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Abstract. An exponential type of convolution quadrature is proposed as a time-stepping method
for the nonlinear subdiffusion equation with bounded measurable initial data. The method combines
contour integral representation of the solution, quadrature approximation of contour integrals, multi-
step exponential integrators for ordinary differential equations, and locally refined stepsizes to resolve
the initial singularity. The proposed k-step exponential convolution quadrature can have kth-order
convergence for bounded measurable solutions of the nonlinear subdiffusion equation based on natural
regularity of the solution with bounded measurable initial data.
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1. Introduction. This article is concerned with the construction and analysis
of high-order time-stepping methods for the nonlinear subdiffusion equation

∂α
t u−∆u = f(u) in Ω× (0, T ],

u = 0 on ∂Ω× (0, T ],

u(0) = u0 in Ω,

(1.1)

in a bounded Lipschitz domain Ω ⊂ Rd, with d ≥ 1, with a given smooth function
f : R → R and possibly nonsmooth initial value u0, where ∂α

t u denotes the Caputo
fractional time derivative of order α ∈ (0, 1) in time [13, p. 91], defined by

∂α
t u :=

1

Γ(1− α)

∫ t

0

(t− s)−α d

ds
u(s) ds, (1.2)

with Γ(z) =
∫∞
0

sz−1e−sds being the gamma function.
Subdiffusion equation in the form of (1.1) have generated much interest in devel-

oping stable and accurate numerical methods as well as rigorous numerical analysis,
due to its excellent modelling capability for various anomalously slow transport pro-
cesses. Correspondingly, many efficient time-stepping methods have been proposed
for solving the subdiffusion equations, including piecewise polynomial interpolation
methods (such as L1 and L2 schemes), discontinuous Galerkin methods (dG), and
convolution quadrature (CQ).

If the solution of the subdiffusion equation is sufficiently smooth (which requires
the initial value to be smooth and satisfying sufficiently many compatibility condi-
tions), then the L1 and L2 schemes, dG and CQ can all have desired high-order
accuracy in solving subdiffusion equations, depending on the degree of polynomials
used for generating the methods; see [10, 18, 24, 32, 27]. In this case, the error analysis
in these articles can also be extended to nonlinear subdiffusion problems by applying
some fractional versions of discrete Gronwall’s inequality; see [11, 16, 17].

If the initial data are in H1
0 (Ω)∩H2(Ω), but do not satisfy additional compatibility

conditions, then the solutions of subdiffusion equations often have weak singularity
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at t = 0, satisfying the following estimate:
∥∂m

t u∥L2 ≤ Cmtα−m for m ≥ 0, (1.3)
where Cm is some constant that may depend on m. In this case, the L1, L2 and dG
methods can still achieve the desired order of convergence by using variable stepsizes
locally refined at t = 0; see [14, 15, 27, 28, 31]. If the initial value is in Ḣ3(Ω) (a
little smoother than H1

0 (Ω)∩H2(Ω)), then it is shown in [5] that the spectral method
using the recently developed log-orthogonal functions can achieve arbitrarily high-
order accuracy. Similarly as the smooth case, the error analysis in these articles can
be extended to nonlinear subdiffusion equations by using some fractional versions of
discrete Gronwall’s inequality. As far as we know, the analysis of these methods for
nonsmooth initial data in L2(Ω) or L∞(Ω) still remains open.

For nonsmooth initial data in L2(Ω) or L∞(Ω) (without any differentiability), the
regularity result in (1.3) no longer holds and should be replaced by a weaker one (see
[12]):

∥∂m
t u∥L2 ≤ Cmt−m for m ≥ 0. (1.4)

In this case, the standard L1, L2, dG and CQ with uniform stepsizes generally have
first-order convergence; see [9, 25, 10, 34]. The error analysis of L1, L2 and dG with
variable stepsizes for nonsmooth initial data in L2(Ω) or L∞(Ω) under the regularity
condition (1.4) still remains open. For linear subdiffusion problems the L1, L2 and
CQ methods with proper initial correction using a uniform stepsize can regain the
desired high-order accuracy; see [10, 22, 34]. These methods, with initial corrections
and uniform stepsize, typically have the following error bound for some k ≥ 1:

∥u(tn)− un∥L2 ≤ Ct−k
n τk for a uniform stepsize τ , (1.5)

where C is some constant that is independent of the stepsize τ and tn. It is also known
that the algorithm in [3] based on Runge–Kutta CQ can have arbitrarily high-order
accuracy for linear subdiffusion problems. For these methods, the high-order accuracy
is achieved only when tn is away from zero (when the initial data are nonsmooth),
and the results do not hold for the nonlinear problem with nonsmooth initial data.
The main difficulty of constructing high-order methods for a nonlinear subdiffusion
problem with nonsmooth initial data is that the right-hand side f(u) becomes singular
at t = 0, and therefore the smoothness assumptions on the right-hand side in the
above-mentioned articles are not fulfilled.

For the nonlinear subdiffusion problem (1.1), the backward Euler CQ can have
first-order convergence for initial data with slight smoothness, i.e., u0 ∈ Ḣs(Ω) with
s > 0; see [1]. However, high-order CQs generally can not achieve the optimal order
of convergence. For example, high-order BDF CQs generally have at most (1+2α)th-
order convergence for initial data u0 ∈ H1

0 (Ω) ∩ C2(Ω), i.e.,
∥u(tn)− un∥L2 ≤ Ctα−s

n τs with s = min(k, 1 + 2α− ϵ), (1.6)
where ϵ can be arbitrarily small. This order of convergence agrees with the numerical
experiments, and was proved in [33] based on the regularity property

∥∂m
t u∥L∞ ≤ Cmtα−m for m ≥ 0, (1.7)

which holds for initial value u0 ∈ H1
0 (Ω)∩C2(Ω). Therefore, there is an order barrier

of high-order CQs for the nonlinear subdiffusion problem (due to the nonlinearity, in
addition to the low regularity). This is very different from the linear problem. For
nonsmooth initial data in L∞(Ω), the regularity result in (1.7) should be replaced by
the following weaker result:

∥∂m
t u∥L∞ ≤ Cmt−m for m ≥ 0. (1.8)

Under this regularity, the construction and analysis of high-order time-stepping meth-
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ods for the nonlinear subdiffusion problem still remain open, and will be addressed in
this article in the L∞ framework.

In this article, we propose a multistep exponential CQ for the nonlinear subdif-
fusion equation with initial data in L∞(Ω) based on contour integral representation
of the solution and multistep exponential integrators for some ordinary differential
equations appearing from the contour integral representation. The constructed k-step
exponential CQ uses locally refined stepsizes towards t = 0 to resolve the singular-
ity caused by nonsmooth initial data, and has the following properties that were not
possessed by the CQs in literature:

1. kth-order convergence can be achieved for the nonlinear problem in (1.1) with
nonsmooth initial data u0 ∈ L∞(Ω), where k can be arbitrarily large.

2. Uniformly high-order accuracy can be achieved for all tn ∈ (0, T ] for nons-
mooth initial data in L∞(Ω), not necessarily away from t = 0.

The method proposed in this article generalizes multistep exponential integrators for
nonlinear parabolic equations to nonlinear subdiffusion equations. The techniques
developed here can also be applied for approximating general convolution operators
by multistep exponential CQ.

The rest of this article is organized as follows. The construction of the time-
stepping method is presented in Section 2 based on contour integral representation
of the solution, quadrature approximation to the contour integrals, and a multistep
exponential integrator with locally refined stepsizes. The main theorem on the con-
vergence of the proposed method is presented at the end of Section 2. The proof of
the main theorem is presented in Section 3. Numerical examples are presented in
Section 4 to illustrate the accuracy of the proposed method for nonlinear subdiffusion
problems with nonsmooth initial data. Some conclusions and remarks are presented
in Section 5.

2. Construction of a multistep exponential CQ.

2.1. Notation and assumptions. We assume that f : R → R is a smooth
function and therefore locally Lipschitz continuous, but not necessarily globally Lip-
schitz continuous. For example, f(u) = u − u3 or f(u) = eu(1 − u2) are smooth but
not globally Lipschitz continuous with respect to u. Since f(u) may not be integrable
if u is unbounded, we require the initial value and solution to be bounded.

