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Abstract. A linearly implicit renormalized lumped mass finite element method is considered for solving
the equations describing heat flow of harmonic maps, of which the exact solution naturally satisfies the
pointwise constraint |m| = 1. At every time level, the method first computes an auxiliary numerical solution
by a linearly implicit lumped mass method and then renormalizes it at all finite element nodes before
proceeding to the next time level. It is shown that such a renormalized finite element method has an error
bound of O(τ + hr+1) for tensor-product finite elements of degree r ⩾ 1. The proof of the error estimates
is based on a geometric relation between the auxiliary and renormalized numerical solutions. The extension
of the error analysis to triangular mesh is straightforward and discussed in the conclusion section.
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1. Introduction. We consider the heat flow of harmonic maps in a bounded domain
Ω ⊂ Rd, with d ∈ {1, 2, 3}, described by the partial differential equation (PDE)

∂tm = ∆m+ |∇m|2m in Ω × (0, T ], (1.1)
∂νm = 0 on ∂Ω × (0, T ], (1.2)
m = m0 in Ω × {0}, (1.3)

where ∂νm denotes the normal derivative of m and the initial value m0 satisfies
|m0| = 1 in Ω. (1.4)

Under condition (1.4), it is known that the solution of problem (1.1)–(1.3) automatically
satisfies the pointwise constraint

|m| = 1 in Ω × (0, T ]. (1.5)
The problem can be viewed as the L2 gradient flow of the energy functional E(u) =∫
Ω
|∇u|2dV under constraint (1.5). When the initial value is sufficiently smooth, it is known

that the heat flow of harmonic maps has a unique smooth solution in short time and may
blow up at some finite time; see [16]. Equation (1.1) appears in many applications, includ-
ing the Landau–Lifshitz equation of magnetization dynamics (as the limiting case when the
damping parameter tends to ∞ [4, Proposition 5.2]; see [28]), the nematic liquid crystals
model (coupled with the Navier-Stokes equations to describe the local molecular direction
[12]), and color image denoising [29, 30]. The structure of (1.1) also appears in the geometric
evolution equations describing mean curvature flow of surfaces [24, 25]. In particular, the
normal vector n on a surface Γ evolving under mean curvature flow satisfies the surface
PDE:

∂•t n = ∆Γn+ |∇Γn|2n on Γ × (0, T ], (1.6)

where ∇Γ and ∆Γ are the tangential gradient and Laplace–Beltrami operators on the surface
Γ , respectively, and ∂•t denotes material derivative, i.e., the time derivative in the Lagrangian
coordinates. The normal vector n also satisfies the pointwise constraint |n| = 1.

In contrast to the exact solution of (1.1), which satisfies the constraint |m| ≡ 1 auto-
matically, the numerical solutions of (1.1) and related PDEs given by classical finite element
methods (FEMs) and commonly used time-stepping schemes are generally not of unit length.
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In this case, the simplest method to restore the unit length is to artificially renormalize the
numerical solutions by a post-processing technique, i.e., changing the numerical solution mn

h
to mn

h/|mn
h| artificially after solving the equation at every time level, before proceeding to

the next time level. This renormalization method is simple to implement and flexible to be
combined with general FEMs in space and linearly implicit time-stepping schemes. More
importantly, such a simple renormalization at every time level can significantly improve
the performance of a numerical method, especially when singularity arises, as shown in the
numerical experiments in [24, Figs 4 and 6]. As far as we know, except for the renormaliza-
tion method, no other linearly implicit methods can preserve the unit length in numerical
solutions for the problems mentioned above. However, the error analysis of such a simple
renormalization method with commonly used FEMs and time-stepping schemes is still chal-
lenging. The main difficulty is the analysis of stability in approximating the time derivative
when the renormalization is used at every time level. This is a common difficulty for all
related PDEs, including heat flow of harmonic maps, the Landau–Lifshitz equation, and the
nematic liquid crystals equations.

Convergence rates of unconstrained FEMs without renormalization were studied in many
articles for the related Landau–Lifshitz equation and nematic liquid crystals equations. For
the Landau–Lifshitz equation, first-order convergence in time of linearly implicit time dis-
cretizations was proved by Cimrák [17]; optimal-order error estimates for fully discrete FEMs
with linearly implicit backward Euler and Crank–Nicolson time-stepping schemes were ob-
tained by Gao [21] and An [5], respectively; first-order convergence of a linearly implicit
FEM for the Landau–Lifshitz–Gilbert equation coupled with the eddy current equation was
gained by Feischl & Tran [20]. For the nematic liquid crystals equations, first-order conver-
gence in time and space of a semi-implicit mixed FEM was derived in [22]; optimal-order
convergence of a linearly implicit stabilized FEM was proved in [7]. More recently, Akrivis,
Feischl, Kovács & Lubich [2] established optimal-order error estimates for high-order linearly
implicit FEMs preserving an energy inequality for the Landau–Lifshitz equation.

Alouges, Kritsikis, Steiner & Toussaint [3] considered an unconditionally stable and
second-order method combined with a renormalization stage at every time level, and proved
convergence of the method without explicit rates; Chen, Wang & Xie [15] acquired second-
order convergence of a semi-renormalized method for the Landau–Lifshitz equation with the
two-step backward differentiation formula (BDF2), i.e., the renormalization is used in the
extrapolation of the right-hand side but not used in the BDF2 approximation to the time
derivative.

Convergence of several nonlinearly implicit constrained FEMs for equation (1.1) pre-
serving |mn

h| = 1 at the finite element nodes was shown in the literature based on com-
pactness arguments. For example, Bartels & Prohl [10] proved convergence of constrained
FEMs based on a non-divergence formulation using the discrete Laplacian; Bartels, Lubich
& Prohl [9] presented convergence of constrained FEMs based on a variational approach
using a discrete Lagrange multiplier; Baňas, Prohl & Schätzle [11] established convergence
analysis of constrained FEMs for heat flow into spheres of nonconstant radii. A unified
inf-sup stable saddle point approach was proposed by Gutiérrez-Santacreu & Restelli [23]
for both Landau–Lifshitz equation and harmonic map heat flows to impose the unit sphere
constraint at finite element nodes with a discrete energy law. However, no convergence rates
were given for these nonlinearly implicit constraint-preserving methods so far.

More recently, An, Gao & Sun [6] provided the optimal-order convergence O(τ + h2)
and O(τ2 + h2) for the backward Euler and Crank–Nicolson semi-implicit finite difference
projection methods under the conditions h2 ⩽ τ ⩽ h1+ε1 and c1h ⩽ τ ⩽ c2h, respectively,
where ε1 ∈ (0, 1) is any positive constant. For the backward Euler Galerkin FEM with
renormalization, An & Sun [8] obtained the optimal order O(τ + hr+1) under the condition
c1h ⩽ τ ⩽ c2h and r ⩾ 2, where c1 and c2 are some positive constants. The proof of optimal-
order O(τ + hr+1) under a less restrictive condition such as τ ⩾ κhr+1 is still challenging.

In this paper, we present an optimal-order error estimate of O(τ + hr+1) for a linearly
implicit renormalized lumped mass FEM on rectangular mesh under the mild condition
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τ ⩾ κhr+1 for r ⩾ 1, where κ is any positive constant. On a triangular mesh, our analysis
would yield O(τ + hr) under the condition τ ⩾ κhr for r ⩾ 2. We focus on the heat flow of
harmonic maps, but the techniques in this paper would also work for related PDEs, including
the Landau–Lifshitz equation and nematic liquid crystals equations, as the common diffi-
culty for all these equations is the analysis of stability for the renormalization technique in
approximating the time derivative. We illustrate our idea and techniques through analyzing
the following renormalized lumped mass FEM:
(1) For given mn−1

h in a finite element space Sr
h, compute an auxiliary numerical solution

m̃n
h ∈ Sr

h by(m̃n
h −mn−1

h

τ
,vh

)
h
+
(
∇m̃n

h,∇vh

)
=

(
|∇mn−1

h |2m̃n
h,vh

)
∀vh ∈ Sr

h, (1.7)

where (·, ·)h denotes the discrete inner product in the lumped mass FEM; see Section
2.1.

(2) Renormalize the auxiliary numerical solution to

mn
h = Ih

( m̃n
h

|m̃n
h|

)
, (1.8)

where Ih denotes the Lagrange interpolation onto the finite element space Sr
h.

Clearly, the renormalized numerical solution mn
h satisfies |mn

h| = 1 at all finite element
nodes. Since the renormalization stage (1.8) only requires us to re-define the finite element
function at the nodes, the computation would be easier than renormalizing the numerical
solution pointwisely everywhere. The latter would yield a function which is not in the finite
element space and therefore would lead to additional quadrature error in approximating
the inner products. Since both mn−1

h and m̃n
h are finite element functions in the method

(1.7)–(1.8), it follows that |∇mn−1
h |2m̃n

h · vh is a piecewise polynomial and therefore the
inner products in (1.7) can be evaluated exactly without additional quadrature error.

