by using the Newton—Leibniz formula
with respect to t € [0, 7], the estimate in () and initial estimates in Lemma {.3, we have
[1Rrn = 1l 2o sy < [(Bam = 0)(0)|[z2(s) + CllO( R — M) L282()

< [(Run =) (Ol (s) + CllRpa — ul| 21 (syy < CR™. (4.36)

In the same way, from () and initial estimates in Lemma we have
| Rup = pllze12 < Cll(Rup = p)(O)| + Cll Rp — ull 212 < O (4.37)

Thus we can summarize what we have proved as follows:
|Rhu —ul[pee g1 + || Rpu — uHLOOHl(Z) + || Rnp — pllpoer2
+ [1Ban = 0l e i) + 10 (Bru = w)|[ 21 + [[0c(Rrp — p)| 202 < Ch7. (4.38)

A

Moreover, by differentiating ({.16) with respect to time, we have
as(&g(Rhu — 11)7 Vh) =+ (3t(Rhu — 11)7 Vh)Z 4+ af(ﬁf(Rhu — u), Vh)
- b(atQ(th - p)a Vh) + (8§(Rhu - U.), Vh) =0 Vv, € X;;a (4393‘)
b(qn, O} (Rpu —u)) =0 Yan € Q7. (4.39b)
Similarly, by choosing v, = 9?(R,u — RPu) in () and using the same approach as
above with the initial value estimates in (4.25), we can obtain the following estimate (the
details are omitted):

0:(Rpu —u)|[ e g1 + [|0:(Rpa — 0| poe sy + 1 00(Rnp — p) || oo 2
+107 (Rha — 0|21 + (|07 (Rpp — p)ll 22 < Ch7. (4.40)

() and () establish the H!-norm error estimates for the coupled non-stationary Ritz
projection defined in (B.3).

We then present L2-norm error estimates for the coupled non-stationary Ritz projection.
To this end, we introduce the following dual problem:

—Lsp+ ¢ =00(¢,g)n+f inX (4.41a)
—-V.o(9,q) +¢6=0 in Q (4.41Db)
V.$=0 in Q, (4.41c)

with the initial condition o(¢,¢)n =0 at ¢t = T. Problem () can be equivalently written
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as a backward evolution equation of £ = o(¢, ¢)n, i.e.,
—LNEF+NE—0E =1 on X x[0,T), with initial condition &(T) =0, (4.42)

where N : H=2 (%)% — Hz ()% is the Neumann-to-Dirichlet map associated to the Stokes
equations. The existence, uniqueness and regularity of solutions to (@) are presented in
the following lemma, for which the proof is given in the Appendix A of [30] by utilizing and
analyzing ()
Lemma 4.5. Problem () has a unique solution which satisfies the following estimate:
18ll2m2 + 10l 2m2(s) + gl z2a + [|0(, @) (O)n]ls < C|f|[12r2(s). (4.43)
By choosing f = R,n — 1 and, testing equations (IZEI) and (M) with Rpn —n and
Rpu — u, respectively, and using relation 9;(Rpn — 1) = Rpu — u on X, we have

a’S(¢7 Rhﬂ - 77) + (¢> Rhﬂ - 77)2 + a’f(¢7 Rpu — 11) - b(q7 Rpu — u) + (¢7 Rpu — U.)

d
= 2(0(8,0) -, Ry = s + | Run = nlfz.

In view of the definition of the non-stationary Ritz projection in (@), we can subtract Ij,¢
from ¢ in the inequality above by generating an additional remainder b(Rpp — p, ® — I¢).
This leads to the following result in view of the estimate in ()

d

2 (0(8.a)n, R —n)s + || Run — % = as(¢ — Ing, Run —n) + (¢ — Ing, R — 0)x
+ap(¢ — Ind, Rpu—u) — b(q — Ing, Rpu —u) + (¢ — I¢, Rpyu — u) — b(Rpp — p, ¢ — 11,9)
< O (|9l e + ol a2 (s + llallan)-

Since ||(Rr,n—n)(0)||s < Ch™1 (see Lemma @), the inequality above leads to the following
result:

| Rpm — 77||2L2L2(Z)
< ChH Run = 1l 222(m) + [[RA1(0) = n(0) ]| L2y [ (06, @)0) (0)]| L2 ()
< O Ry =l c2r2(s) + O™ Ryn — 1|22,
and therefore
[Rnn = nll 22 (s) < CR™HE (4.44)