We say that u is a bounded mild solution of (1.1) if u ∈ C([0, T ];L2(Ω)) ∩
L∞(0, T ;L∞(Ω)) and satisfies the following integral equation:

u(t) = u0 +∆F (t)u0 +

∫ t

0

E(t− s)f(u(s))ds, ∀ t ∈ (0, T ], (2.1)

where F (t) and E(t) are the solution operators of the subdiffusion equation (see [11,
(3.12)]), defined as the inverse Laplace transform of the operators z−1(zα−∆)−1 and
(zα −∆)−1, respectively, i.e.,

F (t) :=
1

2πi

∫
Γφ,δ

eztz−1(zα −∆)−1 dz, (2.2)

E(t) :=
1

2πi

∫
Γφ,δ

ezt(zα −∆)−1 dz. (2.3)

In the expressions (2.2)–(2.3), the integration is over the following contour on the
complex plane (oriented with an increasing imaginary part):
Γφ,δ = Γδ

φ,δ∪Γ
φ
φ,δ := {z ∈ C : |z| = δ, | arg z| ≤ φ}∪{z ∈ C : z = ρe±iφ, ρ ≥ δ}, (2.4)

in which φ ∈ (π2 , π) and δ > 0 can be any fixed number. Since the integrand is
analytic in z, the contour Γφ,δ can be deformed on the complement of the spectrum
of the Dirichlet Laplacian operator.
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It can be proved that the resolvent operator (z−∆)−1 : L∞(Ω) → L∞(Ω) satisfies
the following estimate (a proof of this result can be found in Appendix):

∥(z −∆)−1v∥L∞ ≤ Cφ|z|−1∥v∥L∞ ∀ z ∈ Σφ, φ ∈ (π/2, π), ∀ v ∈ L∞(Ω), (2.5)
where Σφ = {z ∈ C\{0} : |arg(z)| ≤ φ} is a sector on the complex plane.

Remark 2.1. If f is globally Lipschitz continuous, then the existence and unique-
ness of a bounded mild solution satisfying (2.1) can be proved exactly as in [11, Proof
of Theorem 3.1, Step 1] by using (A.3)–(A.4) and the Banach fixed-point argument
(simply replacing X by L∞(Ω) in [11, Proof of Theorem 3.1, Step 1]). If f is not
globally Lipschitz continuous but is the derivative of a double well potential, such as
f(u) = u− u3 (with two zeros at ±1), then the maximum principle of time-fractional
equations (see [35, Theorems 3.1–3.2] and [23, Theorem 2.1]) guarantees the existence
and uniqueness of a bounded solution (e.g., |u| ≤ 1 for the solution of the nonlinear
subdiffusion equation with f(u) = u− u3).

In this article, we assume that the nonlinear subdiffusion problem (1.1) has a
bounded mild solution and construct a high-order method for approximating the
bounded mild solution. Throughout this article, we denote by φ ∈ (π2 , π) a fixed
angle, and denote by C a generic positive constant that may be different at different
occurrences, but independent of tn ∈ [0, T ] and the stepsize τn = tn − tn−1.

2.2. Quadrature approximation of the solution. It is known that the Laplace
transform in time of a function g : [0,∞) → R is defined as ĝ(z) :=

∫∞
0

e−zsg(s)ds.
The inverse Laplace transform has the following expression:

g(t) =
1

2πi

∫
Re(z)=σ

eztĝ(z) dz, (2.6)

where σ is any positive number. If we denote g(t) := f(u(t)) and take the Laplace
transform of (2.1) in time, then we obtain the following expression:

û(z) = zα−1(zα −∆)−1u0 + (zα −∆)−1ĝ(z) ∀ z ∈ Σφ. (2.7)
By converting the expression back to the time variable through the inverse Laplace
transform, we obtain

u(t) =
1

2πi

∫
Re(z)=σ

eztzα−1(zα −∆)−1u0dz +
1

2πi

∫
Re(z)=σ

ezt(zα −∆)−1ĝ(z)dz,

(2.8)
where σ is any positive number.

Since setting g(s) = 0 for s ≥ t does not affect the solution at time t, the above
expression implies that

u(t) =
1

2πi

∫
Re(z)=σ

eztzα−1(zα −∆)−1u0dz

+
1

2πi

∫
Re(z)=σ

(zα −∆)−1

∫ t

0

ez(t−s)g(s)dsdz. (2.9)

This type of expressions for the solution avoids the use of ĝ and was used in [20, 26].
In this paper we focus on the solution of (1.1) in a finite time interval [0, T ]. Without
loss of generality, we can extend g(t) = f(u(t)) to t ∈ (T,∞) with compact support
without affecting the solution on [0, T ]. For such extended g(t) we can perform Laplace
transform in (2.6) and derive the expression in (2.9) for t ∈ [0, T ], which actually does
not depend on the extension of g(t) to t ∈ (T,∞).

Since the integrand in (2.9) is analytic in z and has polynomial growth as |z| → ∞
for Re(z) ≤ σ, we can deform the contour of integration as in [11, 20], from the vertical
line Re(z) = σ to the contour

Γλ = {λ(1− sin(β + is)) : s ∈ R} ⊂ Σφ, with β ∈
(
0, φ− π

2

)
, (2.10)
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where the parameter λ is to be determined later. As shown in Figure 2.1 (cf. [19,
Figure 1]), the contour Γλ is intermediate between two sectors of angles β+ π

2 and φ.

Fig. 2.1. Location of the contour Γλ in (2.10).

By substituting g(s) = f(u(s)) into the expression (2.9), we obtain

u(t) =
1

2πi

∫
Γλ

eztzα−1(zα −∆)−1u0dz +
1

2πi

∫
Γλ

(zα −∆)−1

∫ t

0

ez(t−s)f(u(s))dsdz

=
1

2πi

∫
Γλ

eztzα−1(zα −∆)−1u0dz +
1

2πi

∫
Γλ

(zα −∆)−1y(z, t)dz, (2.11)

where

y(z, t) :=

∫ t

0

ez(t−s)f(u(s))ds. (2.12)

In [19, Theorem 2.1] it is shown that the first integral in (2.11) can be approxi-
mated by a quadrature, i.e.,

1

2πi

∫
Γλ

etzzα−1(zα −∆)−1u0dz =

M∑
j=−M

wj(t)e
tzj(t)zα−1

j (t)(zαj (t)−∆)−1u0 + E1,q(t),

(2.13)
where quadrature weights and quadrature nodes are given by

wj(t) = − h

2πi
ζ ′(jh) and zj(t) = ζ(jh), with ζ(s) = λ(t)(1− sin(β + is)) for s ∈ R,

(2.14)
with

h =
a (θ)

M
, λ(t) =

2πdM (1− θ)

t a (θ)

a(θ) = arccosh

(
Λ

(1− θ) sin(β)

)
, θ = 1− 1

M
and d ∈ (0,

π

2
− β).

In [19, Theorem 2.1] it is shown that the above quadrature has exponential conver-
gence with respect to M (the number of quadrature nodes), i.e.,

∥E1,q(t)∥L∞ ≤ Ce−M/C . (2.15)

The second integral on the right-hand side of (2.11) can also be approximated by
5



a quadrature:

1

2πi

∫
Γλ

(zα −∆)−1y(z, t)dz =

M∑
j=−M

w̃j(z̃
α
j −∆)−1y(z̃j , t) + E2,q(t), (2.16)

with weights and nodes given by

w̃j = − h̃

2πi
ζ̃ ′(jh̃), z̃j = ζ̃(jh̃), h̃ =

√
2πd

αM
, (2.17)

where ζ̃(s) = λ̃(1− sin(β+ is)) and λ̃ is any fixed positive number. In Lemma 3.3 we
prove the following error bound for the remainder in (2.16):

∥E2,q(t)∥L∞ ≤ Ce−
√
2πdαM . (2.18)

Then, substituting (2.13) and (2.16) into (2.11), we obtain the following quadrature
approximation of the solution:

u(t) =

M∑
j=−M

wj(t)e
tzj(t)zα−1

j (t)(zαj (t)−∆)−1u0 +

M∑
j=−M

w̃j(z̃
α
j −∆)−1y(z̃j , t)

+ E1,q(t) + E2,q(t). (2.19)

In the next subsection, we propose a parallel multistep exponential integrator for
computing y(z̃j , tn) from the past values u(tn−j), j = 1, . . . , k. Then the computed
values of y(z̃j , tn) can be substituted into (2.19) to yield the solution u(tn). This
would yield a multistep method for the subdiffusion equation.