If we denote by ẽn−1
h = Ihm(tn−1)− m̃n−1

h and en−1
h = Ihm(tn−1)−mn−1

h the errors of
the auxiliary numerical solution and numerical solution, respectively, then the main difficulty
in proving stability of renormalized FEMs is the conversion of ∥ẽn−1

h ∥2
L2

h
to ∥en−1

h ∥2
L2

h
without

generating an additional coefficient, where ∥ · ∥L2
h

denotes the discrete L2 norm. The semi-
renormalized method in [15] was analyzed by using the equivalence relation

∥en−1
h ∥L2

h
⩽ C∥ẽn−1

h ∥L2
h
. (1.9)

This additional constant C prevents the error analysis to be extended to a fully renormalized
FEM, unless an additional stepsize restriction τ ⩾ h is required. We overcome this difficulty
by proving and utilizing an improved geometric relation

∥en−1
h ∥2L2

h
⩽ ∥ẽn−1

h ∥2L2
h
+ higher-order terms (1.10)

without the additional constant C. Since we only renormalize the numerical solution at
the nodes (for the convenience of computation), the geometric relation (1.10) only holds for
the discrete L2 norm (instead of the standard continuous L2 norm). This requires us to
use lumped mass FEM in order to have a desired error estimate. We shall prove optimal-
order convergence for the lumped mass FEM based on tensor-product finite elements in
a rectangular domain, and discuss the extension to triangular elements in the conclusion
section.

The rest of this paper is organized as follows. The basic notation and main theoretical
result on the convergence of the numerical method are presented in Section 2. The proof
of the main theorem is presented in Section 3. Numerical results are provided in Section
4 to support the theoretical analysis by illustrating the convergence rates of the proposed
method. The extension of the error analysis to triangular mesh is discussed in the conclusion
section. The proofs of some technical results, including the discrete Sobolev interpolation
and embedding inequalities, as well as the superconvergence of the Lagrange interpolation
operator, are presented in Appendices.
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2. Notation and main results. In this section, we introduce notation and present
the numerical scheme for solving problem (1.1)–(1.3) and our main theoretical results. The
notation for lumped mass FEM is based on the notation in [26].

2.1. Notation and finite element space. Let C(Ω) be the space of continuous
functions on Ω. For 1 ⩽ p ⩽ ∞ and integer k ⩾ 0, let W k,p be the usual Sobolev space of
functions defined in Ω equipped with the norm (see [1])

∥f∥Wk,p :=


( ∑

|α|⩽k

∥Dαf∥pLp

) 1
p

1 ⩽ p <∞,

max
|α|⩽k

∥Dαf∥L∞ p = ∞,

respectively, where Dα = ∂|α|

∂x
α1
1 ···∂xαd

d

for a multi-index α = (α1, . . . , αd), αi ⩾ 0, i = 1, . . . , d,
with |α| = α1 + · · ·+ αd. The semi-norm of W k,p is defined by

|f |Wk,p :=


( ∑

|α|=k

∥Dαf∥pLp

) 1
p

1 ⩽ p <∞,

max
|α|=k

∥Dαf∥L∞ p = ∞.

Let Wk,p := (W k,p)d be the d-dimensional vector-valued Sobolev space, with the norm
and semi-norm still denoted by ∥ · ∥Wk,p and | · |Wk,p , respectively. As usual, we use the
abbreviation Hk =W k,2 and Hk = Wk,2.

Next, we define the H1-conforming tensor-product finite element space on a rectangular
domain. Without loss of generality, we consider the case d = 3 and Ω = (ax, bx)× (ay, by)×
(az, bz). For positive integers Jx, Jy, and Jz, let K be a quasi-uniform partition of Ω into
cuboids, denoted by K, and the corresponding mesh sizes are hx = bx−ax

Jx
, hy =

by−ay

Jy
, and

hz = bz−az

Jz
. Then, we define the tensor-product finite element space of degree r ⩾ 1 by

Sr
h := {v ∈ H1 : v|K ∈ Qd

r , ∀K ∈ K},
where Qd

r is the space of polynomials of degree up to r in every variable on K, defined by

Qd
r :=

{ ∑
0⩽α1,α2,α3⩽r

Cα1,α2,α3x
α1yα2zα3 , Cα1,α2,α3

∈ R
}
.

The tensor-product finite element spaces in one- and two-dimensions can be defined similarly.
In a lumped mass FEM, the discrete inner product (·, ·)h is used and defined below.

In the case d = 1 and Ω = (a, b), we consider a partition a = x0 < xr < · · · < xJr = b
with a uniform mesh size h = b−a

J and denote Ij := [x(j−1)r, xjr], j = 1, . . . , J . Let
Ih be the piecewise Lagrange interpolation operator with Gauss–Lobatto points x(j−1)r+k,
k = 0, 1, . . . , r, on every subinterval Ij . For any two continuous functions f, g ∈ C(Ω), we
define

(f, g)h :=

∫
Ω

Ih(fg)dx =

J∑
j=1

∫
Ij

Ih(fg)dx =

J∑
j=1

r∑
k=0

αk
j f(x(j−1)r+k)g(x(j−1)r+k),

where αk
j are the Gauss–Lobatto quadrature weights in the subinterval Ij . By taking

α(j−1)r+k =

{
αk
j for 1 ⩽ k ⩽ r − 1,

2αk
j for k = 0, r,

we have

(f, g)h =

Jr∑
i=0

αif(xi)g(xi).

If ~f and ~g are the (Jr + 1)-dimensional vectors consisting of the nodal values of the two
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functions f and g in Sr
h, respectively, then (f, g)h = M ~f · ~g, where M ∈ RJr+1 × RJr+1 is

the diagonal matrix with elements Mij := δijαi, with δij denoting the Kronecker symbol.
In the case d = 2 and Ω = (ax, bx)× (ay, by), the Lagrange interpolation operator onto

the tensor-product finite element space Sr
h is given by

Ihf = IhxIhyf for f ∈ C(Ω),

where Ihx and Ihy are the one-dimensional Lagrange interpolation operators with respect to
the x and y variables (based on Gauss–Lobatto points on every subinterval), respectively.
For any two functions f, g ∈ Sr

h, we define the discrete inner product (·, ·)h by

(f, g)h =

∫
Ω

IhxIhy (fg)dxdy =

Jxr∑
i1=0

Jyr∑
i2=0

αi1αi2f(xi1 , yi2)g(xi1 , yi2),

and similarly
(f, g)h =M ~f · ~g,

where ~f and ~g are (Jxr + 1)(Jyr + 1)-dimensional vectors consisting of the nodal values of
functions f and g, while M is a diagonal matrix consisting of the quadrature weights.

The extension of the discrete inner product to a three-dimensional rectangular domain
Ω = (ax, bx)× (ay, by)× (az, bz) is similar by using the identity

Ihf = Ihx
Ihy

Ihz
f for f ∈ C(Ω). (2.1)

Since the weights for the Gauss–Lobatto quadrature are all non-negative, we can define
the following discrete L2 norm on the finite element space Sr

h:
∥vh∥L2

h
:=

√
(vh,vh)h for vh ∈ Sr

h,

which is also a semi-norm on C(Ω). Similarly, the norm ∥ · ∥Lp
h

is defined by

∥vh∥Lp
h
:=

(∫
Ω

Ih(|vh|p)dV
) 1

p

for vh ∈ Sr
h and 1 ⩽ p < ∞. The next lemma gives the norm equivalence between ∥ · ∥Lp

h

and ∥ · ∥Lp .
Lemma 2.1. Let vh ∈ Sr

h and 1 ⩽ p <∞. Then we have
C1∥vh∥Lp ⩽ ∥vh∥Lp

h
⩽ C2∥vh∥Lp ∀vh ∈ Sr

h, (2.2)
for some positive constants C1 and C2 that are independent of h.

The proof is straightforward and thus omitted (it can be proved based on the equivalence
of norms in a finite-dimensional space and a scaling argument which transforms an element
into a reference element).

2.2. The main result. Let 0 = t0 < t1 < · · · < tN = T be a uniform partition of the
time interval [0, T ] with tn = nτ and stepsize τ = T/N .

The main theoretical result in this article is the following theorem on the convergence
of the renormalized lumped mass method (1.7)–(1.8).

Theorem 2.2. Let κ be any positive constant and assume that the solution of (1.1)–(1.3)
is sufficiently smooth, i.e., with the following regularity:

m0 ∈ L∞(0, T ;W2,4), m ∈ L∞(0, T ;W2,4 ∩H2r),

∂tm ∈ L∞(0, T ;Hr+1), ∂ttm ∈ L∞(0, T ;L2).