By using the same approach, choosing f = Ryu —u and f = 9;(Rpu — u) in (),
respectively, the following result can be shown (the details are omitted):

HRhu — u”LZLz(E) + ||8t(Rhu - u)HLsz(E) < Chr+1. (445)
This also implies, via the Newton—Leibniz formula in time,
[Ri1 = nll Lo r2(m) + [|Rh0 — a2y < CAHE (4.46)

Furthermore, we consider a dual problem defined by

—V-0(¢,q) +é=Rpu—u inQ
V=0 in 0 (4.47)
¢ls =0, qe L3,

which satisfies the following standard H? regularity estimate

181l + llallmr + lo(é, @)nllz2(s) < C|[Rpu —ul,
where the term |[|o(#, ¢)n|[2(x) is included on the left-hand side because it is actually
bounded by ||@| g2 + ||g||z1- Then, testing () with Rpu — u, we have
[Rpu — ul?
= a’f(¢a Rhu - u) - b(Qa Rhu - u) + (¢7 Rhu - u) - (0'(¢, q)l’l, Rhu - u)Z
=af(¢— Inp,Rpu—u) — b(q — Ing, Rpu —u) — (6(¢, ¢)n, Rpu —u)s
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+ (¢ — Ing, Rpu —u) — b(Rpp — p, ¢ — [1,$) (as a result of (@) with vy, = 11,0, qn = Inq)
< Ch([|ll 2 + llall ) ([[Rpu = all g1 + [[Rep — pl])
+ [lo(¢,9) - ns[[Ryu —ulls
< Ch™ Y| Rpu — u|| + C||Rpu — ul|||[ Rpu — ul|s.
The last inequality implies, in combination with (), the following result:
|Rpu —ul < CA™ L, (4.48)
By using the same approach, replacing Rpu — u by 9;(Rpu — u) in (), the following
estimate can be shown (the details are omitted):
0:(Rpu — )| 212 < CA™TT. (4.49)
The proof of Theorem @ is complete. |

5. Numerical examples. In this section, we present numerical tests to support the
theoretical analysis in this article and to show the efficiency of the proposed algorithm. For
2D numerical examples, the operator Lsn = Cy0..n — C1n on the interface X is considered.
All computations are performed by the finite element package NGSolve; see [36].

Example 5.1. To test the convergence rate of the algorithm, onsider an artificial
example of two-dimensional thin structure models given in ( )lﬁ) with extra source
terms such that the exact solution is given by
uy = 4sin(27z) sin(27y) sin(t),
ug = 4(cos(2mx) cos(2my)) sin(t),
p = 8(cos(4rz) — cos(4my)) sin(t),
m =0, ny = —4cos(2mz)cos(t).

First, we examine this problem involving left/right-side periodic boundary conditions
and top/bottom interfaces in the domain © = [0,2] x [0,1]. A uniform triangular partition
is employed, featuring M + 1 vertices in the y-direction and 2M + 1 vertices in the x-
direction, where h = 1/M. The classical lowest-order Taylor—-Hood element is utilized for
spatial discretization. For simplicity, we set all involved parameters to 1. Our algorithm
is applied to solve the system with M = 8,16,32, £ = h3, and the terminal time 7 = 0.1.
The numerical results are presented in the Table @, which shows that the algorithm has
the third-order accuracy for the velocity and the displacement in the L2-norm, as well as
the second-order accuracy for the pressure in the L?-norm and the displacement in the
energy-norm. These numerical results align with our theoretical analysis.

TABLE 5.1
The convergence order of the algorithm under periodic boundary conditions

TaylorHood elements (r = 4%) [lu™ —wi[ [p¥ —pill 0" —ni'lz  lIn"™ —nils
h=1/8 6.852¢-3  1A403e-1  1.32de-2 8.075e-1
h=1/16 6.848e-4  2.691e-2  1.64de-3 2.029e-1
h=1/32 7.937e5 62973 2.052c-4 5.079¢-2
order 3.10 2.10 3.00 2.00

Next, we test our algorithm for the case of the left /right-side Dirichlet boundary condi-
tions, using the same configuration as previously described. Both the lowest-order Taylor-
Hood element and the MINI element are employed for spatial discretization. We set 7 = h3
and 7 = h? for the Taylor-Hood element and the MINI element, respectively. The numerical
results are displayed in the Table p.2. As observed in the Table p.2, the algorithm, when
paired with both the Taylor—-Hood element and the MINI element, yields numerical results
exhibiting optimal convergence orders for u and 7.