Remark 2.2. In [7], the solution of linear parabolic equation ∂tu(t) + Au(t) =
f(t), with initial condition u(0) = u0, is represented by

u(t) =
1

2πi

∫
ΓI

e−zt

[
(zI −A)−1 − 1

z
I

]
u0dz

+

∫ t

0

1

2πi

∫
ΓI

e−z(t−s)

[
(zI −A)−1 − 1

z
I

]
f(s)dzds,

where ΓI is some hyperbola contour on the complex plane. The two contour integrals
are discretized in [7] by quadratures, which are shown to have exponential convergence
O(e−c

√
M ) under the condition that f(t) ∈ D(Aα) has an analytic extension f(z) to

a sector. The nonlinear subdiffusion problem considered in the current article differs
from [7] significantly in that f(u) depends nonlinearly on u (instead of t). Therefore,
f(u) is singular at t = 0 and does not satisfy the conditions in [7].

2.3. The time-stepping method. Let k be any fixed positive integer, and let
γ ∈ (1− 1

k , 1) be a given constant. We consider a partition 0 = t0 < t1 < · · · < tN = T
of the time interval [0, T ] with stepsize

τ1 = τ2 = T
( τ
T

) 1
1−γ and τn = tn − tn−1 ∼

( tn−1

T

)γ
τ for n ≥ 3, (2.20)

where τ is the maximal stepsize, and ‘∼’ means equivalent magnitude (up to a constant
multiple). The stepsizes defined in this way have the following properties:

1. τn ∼ τn−1 for two consecutive stepsizes.
2. τ1 ∼ τ

1
1−γ , and τn = O(τ

1
1−γ ) = O(τk) for the starting time levels with

n = 1, . . . , k − 1. Hence, the starting stepsize is much smaller than the
maximal stepsize. This can resolve the solution’s singularity at t = 0.

3. The total number of time levels is O(T/τ). Hence, the total computational
cost is equivalent to using a uniform stepsize τ .

From the definition of y(z, t) in (2.12), it is straightforward to verify that y(z, t)
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satisfies the following ordinary differential equation:
∂ty(z, t) = zy(z, t) + f(u(t)). (2.21)

By the Duhamel formula of ordinary differential equations, the function y(z, t) has
the following expression:

y(z, tn) = ezτny(z, tn−1) +

∫ tn

tn−1

ez(tn−s)f(u(s))ds. (2.22)

In this expression we further approximate f(u(s)) by its k-step extrapolation

f(u(s)) =

k∑
i=1

Lni(s)f(u(tn−i))+En
f (s) =: Iτf(u)(s)+En

f (s) for s ∈ (tn−1, tn] and n ≥ k,

where Lni(s) is the unique polynomial of degree k − 1 such that
Lni(tn−j) = δij , j = 1, 2, . . . , k.

Then we obtain

y(z, tn) =ezτny(z, tn−1) + eztn
k∑

i=1

(∫ tn

tn−1

e−zsLni(s)ds

)
f(u(tn−i))

+

∫ tn

tn−1

ez(tn−s)En
f (s)ds. (2.23)

In view of (2.19) and (2.23), we propose the following time-stepping method for
the semilinear subdiffusion equation (1.1): For n ≥ k we define

yn(z) = ezτnyn−1(z) +

k∑
i=1

(∫ tn

tn−1

ez(tn−s)Lni(s)ds

)
f(un−i) at z = z̃j , (2.24)

un =

M∑
j=−M

wj(tn)e
zj(tn)tnzα−1

j (tn)(z
α
j (tn)−∆)−1u0 +

M∑
j=−M

w̃j(z̃
α
j −∆)−1yn(z̃j).

(2.25)
For n = 1, . . . , k − 1, we define

yn(z) = ezτnyn−1(z) +

∫ tn

tn−1

ez(tn−s)f(un−1)ds at z = z̃j , (2.26)

un =
M∑

j=−M

wj(tn)e
zj(tn)tnzα−1

j (tn)(z
α
j (tn)−∆)−1u0 +

M∑
j=−M

w̃j(z̃
α
j −∆)−1yn(z̃j).

(2.27)
Since τn = O(τk) for n = 1, . . . , k − 1, the exponential Euler scheme in (2.26)–(2.27)
can keep the errors of the numerical solution within O(τk) at the starting k − 1 time
levels.

Remark 2.3. It is known that the CQs generated by multistep methods and
Runge–Kutta methods are equivalent to approximating the function y(z, t) in (2.11) by
solving (2.21) with the corresponding multistep methods and Runge–Kutta methods.
In this article, we approximate the function y(z, t) in (2.11) by solving (2.21) with
a multistep exponential integrator with variable stepsizes, locally refined at t = 0 to
resolve the singularity caused by nonsmooth initial data. Hence, the proposed method
can be regarded as an exponential type CQ. In [21, equation (2.7)], the following
method is used to approximate y(tn+1):

yn+1 = eτnλyn + h

∫ 1

0

e(1−θ)τnλ (θg(tn+1) + (1− θ)g(tn)) dθ,
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which is the exponential integrator obtained by approximating g(t) with its linear
interpolation on [tn, tn+1]. The function g(t) is assumed to be smooth in [21].

The main theoretical results of this article are presented in the following theorem.
Theorem 2.1. Let f : R → R be a smooth function and u0 ∈ L∞(Ω), and

let the parameter γ in the stepsize choice (2.20) satisfy 1 − 1
k < γ < 1. If u ∈

C([0, T ];L2(Ω)) ∩ L∞(0, T ;L∞(Ω)) is a bounded mild solution of (1.1) satisfying
(2.1), then there exists a positive constant τ∗ such that when τ ≤ τ∗ the numerical
solution given by the method (2.24)–(2.27) has the following error bound:

∥u(tn)− un∥L∞ ≤ Ctα−1
n τk + Ce−M/C + Ce−

√
2πdαM for n = 1, . . . , N. (2.28)

If the parameter γ satisfies 1− α
k ≤ γ < 1, then the error bound can be improved to

∥u(tn)− un∥L∞ ≤ Cτk + Ce−M/C + Ce−
√
2πdαM for n = 1, . . . , N. (2.29)

Remark 2.4. The error bound (2.28) only requires choosing a parameter γ ∈
(1− 1

k , 1) independent of α ∈ (0, 1). The uniform error bound (2.29) requires choosing
a parameter γ ∈ (1− α

k , 1) depending on α ∈ (0, 1).
Remark 2.5. From Theorem 2.1 we see that the numerical solution can have an

error bound of O(τk) when

M ≥ k2

2πdα
| ln(1/τ)|2.

The quadrature in (2.27) requires solving 2M + 1 elliptic equations at every time
level. For real-valued u0 and f , it suffices to solve for M + 1 elliptic equations at
every time level based on the relation w−j(t) = wj(t) and w̃−j = w̃j . Since there are
O(τ−1) time levels in total for computing the numerical solutions in [0, T ], the total
computational cost would be O(τ−1| ln(1/τ)|2) for an error bound of O(τk) in the
L∞(Ω) norm. Hence, the numerical methods has almost kth-order convergence (up
to a logarithmic factor) for nonsmooth initial data in L∞(Ω).

3. Proof of Theorem 2.1. In this section, we prove the error bound (2.28) for
the proposed time-stepping method in (2.26)–(2.27). The error analysis is divided
into two parts, i.e., the regularity analysis of a bounded mild solution and the error
estimation that combines the stability and consistency analysis. The two parts are
presented in the following two subsections, respectively.

3.1. Regularity of a bounded mild solution. This section is devoted to a
regularity at positive time for the nonlinear problem (1.1) if the source function f is
smooth. The following estimates of the solution operators F (t) and E(t) defined in
(2.2)–(2.3) are crucial in proving the regularity of solutions.