Then there exists a positive constant τ0 such that when κhr+1 ⩽ τ ⩽ τ0, the numerical
scheme (1.7)–(1.8) yields a unique solution mn

h ∈ Sr
h (r ⩾ 1), n = 1, . . . , N , with the following

error bound:
max

1⩽n⩽N
(∥mn

h −m(·, tn)∥L2 + ∥m̃n
h −m(·, tn)∥L2) ⩽ Cκ(τ + hr+1), (2.3)

where Cκ is a positive constant depending on κ (but independent of τ and h).
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Remark 2.1. In computation, choosing the time stepsize τ much smaller than hr+1

would be a waste because then the spatial discretization error would dominate (thus fur-
ther decreasing the stepsize would not make the error smaller). Hence, the time stepsize
restriction τ ⩾ κhr+1 is only a mild condition that does not affect practical computation.

Throughout, we denote by C a generic positive constant and by ε a small generic positive
constant, independent of τ , h, and N , which could be different at different occurrences.

3. Proof of Theorem 2.2.

3.1. Preliminary results. In the proof of Theorem 2.2, the following several lemmas
are used.

Lemma 3.1 (Error of the interpolation operator [14, Theorem 4.4.20]). The
Lagrange interpolation operator Ih : C(Ω) → Sr

h satisfies the following error estimates:
∥v − Ihv∥Lp(Ω) + h∥v − Ihv∥W 1,p ⩽ Chs+1|v|W s+1,p , (3.1)

∥v − Ihv∥L∞(Ω) ⩽ Ch2−
d
2 |v|H2 , (3.2)

for 0 ⩽ s ⩽ r and p > d/(s+ 1) (in this case Ws+1,p ↪→ C(Ω)).
Lemma 3.2 (Error of the Ritz projection [14, Theorems 5.4.4 & 5.4.8]). The

Ritz projection Rh : H1 → Sr
h defined by

(∇(w −Rhw),∇vh) = 0 (3.3)
for vh ∈ Sr

h with
∫
Ω
(w −Rhw)dV = 0, satisfies the following error estimate:

∥w −Rhw∥L2 + h∥∇(w −Rhw)∥L2 ⩽ Chr+1∥w∥Hr+1 for w ∈ Hr+1. (3.4)

Lemma 3.3 (Bramble–Hilbert Lemma [13]). Let a < b and h = b − a, and let F
be a linear functional on W k+1,p(a, b) with k ⩾ 1 and 1 ⩽ p ⩽ ∞. Assume that

(i) |F (f)| ⩽ C3∥f∥Wk+1,p(a,b) for f ∈ W k+1,p(a, b), with some positive constant C3

independent of h and f ;
(ii) F (f) = 0 for all f that are polynomials of degree less than or equal to k.

Then
|F (f)| ⩽ C4h

k+1|f |Wk+1,p(a,b) ∀ f ∈W k+1,p(a, b), (3.5)
for some positive constant C4 which is independent of h and f .

Lemma 3.4 (Inverse inequalities [14, Lemma 4.5.4 & Theorem 4.5.11]). Let
1 ⩽ p, q ⩽ ∞, 0 ⩽ m ⩽ l, and assume that vh is a function in some finite element space
subject to the triangulation K, with vh|K ∈W l

p(K) ∩Wm
q (K) for K ∈ K. Then

∥vh∥W l
p(K) ⩽ Chm−l+n/p−n/q∥vh∥Wm

q (K), (3.6)( ∑
K∈K

∥vh∥pW l
p(K)

)1/p ⩽ Chm−l+min{0,n/p−n/q}( ∑
K∈K

∥vh∥qWm
q (K)

)1/q
, (3.7)

where K is the set of triangles in the triangulation (as defined in Section 2.1).
Lemma 3.5. For vh ∈ Sr

h, the following discrete Sobolev interpolation and embedding
inequalities hold:

∥vh∥L∞ ⩽ C∥vh∥
1− d

4

L2 (∥vh∥L2 + ∥∆hvh∥L2)
d
4 , (3.8)

∥∇vh∥L6 ⩽ C∥∆hvh∥L2 , (3.9)
where the discrete Laplacian operator ∆h : Sr

h → Sr
h is defined via duality by

(∆hvh,wh) = −(∇vh,∇wh) ∀vh,wh ∈ Sr
h. (3.10)

The proof of Lemma 3.5 is presented in Appendix A.
Lemma 3.6. Let K ∈ K and denote by (·, ·)K the L2 inner product on K. Let Vh be
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the space of vector-valued polynomials of some degree ` ⩾ 0 on K. Then∣∣(1, Ihf − f)K
∣∣ ⩽ Ch2r

d∑
i=1

∥∂2ri f∥L1(K) ∀ f ∈ Vh, (3.11)

where C is a positive constant independent of h and f (but may depend on `).
The proof of Lemma 3.6 is presented in Appendix B.
Lemma 3.7. For u ∈ H2r and vh ∈ Sr

h, the following superconvergence result holds
for the Lagrange interpolation operator Ih:∣∣(∇(u− Ihu),∇vh

)∣∣ ⩽ Chr+1∥vh∥H1 . (3.12)
In the case of Dirichlet boundary condition, the superconvergence of tensor-product

Qr elements based on Gauss–Lobatto points in solving elliptic equations was established in
[19, 27]. Here we need the superconvergence result of the Lagrange interpolation operator
Ih in the sense of (3.12) (instead of the numerical solution of elliptic equations). A proof of
this result is presented in Appendix C.

3.2. Estimates for the truncation error. Note that the exact solution of problem
(1.1)–(1.3) satisfies the following equation

(∂tm,vh) + (∇m,∇vh) = (|∇m|2m,vh) ∀vh ∈ Sr
h,

which can be rewritten as(Ihm(tn)− Ihm(tn−1)

τ
,vh

)
h
+ (∇Ihm(tn),∇vh)

= (|∇Ihm(tn−1)|2Ihm(tn),vh) + E(vh).

(3.13)

Here, E(vh) denotes the truncation error, given by

E(vh) =
(Ihm(tn)− Ihm(tn−1)

τ
,vh

)
h
−
(Ihm(tn)− Ihm(tn−1)

τ
,vh

)
+
(Ihm(tn)− Ihm(tn−1)

τ
,vh

)
−
(
∂tm(tn),vh

)
+
(
∇(Ihm(tn)−m(tn)),∇vh

)
+
(
|∇m(tn)|2m(tn)− |∇Ihm(tn−1)|2Ihm(tn),vh

)
=: E1(vh) + E2(vh) + E3(vh) + E4(vh). (3.14)

In the following, we present estimates for Ej(vh), j = 1, 2, 3, 4, respectively.
First, since finite element functions in Sr

h have at most rth-order nonzero partial deriva-
tive in each variable, by using the result of Lemma 3.6 we have

|E1(vh)| ⩽ Ch2r
∑
K∈K

d∑
i=1

∥∥∥∂2ri (
Ih

m(tn)−m(tn−1)

τ
· vh

)∥∥∥
L1(K)

⩽ Ch2r
∑
K∈K

∥∥∥Ihm(tn)−m(tn−1)

τ

∥∥∥
Hr(K)

∥vh∥Hr(K)

⩽ Ch2r
∑
K∈K

∥∥∥m(tn)−m(tn−1)

τ

∥∥∥
Hr+1(K)

∥vh∥Hr(K) (stability of Ih in Hr+1(K))

⩽ Crhr+1
∑
K∈K

∥∥∥m(tn)−m(tn−1)

τ

∥∥∥
Hr+1(K)

|vh∥H1(K)

⩽ Chr+1∥vh∥H1 , (3.15)
where the inverse inequality (3.6) is used in the last to second inequality.

Second, by Lemma 3.1, it is easy to see that

|E2(vh)| ⩽
∣∣∣(Ihm(tn)−m(tn−1)

τ
− m(tn)−m(tn−1)

τ
,vh

)∣∣∣
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+
∣∣∣(m(tn)−m(tn−1)

τ
− ∂tm(tn),vh

)∣∣∣
⩽ Chr+1∥vh∥L2 + Cτ∥vh∥L2 .

Third, it follows from Lemma 3.7 that
|E3(vh)| ⩽ Chr+1∥vh∥H1 .