Example 5.2. We consider a benchmark model which was studied by many researchers
[8,9,15,17,21,82,85]. the quantities will be given in the CGS system of units [[15]. The
model is described by J&I)f(ﬁ) in Q = [0,5] x [0,0.5] with the physical parameters: fluid

21



TABLE 5.2
The convergence order of the algorithm under Dirichlet boundary conditions

Taylor Hood elements (7 =A%) [lu® —wY[| [lpY —pi'll 0™ —ni'lls 0™ —ni'lls
h=1/8 4.553e-3 1.354e-1 1.313e-2 8.069¢-1
h=1/16 6.009e-4 2.775e-2 1.645¢e-3 2.029e-1
h=1/32 7.693e-5 6.470e-3 2.055e-4 5.079e-2
order 2.97 2.10 3.00 2.00
MINT elements (7 = h?) ™ =il [ [p™ =i 0™ =m0 s 0™ —ni s
h=1/16 1.324e-2 3.186e-1 7.971e-2 4.001e0
h=1/32 3.349¢-3 1.192e-1 1.999¢-2 2.003e0
h=1/64 8.327e-4 4.641e-2 5.001e-3 1.002¢0
order 2.00 1.36 2.00 1.00

density py = 1, fluid viscosity p = 0.035, solid density ps = 1.1, the thickness of wall
es = 0.1, Young’s modulus E = 0.75 x 106, Poisson’s ratio ¢ = 0.5 and
Feg Feg
Co=7——, Ci=—-%"—""—
"7 21+0) ' R21-02)
where R = 0.5 is the width of the domain 2. The boundary conditions on the in/out-flow
sides (z = 0,2 = 5) are defined by o(u,p)n = —pj, /ouen Where

Pmax 27t .
Pin (1) = { 5 |1~ cos (tmax)} HEStmax (1) =0 Ve (0,T].
0 if t > tmax

with pmax = 1.3333 x 10* and tymax = 0.003. The top and bottom sides of Q are thin
structures, and the fluid is initially at rest. We take a uniform triangular partition with
M + 1 vertices in y-direction and 10M + 1 vertices in z-direction (h = 1/M), and solve the
system by our algorithm where the lowest-order Taylor—-Hood finite element approximation
is used with the spatial mesh size h = 1/64 (M = 64), the temporal step size T = h?
and the parameter 8 = 0.5. We present the contour of pressure p in the Figure @ at
t = 0.003,0.009,0.016,0.026 (from top to bottom). We can see a forward moving pressure
wave(red), which reaches the right-end of the domain and gets reflected. The reflected wave
is characterized by the different color(blue), which was also observed in | ,e@ g]

AF
N _F

i

Fig. 5.1. The contour of the pressure when t = 0.003,0.009,0.016,0.026 (from top to bottom)

arteries studied in [35]. The blood flow is modeled by the Navier-Stokes equation, while our
analysis was presented only for the model with the Stokes equation. The weak form of the
arterial wall model is:

pSES(nttu W)Z + Dl (’rlv W)E + DQ(ntv W)E + Es(Hs(n)ﬂ VSW)E = (_U(uvp)nv W)E
22

Example 5.3. é\fe consider an example of 3D blood flow simulation in common carotid
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for any w € S, where V denote the surface gradient on the interface 3 and
E Vam+Vin E
IT(n)

o
St 2 iy

for a linearly elastic isotropic structure. The metrical domain is a straight cylinder of

length 4 cm and radius 0.3 cm, see_the Fugure p.2. The hemodynamical parameters used in

this model are given in the Tableﬁ For the inlet and outlet boundary conditions, we set

RQ _ 7"2

u= (UD(t)T

The given data for up(t) and pou:(t), as shown in the Figure 5.2, are taken from [@]
Mmore realistic and delicate treatment of boundary conditions can be found in [L6].