Lemma 3.1. Let F̃ (t) = I + ∆F (t), where F (t) is defined in (2.2). Then the
following estimates hold:

∥∂j
t F̃ (t)∥L∞→L∞ ≤ Ct−j and ∥∂j

tE(t)∥L∞→L∞ ≤ Ctα−1−j for j ≥ 0. (3.1)

Proof. By using the expression of the solution operators in (2.2), we find that

∆F (t) =
1

2πi

∫
Γφ,δ

eztz−1∆(zα −∆)−1 dz

= − 1

2πi

∫
Γφ,δ

eztz−1 dz +
1

2πi

∫
Γφ,δ

eztzα−1(zα −∆)−1 dz

= − I +
1

2πi

∫
Γφ,δ

eztzα−1(zα −∆)−1 dz,
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where we have used the Cauchy integral formula to derive 1
2πi

∫
Γφ,δ

eztz−1 dz = I.
This identity above implies that

F̃ (t) =
1

2πi

∫
Γφ,δ

eztzα−1(zα −∆)−1 dz.

Hence, by differentiating this expression in time, we obtain

∂j
t F̃ (t) =

1

2πi

∫
Γφ,δ

eztzα+j−1(zα −∆)−1 dz. (3.2)

Then, using the resolvent estimate in (2.5), we have
∥(zα −∆)−1v∥L∞ ≤ Cφ|z|−α∥v∥L∞ ∀ z ∈ Σφ, ∀ v ∈ L∞(Ω). (3.3)

Substituting (3.3) into (3.2) yields that

∥∂j
t F̃ (t)∥L∞→L∞ ≤C

∫
Γφ,δ

eRe(z)t|z|j−1 |dz|

=C

∫
Γδ
φ,δ

eRe(z)t|z|j−1 |dz|+ C

∫
Γφ
φ,δ

eRe(z)t|z|j−1 |dz|

≤C

∫ φ

−φ

eδ cos(θ)tδj−1 δdθ + C

∫ ∞

δ

er cos(φ)trj−1 dr,

where we have decomposed the contour Γφ,δ into Γδ
φ,δ ∪Γφ

φ,δ as defined in (2.4). Note
that φ ∈ (π2 , π) is fixed and therefore cos(φ) < 0, it follows that er cos(φ)t = e−| cos(φ)|rt.
In addition, since the parameter δ > 0 in the contour Γφ,δ of (3.2) can be arbitrary,
choosing δ = t−1 yields

∥∂j
t F̃ (t)∥L∞→L∞ ≤C

∫ φ

−φ

ecos(θ)t−j dθ + C

∫ ∞

t−1

e−| cos(φ)|rtrj−1 dr

≤C

∫ φ

−φ

t−j dθ + Ct−j

∫ ∞

1

e−| cos(φ)|ρρj−1 dρ

≤Ct−j .

This proves the estimate for ∂j
t F̃ (t). The estimate for ∂j

tE(t) is similar and omitted.

By using the estimates in Lemma 3.1 we can prove the following theorem on the
regularity of bounded mild solutions.

Theorem 3.2. If f ∈ Ck(R) and u ∈ C([0, T ];L2(Ω)) ∩ L∞(0, T ;L∞(Ω)) is a
bounded mild solution of (1.1), then

∥∂k
t u(t)∥L∞ ≤ Ct−k for t ∈ (0, T ]. (3.4)

Proof. The mean value theorem says that

|f(u)− f(v)| =
∣∣∣∣( ∫ 1

0

f ′((1− θ)v + θu)dθ

)
(u− v)

∣∣∣∣ ≤ C max
|s|≤|u|+|v|

|f ′(s)| |u− v|,

which implies that
∥f(u)− f(v)∥L∞ ≤ C max

|s|≤∥u∥L∞+∥v∥L∞
|f ′(s)| ∥u− v∥L∞ .

From the expressions
d

dt
f(u(x, t)) = f ′(u)∂tu,

d2

dt2
f(u(x, t)) = f ′′(u)(∂tu)

2 + f ′(u)∂ttu,
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we see that the time derivatives of f(u) may have the following type of expressions:
dℓ

dtℓ
f(u(t)) =

∑
m1+···+mj≤ℓ

gm1,...,mj (u)∂
m1
t u(t) · · · ∂mj

t u(t) for ℓ ≥ 1, (3.5)

where gm1,...,mj (u) is some function of u and the summation extends over all possible
positive integers m1, · · · ,mj satisfying the constraint m1 + · · · +mj ≤ ℓ. In fact, if
(3.5) holds then differentiating it yields that it also holds for dℓ+1

dtℓ+1 f(u(t)). Hence,
by mathematical induction the expression (3.5) indeed holds for all ℓ ≥ 1. This
expression implies the following inequality:∥∥∥∥ dℓ

dtℓ
f(u(t))

∥∥∥∥
L∞

(3.6)

≤ Cf,u,ℓ

ℓ∑
j=1

∑
m1+···+mj≤ℓ

∥∂m1
t u(t)∥L∞ ∥∂m2

t u(t)∥L∞ · · · ∥∂mj

t u(t)∥L∞ for ℓ ≥ 1,

where Cf,u,ℓ is a constant depending on f , ∥u∥L∞ and ℓ, and the inner summation
extends over all possible positive integers m1, · · · ,mj satisfying the constraint m1 +
· · ·+mj ≤ ℓ. Since u ∈ L∞(0, T ;L∞(Ω)), the constant Cf,u,ℓ is bounded for 1 ≤ ℓ ≤ k.
Therefore we simply denote this constant by C.

By mathematical induction, we assume that for m = 0, . . . , ℓ − 1, the following
estimate holds (this is true for ℓ = 1):

∥∂m
t u(t)∥L∞ ≤ Ct−m, t ∈ (0, T ]. (3.7)

In the following, we prove that (3.7) also holds for m = ℓ. In fact, substituting (3.7)
into (3.6) yields∥∥∥∥ dm

dtm
f(u(t))

∥∥∥∥
L∞

≤ Ct−m, t ∈ (0, T ], for m = 0, . . . , ℓ− 1. (3.8)

By denoting F̃ (t) = I +∆F (t) and multiplying (2.1) by tℓ, we obtain

tℓu(t) = tℓF̃ (t)u0 +

∫ t

0

(t− s+ s)ℓE(t− s)f(u(s))ds

= tℓF̃ (t)u0 +

ℓ∑
j=0

(
ℓ
j

)∫ t

0

(t− s)jE(t− s)sℓ−jf(u(s))ds

=: tℓF̃ (t)u0 +

ℓ∑
j=0

(
ℓ
j

)
wℓ,j(t), (3.9)

with

wℓ,j(t) =

∫ t

0

gj(t, s)ds and gj(t, s) = (t− s)jE(t− s)sℓ−jf(u(s)). (3.10)

Since gj(t, s) contains a factor (t − s)j , the time derivative up to jth-order would
commute with the integral in (3.10). Therefore, differentiating (3.10) j times yields

∂j
twℓ,j(t) =

∫ t

0

∂j
t gj(t, s) ds

=

∫ t

0

∂j
t [(t− s)jE(t− s)]sℓ−jf(u(s))ds

=

∫ t

0

∂j
s

[
sjE(s)

]
(t− s)ℓ−jf(u(t− s)) ds (change of variable)

=:

∫ t

0

hℓ−j(t, s) ds. (3.11)
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Since the function hℓ−j(t, s) = ∂j
s

[
sjE(s)

]
(t − s)ℓ−jf(u(t − s)) contains a factor

(t− s)ℓ−j , the time derivative up to (ℓ− j)th-order would commute with the integral
on the right-hand side of (3.11). Therefore, differentiating (3.11) ℓ− j times yields

∂ℓ−j
t ∂j

twℓ,j(t) = ∂ℓ−j
t

∫ t

0

hℓ−j(t, s) ds =

∫ t

0

∂ℓ−j
t hℓ−j(t, s) ds,

which implies that

∂ℓ
twℓ,j(t) =

∫ t

0

∂j
s(s

jE(s))
dℓ−j

dtℓ−j
[(t− s)ℓ−jf(u(t− s))]ds, for 0 ≤ j ≤ ℓ.