Finally, by using Lemma 3.1 again, we obtain

|E4(vh)| ⩽ C
∣∣∣(|∇m(tn)|2m(tn)− |∇Ihm(tn)|2m(tn),vh

)∣∣∣
+ C

∣∣∣(|∇Ihm(tn)|2m(tn)− |∇Ihm(tn−1)|2m(tn),vh

)∣∣∣
+ C

∣∣∣(|∇Ihm(tn−1)|2m(tn)− |∇Ihm(tn−1)|2Ihm(tn),vh

)∣∣∣.
The first term on the right-hand side can be estimated as follows:(

|∇m(tn)|2m(tn)− |∇Ihm(tn)|2m(tn),vh

)
=

(
∇m(tn) · ∇(m(tn)− Ihm(tn)),m(tn) · vh

)
+
(
∇Ihm(tn) · ∇(m(tn)− Ihm(tn)),m(tn) · vh

)
= 2

(
∇m(tn) · ∇

(
m(tn)− Ihm(tn)

)
,m(tn) · vh

)
−
(
∇
(
m(tn)− Ihm(tn)

)
· ∇

(
m(tn)− Ihm(tn)

)
,m(tn) · vh

)
⩽ −2

(
∆m(tn) ·

(
m(tn)− Ihm(tn)

)
,m(tn) · vh

)
(integration by parts is used)

− 2
(
∇m(tn)

(
m(tn)− Ihm(tn)

)
,∇(m(tn) · vh)

)
+ ∥∇(m(tn)− Ihm(tn))∥2

L
12
5
∥m(tn) · vh∥L6 (Hölder’s inequality is used)

⩽ Chr+1∥vh∥H1 + Chr+1∥vh∥H1 + Chr+1∥vh∥H1 (Lemma 3.1 is used)
⩽ Chr+1∥vh∥H1 ,

where we have used the following estimate in the second to last inequality:

∥∇(m(tn)− Ihm(tn))∥2
L

12
5

⩽

Ch
2∥m(tn)∥2

W 2, 12
5

for r = 1,

Ch4r−4∥m(tn)∥2
W 2r−1, 12

5
for r ⩾ 2,

⩽
{
Ch2∥m(tn)∥2W 2,4 for r = 1,

Chr+1∥m(tn)∥2H2r for r ⩾ 2 (4r − 4 ⩾ r + 1).
As a result, we have

|E4(vh)| ⩽ Chr+1∥vh∥H1

+ C
∣∣∣(|∇Ihm(tn) +∇Ihm(tn−1)||∇Ihm(tn)−∇Ihm(tn−1)|m(tn),vh

)∣∣∣
+ C

∣∣∣(|∇Ihm(tn−1)|2
(
m(tn)− Ihm(tn)

)
,vh

)∣∣∣
⩽ Chr+1∥vh∥H1 + Cτ∥vh∥L2 + Chr+1∥vh∥L2 .

By collecting the results above, we obtain the following estimate for the truncation error:
|E(vh)| ⩽ Chr+1∥vh∥H1 + Cτ∥vh∥L2 , (3.16)

and therefore, by using Young’s inequality,
|E(vh)| ⩽ Cε−1(τ2 + h2r+2) + ε∥∇vh∥2L2 + C∥vh∥2L2 , (3.17)

with an arbitrary positive constant ε.
8



3.3. Error equations and an outline of the proof for Theorem 2.2. We define
the following two types of error functions:

enh = Ihm(tn)−mn
h and ẽnh = Ihm(tn)− m̃n

h,

for n ⩾ 1, with

ẽ0h = e0h = Ihm
0 −m0

h = 0. (3.18)

By subtracting (1.7) from (3.13) we obtain the following equation for the error function ẽnh:( ẽnh − en−1
h

τ
,vh

)
h
+ (∇ẽnh,∇vh) =

(
|∇Ihm(tn−1)|2Ihm(tn)− |∇mn−1

h |2m̃n
h,vh

)
+ E(vh),

(3.19)
which holds for all vh ∈ Sr

h and n = 1, 2, . . . , N .
For the convenience of the reader, we present an outline of the proof for Theorem 2.2.
In order to bound the nonlinear terms arising from the error analysis, we will establish

the following primary estimates by using mathematical induction:
∥∇en−1

h ∥L4 ⩽ 1, (3.20)

∥ẽn−1
h ∥L∞ ⩽ 1

4
, (3.21)

∥ẽn−1
h ∥L3 ⩽ τ

4
7 , ∥ẽn−1

h ∥L6 ⩽ τ
2
7 . (3.22)

For n = 1, (3.20)–(3.22) naturally hold as a result of (3.18). We assume that the numerical
solution mn−1

h is uniquely determined for 1 ⩽ n ⩽ k, and (3.20)–(3.22) hold for 1 ⩽ n ⩽ k.
Then we shall prove that the linear system (1.7) is uniquely solvable for n = k (thus mk

h is
uniquely determined) and (3.20)–(3.22) also hold for n = k + 1.

In Sections 3.4 and 3.5, we show that estimates (3.20)–(3.22) imply the following two
lemmas, i.e., Lemmas 3.8 and 3.9, which give useful relations between the two types of error
functions enh and ẽnh.

Lemma 3.8. If (3.21) holds for 1 ⩽ n ⩽ k, then
∥en−1

h ∥W 1,p ⩽ C∥ẽn−1
h ∥W 1,p + Ch (3.23)

for 2 ⩽ p ⩽ 4, where C is a positive constant independent of n, k, h, and τ .
Lemma 3.9. For all n ⩾ 1 the following estimates hold

∥en−1
h ∥Lp

h
⩽ C∥ẽn−1

h ∥Lp
h
, (3.24)

∥en−1
h ∥Lp ⩽ C∥ẽn−1

h ∥Lp , (3.25)
for 1 ⩽ p <∞. Furthermore, if (3.22) holds for 1 ⩽ n ⩽ k, then

∥en−1
h ∥2L2

h
⩽ ∥ẽn−1

h ∥2L2
h
+ Cτ

8
7 ∥ẽn−1

h ∥2H1 , (3.26)
where C is a positive constant independent of n, k, h, and τ .

By using the technical estimates (3.20)–(3.22) and Lemmas 3.8–3.9, we shall prove
(3.20)–(3.22) for n = k+1 in Sections 3.7–3.9, and in the mean time prove the desired error
bound given in Theorem 2.2.

3.4. Proof of Lemma 3.8. Since the exact solution satisfies |m(tn−1)| = 1 everywhere
in Ω, it follows that

|Ihm(tn−1)| ⩽ |m(tn−1)|+ |m(tn−1)− Ihm(tn−1)| ⩽ 1 + Ch∥m(tn−1)∥W 1,∞ ,

|Ihm(tn−1)| ⩾ |m(tn−1)| − |m(tn−1)− Ihm(tn−1)| ⩾ 1− Ch∥m(tn−1)∥W 1,∞ .

The two inequalities above imply, for sufficiently small h,
3

4
⩽ |Ihm(tn−1)| ⩽

5

4
pointwise in Ω. (3.27)

If (3.21) holds then
1

2
⩽ |m̃n−1

h | ⩽ 3

2
pointwise in Ω. (3.28)

9



When |f | ∼ |g| ∼ 1 pointwise in Ω, by the inequality (7.11) from [2] there holds∣∣∣ f|f | − g

|g|

∣∣∣ = ∣∣∣f(|g| − |f |)− |f |(g − f)

|f ||g|

∣∣∣ ⩽ 2
|f − g|
|g|

⩽ C|f − g|, (3.29)

and similarly, ∣∣∣∇ f

|f |
− ∇ g

|g|

∣∣∣ ⩽ C|∇g||f − g|+ C|∇(f − g)|. (3.30)

Then, by using the triangle inequality and (3.27)–(3.30), we have

∥en−1
h ∥W 1,p =

∥∥∥Ih( m̃n−1
h

|m̃n−1
h |

)
− Ihm(tn−1)

∥∥∥
W 1,p

⩽
∥∥∥Ih( m̃n−1

h

|m̃n−1
h |

)−
m̃n−1

h

|m̃n−1
h |

∥∥∥
W 1,p

+
∥∥∥ m̃n−1

h

|m̃n−1
h |

− Ihm(tn−1)

|Ihm(tn−1)|

∥∥∥
W 1,p

+
∥∥∥ Ihm(tn−1)

|Ihm(tn−1)|
− m(tn−1)

|m(tn−1)|

∥∥∥
W 1,p

+
∥∥∥m(tn−1)− Ihm(tn−1)

∥∥∥
W 1,p

(3.31)

⩽
∥∥∥Ih( m̃n−1

h

|m̃n−1
h |

)−
m̃n−1

h

|m̃n−1
h |

∥∥∥
W 1,p

+ C∥ẽn−1
h ∥W 1,p

+ Ch∥m(tn−1)∥W 2,p + Ch∥m(tn−1)∥W 2,p .