,0,0) on Xy, and o(u,p)n = —po(t)n on Xy

le5.  ~
50 . 1.6%
—_ _— t)
@ 40 ol s
14 @
S 30 — Pout(t) <
£20 1238
[ =
51 1.0 %
0.0 0.2 0.4 0.6 0.8 1.0

One cardiac cycle(s)

Fig. 5.2. The geometrical domain(left) and the given data for up(t) and pout(t)(right)

TABLE 5.3
The hemodynamical parameters in the PDE model

Parameter Value | Parameter Value
Wall thickness €,(cm) 0.06 | Poisson’s ratio o 0.5
Fluid viscosity p(g/cms)  0.04 | Young’s modulo E(dyne/cm?) 2.6 -10°
Fluid density pf(g/cm?) 1 Coefficient D;(dyne/cm?) 6-10°
Wall density ps(g/cm?) 1.1 | Coefficient Dy(dynes/cm?) 2-10°

The fluid mesh used in this example consists of 11745 tetrahedra, and the structure
mesh consists of 3786 triangles. We utilize the P2 — P1 finite element approximation for
the velocity and pressure of the fluid, the P2 finite element approximation for the displace-
ment of the structure. For comparison, both classical monolithic scheme and the proposed
partitioned scheme are implemented to solve this example, where the parameter 5 = 0.5.
The initial velocity /pressure is the smooth constant extension of the inlet/outlet boundary
data at t = 0 for both schemes. The terminal time 7" = 3 s which corresponds to 3 cardiac
cycles. We have observed that the periodic pattern was established after 1 cardiac cycle.
Some comparison between monolithic and partitioned schemes is done. In the Figure @,
the magnitude of the radial displacement for the artery wall is shown at the interface point
(2,0.3,0) in the whole 3 cardiac cycles. In the Figures ﬁand , the axial velocity and the
pressure are presented at the center point (2,0,0) in the third cardiac cycle, respectively.
The waveforms of velocity and pressure are generally not be the same. The difference wave-
forms between velocity and pressure can be observed in the numerical results by comparing
Figure 5.4 and Figure 5.5.

6. Conclusion. We have proposed a new stable fully-discrete kinematically coupled
scheme which decouples fluid velocity from the structure displacement for solving a thin-
structure interaction problem described by (@%(B) To the best of our knowledge, the
optimal-order convergence in L? norm of spatially finite element methods for such problems
has not been established in the previous works. Our scheme in ()f() contains two
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Three cardiac cycles(s)

Fig. 5.3. Comparison of the radial displacement

50
240 —— monolithic:dt=1e-4
530 — partition:dt=5e-5
220
|9)
©10
20

2.0 2.2 2.4 2.6 2.8 3.0

The third cardiac cycle(s)
Fig. 5.4. Comparison of the azial velocity

NE le5
516 —— monolithic: dt =1e-4
$14 —— partition:dt=5e-5
©
D12
>
ﬁ 1.0
s 2.0 2.2 2.4 2.6 2.8 3.0

The third cardiac cycle(s)

Fig. 5.5. Comparison of the pressure

stabilization terms
n n
Ps€s <uhsh, T o(Vh,qn) - n)
T pS 6S > >

which guarantee the unconditional stability of the method, and an additional parameter
B > 0 which is helpful for us to prove optimal-order convergence in the L? norm for the fully
discrete finite element scheme. Moreover, we have developed a new approach for the nu-
merical analysis of such thin-structure interaction problems in terms of a newly introduced
coupled non-stationary Ritz projection, with rigorous analysis for its approximation prop-
erties through analyzing its dual problem, which turns out to be equivalent to a backward
evolution equation on the boundary 3, i.e.,

—LNE+NE—-06 =1 on X x[0,T), with initial condition &(T) = 0,

in terms of the Neumann-to-Dirichlet map A" : H~ 2 (%)% — Hz (%)% associated to the Stokes
equations. Although we have focused on the analysis for the specific kinematically coupled
scheme proposed in this article for a thin-structure interaction problem, the new approach
developed in this article, including the non-stationary Ritz projection and its approximation
properties, may be extended to many other fully-discrete monolithic and partitioned coupled
algorithms and to more general fluid-structure interaction models.

and ((az —oryom, T o - n)
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