As a result, we have

∥∂ℓ
twℓ,j(t)∥L∞ ≤

∫ t

0

C∥∂j
s(s

jE(s))∥L∞→L∞

∥∥∥∥ dℓ−j

dtℓ−j
[(t− s)ℓ−jf(u(t− s))]

∥∥∥∥
L∞

ds

≤
∫ t

0

Csα−1

∥∥∥∥ dℓ−j

dtℓ−j
[(t− s)ℓ−jf(u(t− s))]

∥∥∥∥
L∞

ds, (3.12)

where we have used the estimate ∥∂j
s(s

jE(s))∥L∞→L∞ ≤ Csα−1, which is a conse-
quence of the estimate in Lemma 3.1 and the product rule of differentiation.

If 1 ≤ j ≤ ℓ then substituting (3.8) into (3.12) yields
∥∂ℓ

twℓ,j(t)∥L∞ ≤ C, 1 ≤ j ≤ ℓ. (3.13)

If j = 0 then substituting (3.6) and (3.8) into (3.12) yields

∥∂ℓ
twℓ,0(t)∥L∞ ≤

∫ t

0

Csα−1

∥∥∥∥ dℓ

dtℓ
[(t− s)ℓf(u(t− s))]

∥∥∥∥
L∞

ds

≤
∫ t

0

Csα−1
ℓ∑

j=1

∥∥∥∥[(t− s)ℓ−j dℓ−j

dtℓ−j
f(u(t− s))]

∥∥∥∥
L∞

ds

+

∫ t

0

Csα−1

∥∥∥∥[(t− s)ℓ
dℓ

dtℓ
f(u(t− s))]

∥∥∥∥
L∞

ds (product rule)

≤ C +

∫ t

0

Csα−1

∥∥∥∥[(t− s)ℓ
dℓ

dtℓ
f(u(t− s))]

∥∥∥∥
L∞

ds. (3.14)

By considering the cases j ≥ 2 and j = 1 in (3.6), separately, we have∥∥∥∥ dℓ

dtℓ
f(u(t− s))

∥∥∥∥
L∞

≤ C∥∂ℓ
tu(t− s)∥L∞

+ C

ℓ∑
j=2

∑
m1+···+mj≤ℓ

∥∂m1
t u(t− s)∥L∞ ∥∂m2

t u(t− s)∥L∞ · · · ∥∂mj

t u(t− s)∥L∞

≤ C(t− s)−ℓ + C∥∂ℓ
tu(t− s)∥L∞ .

Substituting the inequality above into (3.14), we obtain

∥∂ℓ
twℓ,0(t)∥L∞ ≤ C +

∫ t

0

Csα−1∥(t− s)ℓ∂ℓ
tu(t− s)∥L∞ds

= C +

∫ t

0

C(t− s)α−1∥sℓ∂ℓ
su(s)∥L∞ds, (3.15)

where we have made a change of variable in deriving the last equality. Now substi-
tuting (3.13) and (3.15) into (3.9) yields

∥∂ℓ
t (t

ℓu(t))∥L∞ ≤ ∥∂ℓ
t (t

ℓF̃ (t)u0)∥L∞ +

ℓ∑
j=0

(
ℓ
j

)
∥∂ℓ

twℓ,j(t)∥L∞
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≤ C +

∫ t

0

C(t− s)α−1∥sℓ∂ℓ
tu(s)∥L∞ds, (3.16)

where we have used the first estimate in Lemma 3.1 in deriving the last inequality.

By using the product rule we can derive that

∥tℓ∂ℓ
tu(t)∥L∞ ≤ ∥∂ℓ

t (t
ℓu(t))∥L∞ + C

ℓ∑
j=1

∥tℓ−j∂ℓ−j
t u(t)∥L∞ ≤ ∥∂ℓ

t (t
ℓu(t))∥L∞ + C,

where we have used the induction assumption (3.7) in the last inequality. The above
inequality and (3.16) imply

∥tℓ∂ℓ
tu(t)∥L∞ ≤ C +

∫ t

0

C(t− s)α−1∥sℓ∂ℓ
tu(s)∥L∞ds. (3.17)

By using Gronwall’s inequality, we derive
∥tℓ∂ℓ

tu(t)∥L∞ ≤ C, ∀ t ∈ (0, T ]. (3.18)
This proves (3.7) for m = ℓ, and therefore the mathematical induction is completed.

3.2. Error estimates. To this end, we first prove the error bound in (2.18) for
the quadrature approximation in (2.16).

Lemma 3.3. If ∥f(u)∥L∞(0, t;L∞) ≲ 1, then the quadrature error bound (2.18)
holds.

Remark 3.1. The following proof only uses the boundedness of ∥f(u)∥L∞(0, t;L∞),
without using other properties of the function f(u), hence the same quadrature error
bound holds when we replace f(u) by its extrapolation Îτf(u

(τ)).

Proof. If ∥f(u)∥L∞(0, t;L∞) ≲ 1 then

∥y(z, t)∥L∞ ≤
∫ t

0

eRe(z)(t−s)∥f(u(s))∥L∞ds ≲
∫ t

0

eRe(z)(t−s)ds

=
eRe(z)t − 1

Re(z)

≲ |z|−1 for z ∈ Γλ,

and therefore
∥(zα −∆)−1y(z, t)∥L∞ ≲ |z|−1−α for z ∈ Γλ. (3.19)

If s = x+ iy then sin(β+ is) = sin(β− y) cosh(x)+ i cos(β− y) sinh(x), and therefore
ζ̃(s) = λ̃(1− sin(β − y) cosh(x))− iλ̃ cos(β − y) sinh(x).

By considering the asymptotic behaviour of ζ̃(x+ iy) as |x| → ∞, it is easy to verify
that the function ζ̃ : R → C maps the strip

Dd = {s ∈ C : |Im(s)| ≤ d}, with any fixed d ∈
(
0,

π

2
− β

)
,

into some sector λ̃ + Σϕ for some ϕ ∈ (π2 , π). Since |ζ ′(s)| ∼ |ζ(s)| as |x| → ∞, the
estimate in (3.19) implies that the function g(s) = (ζ̃(s)α−∆)−1y(ζ̃(s), t)ζ̃ ′(s) decays
exponentially as x → ±∞, i.e., |g(x+ iy)| ≲ e−α|x| for x ∈ R and |y| ≤ d. Therefore,
the function g(s) satisfies the following conditions:

(i)
∫ d

−d
|g(x+ iy)|dy → 0 as x → ±∞,

(ii)
∫
R |g(x± id)|dx ≲ 1,

(iii) |g(x)| ≲ e−α|x| for x ∈ R.
12



Under these conditions, it is shown in [30, Theorem 3.4] that the trapezoidal rule with
mesh size h̃ =

√
2πd
αM has the following exponential convergence:∣∣∣∣ ∫

R
g(x)dx−

M∑
j=−M

g(jh̃)h̃

∣∣∣∣ ≤ Ce−
√
2πdαM .

This proves the desired result.
We denote by u(τ)(s) the numerical solution which is piecewise linear in time and

satisfies u(τ)(tn) = un for n = 1, . . . , N . Denote Îτf(u
(τ)) be the extrapolation of

f(u) by using the values of the numerical solution u(τ), i.e.,

Îτf(u
(τ))(s) =


k∑

i=1

Lni(s)f(un−i) for s ∈ (tn−1, tn], n ≥ k,

f(un−1) for s ∈ (tn−1, tn], 1 ≤ n ≤ k − 1.