It remains to estimate the first term on the right-hand side of (3.31). By Lemma 3.1, we
derive on each small element K∥∥∥Ih( m̃n−1

h

|m̃n−1
h |

)−
m̃n−1

h

|m̃n−1
h |

∥∥∥
W 1,p(K)

⩽ Ch
∥∥∥ m̃n−1

h

|m̃n−1
h |

∥∥∥
W 2,p(K)

⩽ Ch1+
d
p

∥∥∥ m̃n−1
h

|m̃n−1
h |

∥∥∥
W 2,∞(K)

⩽ Ch1+
d
p

(
∥m̃n−1

h ∥W 2,∞(K) +
∥∥|∇m̃n−1

h ||∇m̃n−1
h |

∥∥
L∞(K)

)
(here (3.28) is used)

⩽ Ch1+
d
p

(
∥ẽn−1

h ∥W 2,∞(K) + ∥Ihm(tn−1)∥W 2,∞(K) + ∥∇ẽn−1
h ∥L∞(K)∥∇ẽn−1

h ∥L∞(K)

+ ∥∇ẽn−1
h ∥L∞(K)∥∇Ihm(tn−1)∥L∞(K) + ∥∇Ihmn−1∥2L∞(K)

)
(here we replace m̃n−1

h by Ihm(tn−1)− ẽn−1
h )

⩽ Ch
d
p

(
∥ẽn−1

h ∥W 1,∞(K) + ∥∇ẽn−1
h ∥L∞(K)∥ẽn−1

h ∥L∞(K) + h∥∇ẽn−1
h ∥L∞(K)

)
(here we use the inverse inequality (3.6))

+ Ch1+
d
p (∥Ihm(tn−1)∥W 2,∞(K) + ∥Ihm(tn−1)∥2W 1,∞(K))

⩽ C∥ẽn−1
h ∥W 1,p(K) + Ch(∥Ihm(tn−1)∥W 2,p(K) + ∥Ihm(tn−1)∥W 1,p(K)) (inverse inequality)

⩽ C∥ẽn−1
h ∥W 1,p(K) + Ch∥m(tn−1)∥W 2,p(K),

where the inverse inequality (3.6) and (3.21) are used again in the last inequality. Conse-
quently, by summing up the inequality above for all K ∈ K, we have∥∥∥Ih( m̃n−1

h

|m̃n−1
h |

)
−

m̃n−1
h

|m̃n−1
h |

∥∥∥
W 1,p

⩽ C∥ẽn−1
h ∥W 1,p + Ch.

Substituting the above estimate into (3.31) yields the desired result of Lemma 3.8.

3.5. Proof of Lemma 3.9. For the estimate (3.24), it suffices to show
|Ihm(tn−1)−mn−1

h | ⩽ C|Ihm(tn−1)− m̃n−1
h | at all nodes. (3.32)

In fact, at each node we have |Ihm(tn−1)| = |mn−1
h | = 1 because

Ihm(tn−1) = m(tn−1) and mn−1
h = Ih

( m̃n−1
h

|m̃n−1
h |

)
=

m̃n−1
h

|m̃n−1
h |

.
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At each node, we denote by m̂n−1
h the projection of m(tn−1) = Ihm(tn−1) onto the straight

line passing through the origin and mn−1
h , and denote by α the angle between the two unit

vectors mn−1
h and m(tn−1); then

α ⩽ C sinα = C|Ihm(tn−1)− m̂n−1
h | ⩽ C|Ihm(tn−1)− m̃n−1

h | (3.33)
at each node. Since |Ihm(tn−1)−mn−1

h | is the chord with respect to angle α, it follows that
α ∼ |Ihm(tn−1)−mn−1

h |. (3.34)
Substituting this into the left-hand side of (3.33) yields (3.32), which further implies (3.24).
Moreover, employing the norm equivalence given in Lemma 2.1, we obtain (3.25).

In the sequel, we denote by θ the angle between the vectors mn−1
h − m(tn−1) and

m̂n−1
h −m(tn−1). Then at each node, it holds

|m(tn−1)−mn−1
h | − |m(tn−1)− m̃n−1

h | ⩽ |m(tn−1)−mn−1
h | − |m(tn−1)− m̂n−1

h |
= |m(tn−1)−mn−1

h |(1− cos θ), (3.35)
where

1− cos θ = 2 sin2(θ/2) ⩽ Cθ2.

By a simple computation, we have θ = α
2 ∼ |m(tn−1) − mn−1

h |, where (3.34) is used.
Substituting this estimate of θ into (3.35) and using (3.32), we obtain

|en−1
h | ⩽ |ẽn−1

h |+ C|en−1
h |3 ⩽ |ẽn−1

h |+ C|ẽn−1
h |3,

which further implies
|en−1

h |2 ⩽ |ẽn−1
h |2 + C|ẽn−1

h ||ẽn−1
h |3 + C|ẽn−1

h |6,
at each node. This yields that

∥en−1
h ∥2L2

h
≤ ∥ẽn−1

h ∥2L2
h
+ C∥ẽn−1

h ∥L3
h
∥ẽn−1

h ∥L3
h
∥ẽn−1

h ∥2L6
h
+ C∥ẽn−1

h ∥6L6
h

⩽ ∥ẽn−1
h ∥2L2

h
+ C∥ẽn−1

h ∥L3∥ẽn−1
h ∥L3∥ẽn−1

h ∥2L6 + C∥ẽn−1
h ∥6L6

≤ ∥ẽn−1
h ∥2L2

h
+ τ

8
7 ∥ẽn−1

h ∥2H1 ,

where the Sobolev embedding H1 ↪→ L6 and (3.22) are used in deriving the last inequality.
This completes the proof of Lemma 3.9.

3.6. Solvability of the linear system. The linear system (1.7) has a unique solution
if and only if the corresponding homogeneous linear system(m̃n

h

τ
,vh

)
h
+ (∇m̃n

h,∇vh) = (|∇mn−1
h |2m̃n

h,vh) ∀vh ∈ Sr
h, (3.36)

has only the zero solution. Since the induction assumption (3.20) implies
∥∇mn−1

h ∥L4 ⩽ ∥∇Ihm(tn−1)∥L4 + ∥∇en−1
h ∥L4 ⩽ C + 1, (3.37)

for 1 ⩽ n ⩽ k, substituting vh = m̃n
h into the homogeneous linear system (3.36) yields

∥m̃n
h∥2L2

h

τ
+ ∥∇m̃n

h∥2L2 = (|∇mn−1
h |2m̃n

h, m̃
n
h) ⩽ ∥∇mn−1

h ∥2L4∥m̃n
h∥2L4 ⩽C∥m̃n

h∥
1
2

L2∥m̃n
h∥

3
2

L6 ,

where (3.37) and the Sobolev interpolation inequality (cf. [1, p. 135, Theorem 5.2]) are
used. By using the Sobolev embedding H1 ↪→ L6 and Young’s inequality, we further obtain

∥m̃n
h∥2L2

h

τ
+ ∥∇m̃n

h∥2L2 ⩽ C∥m̃n
h∥

1
2

L2∥m̃n
h∥

3
2

H1 ⩽C∥m̃n
h∥2L2 +

1

2
∥m̃n

h∥2H1

⩽C∥m̃n
h∥2L2 +

1

2
∥∇m̃n

h∥2L2 .

For sufficiently small τ , the two terms on the right-hand side can both be absorbed by the
left-hand side. In this case, we obtain

∥m̃n
h∥L2

h
= 0.
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This shows that the homogeneous linear system (3.36) has only the zero solution (when τ is
smaller than some constant). This proves the unique solvability of the original linear system
(1.7).

3.7. Error estimates. Taking vh = ẽnh in the error equation (3.19) yields
∥ẽnh∥2L2

h
− ∥en−1

h ∥2
L2

h

2τ
+ ∥∇ẽnh∥2L2 ⩽

(
|∇Ihm(tn−1)|2Ihm(tn)− |∇mn−1

h |2m̃n
h, ẽ

n
h

)
+ E(ẽnh)

=
(
|∇Ihm(tn−1)|2Ihm(tn)− |∇Ihm(tn−1)|2m̃n

h, ẽ
n
h

)
+
((

|∇Ihm(tn−1)|2 − |∇mn−1
h |2

)
m̃n

h, ẽ
n
h

)
+ E(ẽnh)

=: E5(ẽnh) + E6(ẽnh) + E(ẽnh), (3.38)
for 1 ⩽ n ⩽ k. In the following, we present detailed estimates of the right-hand side of
(3.38).

The estimate (3.17) implies that
|E(ẽnh)| ⩽ C(τ2 + h2r+2) + ε∥∇ẽnh∥2L2 + C∥ẽnh∥2L2 .

It is easy to see that
|E5(ẽnh)| ⩽ C∥∇Ihm(tn−1)∥2L∞∥ẽnh∥2L2 ⩽ C∥ẽnh∥2L2 .

Replacing m̃n
h by Ihm(tn)−ẽnh in the expression of E6(ẽnh) and using (3.24)–(3.25), we obtain

|E6(ẽnh)|

⩽
∣∣∣(|∇Ihm(tn−1)|2 − |∇mn−1

h |2, |ẽnh|2
)∣∣∣+ ∣∣∣((|∇Ihm(tn−1)|2 − |∇mn−1

h |2
)
Ihm(tn), ẽ

n
h

)∣∣∣
=

∣∣∣(|∇Ihm(tn−1)|2 − |∇mn−1
h |2, |ẽnh|2

)∣∣∣
+
∣∣∣((2∇Ihm(tn−1)−∇en−1

h ) · ∇en−1
h , Ihm(tn) · ẽnh

)∣∣∣.
The last term on the right-hand side can be estimated as follows:(
(2∇Ihm(tn−1)−∇en−1

h ) · ∇en−1
h , Ihm(tn) · ẽnh

)
=

(
2
(
∇Ihm(tn−1)−∇m(tn−1)

)
· ∇en−1

h , Ihm(tn) · ẽnh
)

+
(
2∇m(tn−1) · ∇en−1

h , Ihm(tn) · ẽnh
)

−
(
∇en−1

h · ∇en−1
h , Ihm(tn) · ẽnh

)
⩽ Ch∥m(tn−1)∥W 2,3∥∇en−1

h ∥L2∥ẽnh∥L6

−
[(

2∆m(tn−1) · en−1
h , Ihm(tn) · ẽnh

)
+
(
2∇m(tn−1)e

n−1
h ,∇(Ihm(tn) · ẽnh)

)]
+ C∥en−1

h ∥H1∥∇en−1
h ∥L4∥ẽnh∥L4

⩽ C∥en−1
h ∥L2∥ẽnh∥L6 (here the inverse inequality (3.7) is used)

+ C(∥en−1
h ∥L4∥ẽnh∥L2 + ∥en−1

h ∥L4∥∇ẽnh∥L2)

+ C(∥ẽn−1
h ∥H1 + h)∥∇en−1

h ∥L4∥ẽnh∥L4 (here we use Lemma 3.8 with p = 2)

⩽ C
(
∥en−1

h ∥L2∥ẽnh∥L6 + ∥en−1
h ∥L4∥∇ẽnh∥L2 + ∥ẽn−1

h ∥H1∥ẽnh∥L4 + ∥en−1
h ∥L4∥ẽnh∥L4

)
,

where (3.20) and the inverse inequality (3.7) are used in the last inequality. As a result, we
have

|E6(ẽnh)|
⩽ C∥ẽnh∥2L2 + C∥∇mn−1

h ∥2L4∥ẽnh∥2L4

+ C
(
∥en−1

h ∥L2∥ẽnh∥L6 + ∥en−1
h ∥L4∥∇ẽnh∥L2 + ∥ẽn−1

h ∥H1∥ẽnh∥L4 + ∥en−1
h ∥L4∥ẽnh∥L4

)
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⩽ C∥ẽnh∥2L2 + C∥ẽnh∥2L4 (here (3.20) is used, which implies ∥∇mn−1
h ∥L4 ⩽ C)

+ C
(
∥ẽn−1

h ∥L2∥ẽnh∥L6 + ∥ẽn−1
h ∥L4∥∇ẽnh∥L2 + ∥ẽn−1

h ∥H1∥ẽnh∥L4 + ∥ẽn−1
h ∥L4∥ẽnh∥L4

)
⩽ C∥ẽnh∥2L2 + C∥ẽnh∥

1
2

L2∥ẽnh∥
3
2

L6

+ C
(
∥ẽn−1

h ∥L2∥ẽnh∥L6 + ∥ẽn−1
h ∥

1
4

L2∥ẽn−1
h ∥

3
4

L6∥∇ẽnh∥L2 + ∥ẽn−1
h ∥H1∥ẽnh∥

1
4

L2∥ẽnh∥
3
4

L6

+ ∥ẽn−1
h ∥

1
4

L2∥ẽn−1
h ∥

3
4

L6∥ẽnh∥
1
4

L2∥ẽnh∥
3
4

L6

)
⩽ C(∥ẽnh∥2L2 + ∥ẽn−1

h ∥2L2) + ε(∥∇ẽnh∥2L2 + ∥∇ẽn−1
h ∥2L2),

where ε can be arbitrarily small at the expense of enlarging the constant C.
Substituting the above estimates into (3.38) leads to

∥ẽnh∥2L2
h
− ∥en−1

h ∥2
L2

h

2τ
+ ∥∇ẽnh∥2L2

⩽ C(τ2 + h2r+2) + ε(∥∇ẽnh∥2L2 + ∥∇ẽn−1
h ∥2L2) + C(∥ẽnh∥2L2 + ∥ẽn−1

h ∥2L2) (3.39)
for 1 ⩽ n ⩽ k. Then we substitute (3.26) into (3.39) and get

∥ẽnh∥2L2
h
− ∥ẽn−1

h ∥2
L2

h

2τ
+ ∥∇ẽnh∥2L2

⩽ C(τ2 + h2r+2) + ε∥∇ẽnh∥2L2 + C(ε+ τ
1
7 )∥∇ẽn−1

h ∥2L2 + C(∥ẽnh∥2L2 + ∥ẽn−1
h ∥2L2).

Summing up the above inequality yields

∥ẽnh∥2L2
h
+ 2τ

n∑
j=1

∥∇ẽjh∥
2
L2 ⩽ C(τ2 + h2r+2) + C(ε+ τ

1
7 )τ

n∑
j=1

∥∇ẽjh∥
2
L2 + Cτ

n∑
j=1

∥ẽjh∥
2
L2 ,

for 1 ⩽ n ⩽ k. Then, by choosing sufficiently small ε and τ , the second term on the
right-hand side can be absorbed by the left-hand side. By applying the discrete Gronwall
inequality, we obtain

max
1⩽n⩽k

∥ẽnh∥2L2
h
+ τ

k∑
j=1

∥∇ẽjh∥
2
L2 ⩽ C(τ + hr+1)2. (3.40)

Meanwhile, noting (3.24) and Lemma 2.1, it follows that
max

1⩽n⩽k
∥enh∥L2 + max

1⩽n⩽k
∥ẽnh∥L2 ⩽ C(τ + hr+1). (3.41)

This, together with Lemma 3.1, proves the desired error bound in (2.3) for 1 ⩽ n ⩽ k.
It remains to complete the mathematical induction by proving (3.20)–(3.22) for n = k+1.

3.8. Proof of (3.20)–(3.21) for n = k + 1. In this subsection, we prove (3.20)–(3.21)
for n = k + 1 in the two cases

τ ⩽ h1.875 and τ ⩾ h1.875,

respectively. The proof of (3.22) for n = k + 1 is given in the next subsection.
If τ ⩽ h1.875, by using (3.41) and the inverse inequality (3.7), we have

∥∇ẽkh∥L4 ⩽ Ch−1− d
4 ∥ẽkh∥L2 ⩽ Ch−1− d

4 (τ + hr+1) ⩽ Ch
1
8 , (3.42)

∥ẽkh∥L∞ ⩽ Ch−
d
2 ∥ẽkh∥L2 ⩽ Ch−

d
2 (τ + hr+1) ⩽ Ch

1
4 . (3.43)

If τ ⩾ h1.875, then we rewrite (3.19) as

(∆hẽ
k
h,vh) =

( ẽkh − ek−1
h

τ
,vh

)
h
−
(
|∇Ihm(tk−1)|2Ihm(tk)− |∇mk−1

h |2m̃k
h,vh

)
− E(vh)

=: G1 + G2 + G3 ∀vh ∈ Sr
h. (3.44)

13



By using (3.40)–(3.41), it is easy to see that

|G1| ⩽
∥∥∥ ẽkh − ek−1

h

τ

∥∥∥
L2

h

∥vh∥L2
h
⩽ C

∥∥∥ ẽkh − ek−1
h

τ

∥∥∥
L2
∥vh∥L2 ⩽ Cτ−1(τ + hr+1)∥vh∥L2

⩽ Cτ−1(τ + τ
r+1
1.875 )∥vh∥L2

⩽ C∥vh∥L2 (since r ⩾ 1).
By using (3.20), we have

|G2| ⩽
∥∥∥|∇Ihm(tk−1)|2Ihm(tk)− |∇mk−1

h |2m̃k
h

∥∥∥
L2
∥vh∥L2

⩽
∥∥∥|∇Ihm(tk−1) +∇mk−1

h | |∇ek−1
h |m̃k

h

∥∥∥
L2
∥vh∥L2 +

∥∥∥|∇Ihm(tk−1)|2ẽkh
∥∥∥
L2
∥vh∥L2

⩽
∥∥∥(2|∇Ihm(tk−1)|+ |∇ek−1

h |
)
|∇ek−1

h |Ihm(tk)
∥∥∥
L2
∥vh∥L2

+
∥∥∥(2|∇Ihm(tk−1)|+ |∇ek−1

h |
)
|∇ek−1

h |ẽkh
∥∥∥
L2
∥vh∥L2 +

∥∥∥|∇Ihm(tk−1)|2ẽkh
∥∥∥
L2
∥vh∥L2

⩽ C
(
∥∇Ihm(tk−1)∥L4∥∇ek−1

h ∥L4 + ∥∇ek−1
h ∥2L4

)
∥Ihm(tk)∥L∞∥vh∥L2

+ C
(
∥∇Ihm(tk−1)∥L4∥∇ek−1

h ∥L4 + ∥∇ek−1
h ∥2L4

)
∥ẽkh∥L∞∥vh∥L2

+ C∥∇Ihm(tk−1)∥2L4∥ẽkh∥L∞∥vh∥L2

⩽ (C + C∥ẽkh∥L∞)∥vh∥L2 .