Then we introduce an intermediate solution u∗
n defined by

yn(z) = ezτnyn−1(z) +

∫ tn

tn−1

ez(tn−s)Îτf(u
(τ))(s)ds for z ∈ Γλ, (3.20)

u∗
n =

1

2πi

∫
Γλ

eztzα−1(zα −∆)−1u0dz +
1

2πi

∫
Γλ̃

(zα −∆)−1yn(z)dz, (3.21)

and consider the error decomposition
en = ẽn + e∗n, with ẽn = u(tn)− u∗

n and e∗n = u∗
n − un. (3.22)

We shall estimate ẽn and e∗n separately.
To analyze the first part of the error, i.e., ẽn = u(tn) − u∗

n, we note that u∗
n

coincides with the solution u∗(tn) of the semilinear diffusion equation
∂α
t u

∗ −∆u∗ = Îτf(u
(τ)) in Ω× (0, T ],

u∗ = 0 on ∂Ω× (0, T ],

u∗(0) = u0 in Ω,

(3.23)

Meanwhile, we also note that the exact solution u satisfies the equation
∂α
t u−∆u = Îτf(u) + Ef in Ω× (0, T ],

u = 0 on ∂Ω× (0, T ],

u(0) = u0 in Ω,

(3.24)

where the remainder Ef = f(u) − Îτf(u) satisfies the following estimate for t ∈
(tn−1, tn],

∥Ef (t)∥L∞ ≤


Cτkn max

s∈[tn−k,tn]

∥∥∥∥ dk

dtk
f(u(s))

∥∥∥∥
L∞

≤ Cτkn t
−k
n for n ≥ k + 1,

C max
s∈[0,tk]

∥f(u(s))∥L∞ ≤ C ≤ Cτkn t
−k
n for n = k,

C max
s∈[0,tk−1]

∥f(u(s))∥L∞ ≤ C = Cτ1t
−1
1 for 1 ≤ n ≤ k − 1,

(3.25)
where we have used Theorem 3.2 and (3.8), and the property tn−k ∼ tn for n ≥ k+1
(as a result of the property τn ∼ τn−1).

By using the expression (2.1) for the solution of the subdiffusion equation, the
difference ẽ = u− u∗ can be represented by

ẽ(tn) =

∫ tn

0

E(tn − s)(Îτf(u)− Îτf(u
(τ)))ds+

∫ tn

0

E(tn − s)Ef (s)ds (3.26)
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=

(∫ tn

tk−1

E(tn − s)(Îτf(u)− Îτf(u
(τ)))ds+

∫ tn

tk−1

E(tn − s)Ef (s)ds
)

+

(∫ tk−1

0

E(tn − s)(Îτf(u)− Îτf(u
(τ)))ds+

∫ tk−1

0

E(tn − s)Ef (s)ds
)

=: Ẽn,1 + Ẽn,2 for n ≥ k.

By using the stepsize choice τj ∼ τtγj , we have

∥Ẽn,1∥L∞ ≤Cn,u(τ)

n∑
j=k

∫ tj

tj−1

(tn − s)α−1
k∑

i=1

∥ej−i∥L∞ds+ C

n∑
j=k

∫ tj

tj−1

(tn − s)α−1τkj t
−k
j ds

≤Cn,u(τ)

n∑
j=k

τj(tn − tj−1)
α−1

k∑
i=1

∥ej−i∥L∞ + Cτk
∫ tn

0

(tn − s)α−1sk(γ−1)ds

≤Cn,u(τ)

n∑
j=k

τj(tn − tj−1)
α−1

k∑
i=1

∥ej−i∥L∞

+ Cτktα+k(γ−1)
n when k(γ − 1) > −1, (3.27)

and

∥Ẽn,2∥L∞ ≤Cn,u(τ)

k−1∑
j=1

∫ tj

tj−1

(tn − s)α−1∥ej−1∥L∞ds+ C

k−1∑
j=1

∫ tj

tj−1

(tn − s)α−1τjt
−1
j ds

≤Cn,u(τ)

k−1∑
j=1

τj(tn − tj−1)
α−1∥ej−1∥L∞ + Ctα−1

n

k−1∑
j=1

τj

≤Cn,u(τ)

k−1∑
j=1

τj(tn − tj−1)
α−1∥ej−1∥L∞ + Ctα−1

n τk (3.28)

where Cn,u(τ) is some positive constant which depends on ∥uj−1∥L∞ for j = 1, . . . , n,
and the last inequality uses the property τj = O(τk) for the starting k−1 time levels.

We use mathematical induction by assuming that the following inequality holds:
∥ej∥L∞ = ∥uj − u(tj)∥L∞ ≤ 1 for 0 ≤ j ≤ m− 1. (3.29)

Since e0 = 0, this assumption holds for m = 1. Under this induction assumption, the
constants Cn,u(τ) in (3.27)–(3.28) are bounded for 1 ≤ n ≤ m. Since the starting k

steps are computed by the exponential Euler method with stepsize τn = O(τk) for
n = 1, . . . , k − 1, as a special case k = 1 of the analysis above, it follows that

∥ẽ(tn)∥L∞ ≤C

n∑
j=1

τj(tn − tj−1)
α−1∥ej−1∥L∞

+ Ctα−1
n τk when k(γ − 1) > −1, n ≥ 1. (3.30)

To analyze the second part of the error, i.e., e∗n = u∗
n − un, we consider the

difference between (3.21) and (2.27):

e∗n =
1

2πi

∫
Γλ

eztzα−1(zα −∆)−1u0dz −
M∑

j=−M

wjz
α−1
j (tn)(z

α
j (tn)−∆)−1u0

+
1

2πi

∫
Γλ

(zα −∆)−1yn(z)dz −
M∑

j=−M

w̃j(z̃
α
j −∆)−1yn(z̃j)

= E1,q(tn) + Ẽ2,q(tn). (3.31)
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Under the induction assumption (3.29), ∥f(uj)∥L∞ is bounded for 1 ≤ j ≤ m − 1,
and therefore

∥Îτf(u(τ))∥L∞(0, tn;L∞) ≤ C

n∑
j=1

∥f(uj−1)∥L∞ ≤ C, 1 ≤ n ≤ m.

Hence, as a result of (2.15) and Lemma 3.3, we have

∥E1,q(tn)∥L∞ + ∥Ẽ2,q(tn)∥L∞ ≤ Ce−M/C + Ce−
√
2πdαM . (3.32)

This implies that
∥e∗n∥L∞ ≤ Ce−M/C + Ce−

√
2πdαM for 1 ≤ n ≤ m. (3.33)

Combining (3.33) and (3.30), and using the triangle inequality, we have

∥en∥L∞ ≤Ctα−1
n τk + Ce−M/C + Ce−

√
2πdαM

+ C

n∑
j=1

τn(tn − tj−1)
α−1∥ej−1∥L∞ for 1 ≤ n ≤ m. (3.34)

By applying the discrete Gronwall’s inequality in Lemma B (see Appendix B), we
obtain

∥en∥L∞ ≤ Ctα−1
n τk + Ce−M/C + Ce−

√
2πdαM for 1 ≤ n ≤ m. (3.35)

Since tn ≥ τ1 ∼ τk, the above inequality furthermore implies that
∥em∥L∞ ≤ Cταk + Ce−M/C0 + Ce−

√
2πdαM .

There exist positive constant τ∗ and M∗ (independent of m) such that when τ ≤ τ∗
and M ≥ M∗, the inequality above implies

∥em∥ ≤ 1. (3.36)
This completes the mathematical induction on (3.29). Therefore, (3.36) holds for all
1 ≤ m ≤ N and, in particular, (3.35) holds for m = N . This proves the desired error
bound (2.28) under the conditions τ ≤ τ∗ and M ≥ M∗.

3.3. Proof of (2.29). Under the condition 1 − 1
k < γ < 1 we have already

proved that (3.36) hold for all 1 ≤ m ≤ N , and therefore the numerical solution uj ,
j = 0, 1, . . . , N , are bounded in L∞(Ω). If the stronger condition 1− α

k ≤ γ < 1 holds,
then α+ k(γ − 1) ≥ 0. In this case, (3.27) implies that

∥Ẽn,1∥L∞ ≤C

n∑
j=k

τj(tn − tj−1)
α−1

k∑
i=1

∥ej−i∥L∞ + Cτktα+k(γ−1)
n

≤C

n∑
j=k

τj(tn − tj−1)
α−1

k∑
i=1

∥ej−i∥L∞ + Cτk. (3.37)

The estimates in (3.28) (for the k− 1 starting time levels) can be modified in the
following way:

∥Ẽn,2∥L∞ :=C

k−1∑
j=1

∫ tj

tj−1

(tn − s)α−1∥ej−1∥L∞ds+ C

k−1∑
j=1

∫ tj

tj−1

(tn − s)α−1τjt
−1
j ds

≤C

k−1∑
j=1

τj(tn − tj−1)
α−1∥ej−1∥L∞ + Ctα−1

n

k−1∑
j=1

τj

≤C

k−1∑
j=1

τj(tn − tj−1)
α−1∥ej−1∥L∞ + Cτα1
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≤C

k−1∑
j=1

τj(tn − tj−1)
α−1∥ej−1∥L∞ + Cτ

α
1−γ

≤C
k−1∑
j=1

τj(tn − tj−1)
α−1∥ej−1∥L∞ + Cτk, (3.38)

where the last inequality requires the new condition 1− α
k ≤ γ < 1.