By using (3.16) and the inverse inequality (3.7), we have
|G3| ⩽ C(τ + hr+1)∥vh∥L2 ⩽ C∥vh∥L2 .

Substituting the above estimates of Gj , j = 1, 2, 3, into (3.44) yields

∥∆hẽ
k
h∥L2 = sup

vh∈Sr
h,vh ̸=0

|(∆hẽ
k
h,vh)|

∥vh∥L2

⩽ C + C∥ẽkh∥L∞

⩽ C + C∥ẽkh∥
1− d

4

L2 (∥ẽkh∥L2 + ∥∆hẽ
k
h∥L2)

d
4 (here (3.8) is used)

⩽ C + C∥ẽkh∥L2 + ε∥∆hẽ
k
h∥L2 ,

where ε can be arbitrarily small at the expense of enlarging the constant C. By choosing
a sufficiently small ε, the last term on the right-hand side of the above inequality can be
absorbed by the left-hand side. As a result, we obtain

∥∆hẽ
k
h∥L2 ⩽ C, (3.45)

which further implies that

∥ẽkh∥L∞ ⩽ C∥ẽkh∥
1− d

4

L2 (∥ẽkh∥L2 + ∥∆hẽ
k
h∥L2)

d
4 ⩽ C(τ + hr+1)

1
4 . (3.46)

Since
∥∇ẽkh∥L2 = (∇ẽkh,∇ẽkh)

1
2 = (−∆hẽ

k
h, ẽ

k
h)

1
2 ⩽ ∥∆hẽ

k
h∥

1
2

L2∥ẽkh∥
1
2

L2 ,

it follows that (interpolating the L4 norm by using the L2 and L6 norms)

∥∇ẽkh∥L4 ⩽ ∥∇ẽkh∥
1
4

L2∥∇ẽkh∥
3
4

L6 ⩽ C∥ẽkh∥
1
8

L2∥∆hẽ
k
h∥

1
8+

3
4

L2 ⩽ C(τ + hr+1)
1
8 , (3.47)

where (3.9) is used in the second to last inequality, and (3.40) and (3.45) are used in the
last inequality.

Combining (3.42)–(3.43) and (3.46)–(3.47) yields, in both cases τ ⩽ h1.875 and τ ⩾
h1.875,

∥∇ẽkh∥L4 ⩽ C(τ + h)
1
8 , (3.48)

∥ẽkh∥L∞ ⩽ C(τ + h)
1
4 . (3.49)
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For sufficiently small τ and h, (3.49) implies (3.21) for n = k + 1. Then Lemma 3.8 implies
that (3.23) also holds for n = k + 1 (with p = 4 therein), which together with (3.48)–(3.49)
further implies that

∥∇ekh∥L4 ⩽ C∥ẽkh∥W 1,4 + Ch ⩽ C(τ + h)
1
8 . (3.50)

Hence, for sufficiently small τ and h, (3.49) and (3.50) lead to

∥∇ekh∥L4 ⩽ 1 and ∥ẽkh∥L∞ ⩽ 1

4
. (3.51)

This completes the proof of (3.20)–(3.21) for n = k + 1.
3.9. Proof of (3.22) for n = k + 1. On the one hand, by using the inverse inequality

and the L2 error bound in (3.41), we have
∥ẽkh∥L3 ⩽ Ch−

d
6 ∥ẽnh∥L2 ⩽ Ch−

d
6 (τ + hr+1), (3.52)

∥ẽkh∥L6 ⩽ Ch−
d
3 ∥ẽnh∥L2 ⩽ Ch−

d
3 (τ + hr+1). (3.53)

On the other hand, by the Sobolev interpolation inequality (cf. [1, p. 135, Theorem 5.2])
and (3.39), we have

∥ẽkh∥L3 ⩽ C∥ẽkh∥
d
6

H1∥ẽkh∥
1− d

6

L2 ⩽ C[τ−
1
2 (τ + hr+1)]

d
6 (τ + hr+1)1−

d
6 ⩽ Cτ−

d
12 (τ + hr+1),

(3.54)

∥ẽkh∥L6 ⩽ C∥ẽkh∥
d
3

H1∥ẽkh∥
1− d

3

L2 ⩽ C[τ−
1
2 (τ + hr+1)]

d
3 (τ + hr+1)1−

d
3 ⩽ Cτ−

d
6 (τ + hr+1).

(3.55)
Combining the estimates (3.52) and (3.54) yields

∥ẽkh∥L3 ⩽ Cmin{h− d
6 , τ−

d
12 }(τ + hr+1)

⩽ Cmin{h− d
6 , τ−

d
12 } τ + Cmin{h− d

6 , τ−
d
12 }hr+1

⩽ C(τ1−
d
12 + h(r+1)(1− d

6(r+1)
))

⩽ C(τ
3
4 + h(r+1) 3

4 ) (because r + 1 ⩾ 2 and d ⩽ 3)
⩽ Cτ

3
4 (when τ ⩾ κhr+1)

⩽ τ
4
7 (when τ sufficiently small). (3.56)

Similarly, combining the estimates (3.53) and (3.55) yields
∥ẽkh∥L6 ⩽ Cmin{h− d

3 , τ−
d
6 }(τ + hr+1)

⩽ Cmin{h− d
3 , τ−

d
6 } τ + Cmin{h− d

3 , τ−
d
6 }hr+1

⩽ C(τ1−
d
6 + hr+1(1− d

3(r+1)
))

⩽ C(τ
1
2 + h(r+1) 1

2 ) (because r + 1 ⩾ 2 and d ⩽ 3)
⩽ Cτ

1
2 (when τ ⩾ κhr+1)

⩽ τ
2
7 (when τ is sufficiently small). (3.57)

The estimates (3.56)–(3.57) imply (3.22) for n = k + 1.
The mathematical induction on (3.20)–(3.22) is completed. As a result, the error bounds

in (3.40)–(3.41) hold for k = N . Then, combining the error bound in (3.41) and Lemma
3.1, we obtain the desired error bound (2.3). This completes the proof of Theorem 2.2.

4. Numerical results. In this section, we present numerical results to support the
theoretical result proved in Theorem 2.2, by illustrating the convergence rates of the renor-
malized lumped mass method.

We consider problem (1.1) on the two-dimensional domain Ω = [1/2, 3/2] × [1/2, 3/2]
and let T = 0.5. The initial value of the solution is chosen to be

m0 =
1

S
[m̃0

1, m̃
0
2, m̃

0
3]

⊤, (4.1)
15



where
m̃0

1(x, y) = sin(πx) cos(2πy) + 1,

m̃0
2(x, y) = cos(2πx) cos(2πy) + 2,

m̃0
3(x, y) = sin(πy),

and S(x, y) =
√
m̃0

1(x, y)
2 + m̃0

2(x, y)
2 + m̃0

3(x, y)
2. Clearly, the initial data (4.1) satisfies

the pointwise constraint |m0| = 1 and the boundary condition (1.2). We solve problem (1.1)
with the above initial condition by the proposed method (1.7)–(1.8) on both rectangular
and triangular meshes.
Rectangular Mesh: With tensor-product Q1 and Q2 elements, the temporal discretization
errors of the numerical solutions are presented in Tables 4.1–4.2 with different time step-
sizes τ and mesh sizes h. The numerical results in Tables 4.1–4.2 indicate that the spatial
discretization errors are sufficiently small (further decreasing the spatial mesh size does not
affect the temporal discretization error) and can be neglected in observing the first-order
convergence in time, which is consistent with the theoretical result proved in Theorem 2.2.