The subsequent proof is the same as the proof for (2.28), except replacing tα−1
n τk

by τk. This completes the proof of (2.29).
4. Numerical tests. In this section, we present numerical results to support

the theoretical analysis and illustrate the convergence of the proposed time-stepping
method for nonlinear subdiffusion equations.

We consider the problem (1.1) up to time T = 1, with a nonlinear function
f(u) = u−u3, which is the derivative of a double well potential F (u) = −(1−u2)2/4
and therefore generates a bounded solution satisfying |u| ≤ 1 pointwise. To investigate
the performance of the numerical method for both nonsmooth and smooth initial data,
we consider the following four cases:

(a) 1D and nonsmooth data: Ω = (0, 1), u0 = χ[ 12 ,1)
,

(b) 1D and smooth data: Ω = (0, 1), u0(x) = x(1− x),
(c) 2D and nonsmooth data: Ω = (0, 1)2, u0 = χ(0, 12 ]×(0, 12 ]

,

(d) 2D and smooth data: Ω = (0, 1)2, u0(x, y) = xy(1− x)(1− y).
The nonsmooth initial values in (a) and (c) are in L∞(Ω), and the smooth initial
values in (b) and (d) are in H1

0 (Ω) ∩H2(Ω).
4.1. The convergence orders. Theorem 2.1 implies that the numerical solu-

tion given by (2.24)–(2.27) has the following error bound:
∥un − u(tn)∥L∞ ≤ Cτk when M ≥ k2

2πdα | ln(1/τ)|
2.

We compute the errors of the numerical solutions for cases (a)-(c) by the proposed
k-step method for k = 1, 2, 3, respectively. The spatial discretization is done by
using piecewise linear Galerkin finite element method. Unless otherwise specified, the
following parameters are used in the computation:

γ =
3

4
, β =

π

4
, d =

π

6
, M =

k2cd
2πdα

| ln(1/τ)|2 with cd =

{
15 for k = 1,

5 for k = 2, 3,

which are needed in (2.14) and (2.17). For the stepsizes in (2.20), we simply choose
τn =

( tn−1

T

)γ
τ for n ≥ 3 in all numerical simulations.

Since the exact solution of the considered problem is not known, we compute the
orders of convergence by the formula

order of convergence = log

(
∥u(τ)

N − u
(τ/2)
N ∥L∞

∥u(τ/2)
N − u

(τ/4)
N ∥L∞

)
/ log(2)

based on the finest three meshes, where u
(τ)
N denotes the numerical solution at tN = T

computed by using a maximal stepsize τ .
The errors of the numerical solutions to the 1D problems in (a) and (b) are

presented in Tables 4.1–4.3, where we have used a sufficiently small mesh size h =
2−11 so that the error from spatial discretization is negligibly small in observing
the temporal convergence rates. From Tables 4.1–4.3 we see that the proposed k-
step method has kth-order convergence in time for both (a) and (b). The errors of
the numerical solutions to the 2D problem in (c) are presented in Figure 4.1 (with
h = 2−4), where we can see that the errors are about O(τk) for k = 1, 2, 3, respectively.
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The numerical results show that the proposed method (2.24)–(2.27) is robust for both
smooth and nonsmooth initial data, consistent with the theoretical result proved in
Theorem 2.1.

Table 4.1
Errors and convergence orders for k = 1 with several different α ∈ (0, 1).

α τ Case (a) Case (b)

∥u(τ)
N − u

(τ/2)
N ∥L∞ order ∥u(τ)

N − u
(τ/2)
N ∥L∞ order

0.4

1/32 2.6855e-05 – 1.0909e-05 –
1/64 1.3288e-05 1.02 5.3944e-06 1.02

1/128 6.5086e-06 1.03 2.6409e-06 1.03
1/256 3.1648e-06 1.04 1.2834e-06 1.04

0.6

1/32 2.9014e-05 – 1.1821e-05 –
1/64 1.3697e-05 1.08 5.5789e-06 1.08

1/128 6.4526e-06 1.09 2.6284e-06 1.09
1/256 3.0491e-06 1.08 1.2425e-06 1.08

0.8

1/32 2.2446e-05 – 9.2468e-06 –
1/64 1.0540e-05 1.09 4.3474e-06 1.09

1/128 5.0298e-06 1.07 2.0769e-06 1.07
1/256 2.4329e-06 1.05 1.0054e-06 1.05

Table 4.2
Errors and convergence orders for k = 2 with several different α ∈ (0, 1).

α τ Case (a) Case (b)

∥u(τ)
N − u

(τ/2)
N ∥L∞ order ∥u(τ)

N − u
(τ/2)
N ∥L∞ order

0.4

1/32 1.7254e-06 – 7.0498e-07 –
1/64 4.2081e-07 2.04 1.7186e-07 2.04

1/128 1.0334e-07 2.03 4.2158e-08 2.03
1/256 2.4672e-08 2.07 1.0064e-08 2.07

0.6

1/32 2.0723e-06 – 8.5523e-07 –
1/64 4.7937e-07 2.11 1.9796e-07 2.11

1/128 1.1154e-07 2.10 4.6103e-08 2.10
1/256 2.6116e-08 2.09 1.0809e-08 2.09

0.8

1/32 1.9383e-06 – 8.1334e-07 –
1/64 4.4795e-07 2.11 1.8842e-07 2.11

1/128 1.0600e-07 2.08 4.4677e-08 2.08
1/256 2.5515e-08 2.05 1.0769e-08 2.05

4.2. The variable stepsizes. In Figure 4.2 (left), we present the evolution of
the stepsize τn in a time interval [0, T ] with a maximal stepsize τ = 0.1 and different
parameters γ ∈ (0, 1). This illustrates how the variable stepsizes in (2.20) increase
from τ1 = T ( τ

T )
1

1−γ to τ .
In Figure 4.2 (right), we present the number of total time levels N corresponding

to different parameters γ ∈ (0, 1) for two different maximal stepsizes, i.e., τ = 0.1
and τ = 0.01. From Figure 4.2 (Right) we can see that, for any fixed γ ∈ (0, 1), the
number of total time levels N using the stepsizes in (2.20) is equivalent to the number
of total time levels using a uniform stepsize τ .
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Table 4.3
Errors and convergence orders for k = 3 with several different α ∈ (0, 1).

α τ Case (a) Case (b)

∥u(τ)
N − u

(τ/2)
N ∥L∞ order ∥u(τ)

N − u
(τ/2)
N ∥L∞ order

0.4

1/8 1.1098e-05 – 4.9680e-06 –
1/16 1.2880e-06 3.11 5.5325e-07 3.17
1/32 1.5424e-07 3.06 6.5113e-08 3.09
1/64 1.8196e-08 3.08 7.6950e-09 3.08

0.6

1/16 1.7711e-06 – 7.6389e-07 –
1/32 1.9651e-07 3.17 8.4449e-08 3.18
1/64 2.2282e-08 3.14 9.5810e-09 3.14

1/128 2.5696e-09 3.12 1.1037e-09 3.12

0.8

1/32 2.1449e-07 – 9.3180e-08 –
1/64 2.4151e-08 3.15 1.0531e-08 3.15

1/128 2.8142e-09 3.10 1.2323e-09 3.10
1/256 3.3867e-10 3.05 1.4741e-10 3.06
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Fig. 4.1. Errors of the numerical solutions at T = 1 for the 2D problem in (c).

The errors of the numerical solutions with nonsmooth initial data in (a) are
presented in Figure 4.3 for several different γ ∈ (0, 1), computed with a sufficiently
spatial mesh h = 2−11. The numerical results in Figure 4.3 indicate that order
reduction may happen if γ < 1− 1

k .

4.3. Evolution of the errors in time. In Figure 4.4 we plot the numerical
solution and its errors at several different time levels for the nonlinear subdiffusion
problem with nonsmooth initial data in (a) and α = 0.8. We see that the errors of
the numerical solution first increase for t ∈ [0, 0.1] and then decrease for t ∈ [0.1, 1].

The evolution of errors of the numerical solutions with α = 0.8 for the four
different cases in (a)–(d) are presented in Figure 4.5, where the errors are computed
approximately by

∥u(τ/ℓ)
n − u(τ/16)

n ∥L∞ for ℓ = 1, 2, 4.

We see that the errors of the numerical solutions with nonsmooth or smooth initial
data are similar. This partly reflects the robustness of the proposed numerical method
with respect to the regularity of the initial data.
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Fig. 4.2. Left: Evolution of the variable stepsizes τn for several different parameters γ ∈ (0, 1).
Right: The number of total time levels N .
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Fig. 4.3. Errors of the numerical solutions at T = 1 for the nonsmooth initial data in (a), with
several different parameters γ ∈ (0, 1).

5. Conclusion. We have constructed an exponential type of CQ for time dis-
cretization of the nonlinear subdiffusion equation with nonsmooth (bounded measur-
able) initial data, by utilizing contour integral representation of the solution, quadra-
ture approximation of contour integrals, multistep exponential integrators for ordi-
nary differential equations, and locally refined stepsizes to resolve the singularity at
t = 0. Both theoretical analysis and numerical experiments show that the proposed
k-step exponential CQ can have kth-order convergence in time for the solutions of the
nonlinear subdiffusion equation based on natural regularity of the solution with L∞

initial data. In this article we have focused on the analysis of semidiscretization in
time. The construction and analysis of high-order spatial discretization methods for
nonlinear subdiffusion equation with nonsmooth initial data are still interesting and
challenging.

Appendix A: Resolvent estimates in L∞(Ω). It is proved in [29] that the
Dirichlet Laplacian operator ∆ generates a bounded analytic semigroup on C0(Ω),
satisfying the following resolvent estimate:

∥(z −∆)−1v∥L∞ ≤ Cφ|z|−1∥v∥L∞ ∀ z ∈ Σφ, ∀ v ∈ C0(Ω), (A.1)
where C0(Ω) denotes the space of continuous functions on Ω with zero boundary
condition.

For any v ∈ L∞(Ω), there exists a sequence of functions vn ∈ C0(Ω) which is
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Fig. 4.4. Numerical solutions and errors for the nonlinear subdiffusion problem with α = 0.8,
with nonsmooth initial data in (a), computed with k = 1, h = 2−7 and τ = 2−5.
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Fig. 4.5. Evolution of errors for the four cases in (a)–(d), with α = 0.8 and τ0 = 2−5.

bounded in L∞(Ω) and converges to v in Lp(Ω) for any 1 ≤ p < ∞, i.e.,
∥vn∥L∞ ≤ C∥v∥L∞ and lim

n→∞
∥vn − v∥Lp = 0.

Since vn ∈ C0(Ω), it follows from (A.1) that
∥(z −∆)−1vn∥L∞ ≤ Cφ|z|−1∥vn∥L∞ ≤ Cφ|z|−1∥v∥L∞ ∀ z ∈ Σφ. (A.2)

Since for any fixed z ∈ Σφ the operator (z − ∆)−1 : Lp(Ω) → L∞(Ω) is bounded
when p > d

2 (see Lemma A below), and vn → v in Lp(Ω), it follows that (z −∆)−1vn
converges to (z −∆)−1v in L∞(Ω). Hence, by passing to the limit n → ∞ in (A.2),
we obtain the desired estimate (2.5).

By using the resolvent estimate (2.5), the following estimates of the solution
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operators F (t) and E(t) can be proved (simply replacing X by L∞(Ω) in the proof of
[11, Lemma 3.2]):

t−α∥F (t)∥L∞→L∞ + t1−α∥F ′(t)∥L∞→L∞ + ∥∆F (t)∥L∞→L∞ ≤ C ∀ t ∈ (0, T ],
(A.3)

t1−α∥E(t)∥L∞→L∞ + t2−α∥E′(t)∥L∞→L∞ + t∥∆E(t)∥L∞→L∞ ≤ C ∀ t ∈ (0, T ].
(A.4)

In the above argument we have used the following result.
Lemma A. The operator (z −∆)−1 : Lp(Ω) → L∞(Ω) is bounded when p > d

2 ,
and the bound is independent of z ∈ Σφ for any fixed φ ∈ (π2 , π).

Proof. Let u = (z − ∆)−1f . Equivalently speaking, u is the solution of the
equation

−∆u = f − zu in Ω

under the Dirichlet boundary condition. It suffices to prove ∥u∥L∞ ≤ C∥f∥Lp for
p > d

2 .
It is proved in [29] that the Dirichlet Laplacian operator ∆ generates a bounded

analytic semigroup of angle π
2 on Lp(Ω). The analyticity of the semigroup on Lp(Ω)

implies that the operator z(z −∆)−1 : Lp(Ω) → Lp(Ω) is bounded, and the bound is
independent of z for z ∈ Σφ for any fixed φ ∈ (π2 , π); see [2, Theorem 3.7.11]. This
means that

∥u∥Lp ≤ C|z|−1∥f∥Lp .

The L∞ estimate of elliptic equations (cf. [8, Theorem 8.15]) says that

∥u∥L∞ ≤ C∥f − zu∥Lp for any fixed p >
d

2
.

The two estimates above imply that

∥u∥L∞ ≤ C∥f∥Lp + C|z|∥u∥Lp ≤ C∥f∥Lp for any fixed p >
d

2
.

This proves the desired result.

Appendix B: A discrete Gronwall’s inequality. The following discrete
Gronwall’s inequality is an extension of [6, Lemma 7.1] to variable stepsizes, which
plays an important role in the proof of Theorem 2.1.

Lemma B. If η0 = 0, 0 ≤ ηn ≤ R for n = 1, . . . ,m, and

ηn ≤ tα−1
n A1 +A2 +B

n∑
j=1

τj(tn − tj−1)
α−1ηj−1, n = 1, . . . ,m,

for some constants A1, A2, B ≥ 0 and α > 0, then there are constants τ0 = τ0(R,B, α)
and C = C(B, T, α) such that the following inequality holds for τ ≤ τ0:

ηn ≤ C(tα−1
n A1 +A2), n = 1, . . . ,m.

Proof. Let η(t) = ηn for t ∈ (tn−1, tn]. Then for t ∈ (tn−1, tn] and n ≥ 2 there
holds tn ∼ t, and

η(t) = ηn ≤ tα−1A1 +A2 + C

n∑
j=2

τj(tn − tj−1)
α−1ηj−1

≤ tα−1A1 +A2 + C

n∑
j=2

∫ tj−1

tj−2

(tn − s)α−1η(s)ds

(because tn − tj−1 ∼ tn − s for s ∈ (tj−2, tj−1])
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= tα−1A1 +A2 + C

n−1∑
j=1

∫ tj

tj−1

(tn − s)α−1η(s)ds

≤ tα−1A1 +A2 + C

n−1∑
j=1

∫ tj

tj−1

(t− s)α−1η(s)ds

(because (tn − s)α−1 ≤ C(t− s)α−1 for t ∈ (tn−1, tn])

≤ tα−1A1 +A2 + C

∫ t

0

(t− s)α−1η(s)ds.

For t ∈ (0, t1], the discrete Gronwall’s inequality in Lemma B reduces to

η(t) = η1 ≤ tα−1
1 A1 +A2 ≤ tα−1A1 +A2 + C

∫ t

0

(t− s)α−1η(s)ds.

This shows that η(t) satisfies the continuous version of Gronwall’s inequality

η(t) ≤ b(t) + C

∫ t

0

(t− s)α−1η(s)ds for t ∈ (0, tm], with b(t) = tα−1A1 +A2,

see [4, Lemma 1]. The continuous Gronwall’s inequality implies that
η(t) ≤ C(tα−1A1 +A2) for t ∈ (0, tm].

This proves the desired result in Lemma B.
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