Table 4.1
Temporal discretization error ∥mN

h,τ −mN
h,τ/2

∥L2 with Q1 element

h\τ 1/20 1/40 1/80 1/160 convergence rate
1/32 2.233e-3 8.433e-4 3.693e-4 1.784e-4 ≈ 1.05
1/64 2.244e-3 8.441e-4 3.691e-4 1.784e-4 ≈ 1.05
1/128 2.246e-3 8.443e-4 3.691e-4 1.784e-4 ≈ 1.05

Table 4.2
Temporal discretization error ∥mN

h,τ −mN
h,τ/2

∥L2 with Q2 element

h\τ 1/20 1/40 1/80 1/160 convergence rate
1/32 2.247e-3 8.443e-4 3.691e-4 1.784e-4 ≈ 1.05
1/64 2.247e-3 8.444e-4 3.691e-4 1.784e-4 ≈ 1.05
1/128 2.247e-3 8.444e-4 3.691e-4 1.784e-4 ≈ 1.05

The spatial discretization errors of the numerical solutions with Qr elements are pre-
sented in Tables 4.3–4.4 for r = 1, 2. The numerical results in Tables 4.3–4.4 indicate that
the temporal discretization errors are sufficiently small (further decreasing the time stepsize
does not essentially affect the spatial discretization error) and can be neglected in observ-
ing the (r + 1)th-order convergence in space, which is consistent with the theoretical result
proved in Theorem 2.2.

Table 4.3
Spatial discretization error ∥mN

h,τ −mN
h/2,τ

∥L2 with Q1 element

τ\h 1/16 1/32 1/64 1/128 convergence rate
1/80 2.946e-5 7.413e-6 1.857e-6 4.644e-7 ≈ 2.00
1/160 2.594e-5 6.477e-6 1.619e-6 4.048e-7 ≈ 2.00
1/320 2.492e-5 6.194e-6 1.547e-6 3.865e-7 ≈ 2.00
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Table 4.4
Spatial discretization error ∥mN

h,τ −mN
h/2,τ

∥L2 with Q2 element

τ\h 1/16 1/32 1/64 1/128 convergence rate
1/80 1.874e-7 1.827e-8 2.082e-9 2.535e-10 ≈ 3.04
1/160 1.377e-7 1.497e-8 1.792e-9 2.214e-10 ≈ 3.02
1/320 1.178e-7 1.357e-8 1.658e-9 2.060e-10 ≈ 3.01

Triangular Mesh: The temporal and spatial discretization errors on triangular meshes are
presented in Tables 4.5–4.7 and Tables 4.8–4.10, respectively, for P̃r elements with r = 1, 2, 3
(the specific definitions are in [18]). First-order convergence in time and (r + 1)th-order
convergence in space are observed numerically. The spatial convergence is one order higher
than our theoretical result for triangular mesh.

Table 4.5
Temporal discretization error ∥mN

h,τ −mN
h,τ/2

∥L2 with P̃1 element

h\τ 1/20 1/40 1/80 1/160 convergence rate
1/32 7.373e-4 3.259e-4 1.504e-4 7.190e-5 ≈ 1.06
1/64 7.842e-4 3.523e-4 1.645e-4 7.920e-5 ≈ 1.05
1/128 7.585e-4 3.377e-4 1.567e-4 7.517e-5 ≈ 1.06

Table 4.6
Temporal discretization error ∥mN

h,τ −mN
h,τ/2

∥L2 with P̃2 element

h\τ 1/20 1/40 1/80 1/160 convergence rate
1/32 7.170e-4 3.148e-4 1.445e-4 6.882e-5 ≈ 1.07
1/64 7.168e-4 3.147e-4 1.445e-4 6.880e-5 ≈ 1.07
1/128 7.169e-4 3.148e-4 1.445e-4 6.881e-5 ≈ 1.07

Table 4.7
Temporal discretization error ∥mN

h,τ −mN
h,τ/2

∥L2 with P̃3 element

h\τ 1/20 1/40 1/80 1/160 convergence rate
1/32 7.170e-4 3.148e-4 1.445e-4 6.883e-5 ≈ 1.07
1/64 7.170e-4 3.148e-4 1.445e-4 6.883e-5 ≈ 1.07
1/128 7.170e-4 3.148e-4 1.445e-4 6.883e-5 ≈ 1.07

Table 4.8
Spatial discretization error ∥mN

h,τ −mN
h/2,τ

∥L2 with P̃1 element

τ\h 1/16 1/32 1/64 1/128 convergence rate
1/80 5.193e-5 1.299e-5 3.249e-6 8.123e-7 ≈ 2.00
1/160 4.995e-5 1.248e-5 3.120e-6 7.798e-7 ≈ 2.00
1/320 4.977e-5 1.242e-5 3.103e-6 7.757e-7 ≈ 2.00

5. Conclusions. We have proved the optimal-order convergence of a linearly implicit
lumped mass method, with renormalization at the finite element nodes at every time level,
for the equations describing heat flow of harmonic maps. The proof is based on a geometric
relation (3.26) (that has not been previously used in the literature) between the errors of
the auxiliary and renormalized numerical solutions. The error of the numerical solution is
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Table 4.9
Spatial discretization error ∥mN

h,τ −mN
h/2,τ

∥L2 with P̃2 element

τ\h 1/8 1/16 1/32 1/64 convergence rate
1/80 1.718e-6 1.067e-7 1.334e-8 1.668e-9 ≈ 3.00
1/160 1.699e-6 8.989e-8 1.109e-8 1.382e-9 ≈ 3.00
1/320 1.734e-6 8.862e-8 1.073e-8 1.330e-9 ≈ 3.01

Table 4.10
Spatial discretization error ∥mN

h,τ −mN
h/2,τ

∥L2 with P̃3 element

τ\h 1/8 1/16 1/32 1/64 convergence rate
1/80 1.465e-7 1.011e-9 5.835e-11 3.622e-12 ≈ 4.00
1/160 1.208e-7 8.423e-10 4.833e-11 2.998e-12 ≈ 4.01
1/320 1.099e-7 7.984e-10 4.637e-11 2.879e-12 ≈ 4.00

shown to be O(τ +hr+1) when the tensor-product Qr elements on rectangular mesh is used,
where τ and h are the time stepsize and spatial mesh size, respectively. Since the geometric
relation holds only for enh = mn

h − Ihm(tn) (instead of mn
h − Rhm(tn) where Rh is the

Ritz projection operator), the optimal-order convergence in space is proved by utilizing the
superconvergence result of the Lagrange interpolation operator in Lemma 3.7 (instead of
using the Ritz projection operator Rh).

The error analysis in this paper can be extended to triangular mesh straightforwardly,
by using the lumped mass FEM on triangular mesh constructed in [18] (with finite element
space Sr

h = (Ṽ r
h )

d, where Ṽ r
h is defined in [18, Section 5]). In this case, the quadrature error

bound in (3.15) should be replaced by the following result (cf. [18, Lemma 5.2 with q = 1
and p = k − 1]):

|E1(vh)| ⩽ Chr∥vh∥H1 . (5.1)
Moreover, since the superconvergence result in Lemma 3.7 does not hold for triangular mesh,
the estimate (3.12) should be replaced by the following standard result:∣∣(∇(u− Ihu),∇vh

)∣∣ ⩽ Chr∥vh∥H1 . (5.2)
With these changes, the error analysis in this article would yield the following error bound
under the stepsize restriction τ ⩾ hr:

max
1⩽n⩽N

(∥mn
h −m(·, tn)∥L2 + ∥m̃n

h −m(·, tn)∥L2) ⩽ C(τ + hr) for r ⩾ 2, (5.3)

where the condition r ⩾ 2 is required in (3.56)–(3.57) (in which hr+1 should be replaced by
hr). Hence, the result for triangular mesh is one-order lower than the result for rectangular
mesh.

Acknowledgements. The authors would like to thank Professor Linbo Zhang for pro-
viding reference [18] on the lumped mass FEM on triangular mesh. This work is supported
in part by the National Natural Science Foundation of China (NSFC grants U1930402 and
12071020) and a grant from the Research Grants Council of the Hong Kong Special Admin-
istrative Region, China (GRF Project No. 15300920).

Appendix A: Proof of Lemma 3.5. To prove (3.8), we define v ∈ H2 to be the
solution of the following problem {

∆v = ∆hvh in Ω,

∂νv = 0 on ∂Ω,
(A.1)

for any given vh ∈ Sr
h, with

∫
Ω
vdV = 0. Then, we split the bound into three parts:

∥vh∥L∞ ⩽
∥∥∥vh − 1

|Ω|

∫
Ω

vhdV − v
∥∥∥
L∞

+ ∥v∥L∞ +
∣∣∣ 1

|Ω|

∫
Ω

vhdV
∣∣∣. (A.2)
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In the following, we analyze the right-hand side of (A.2).
First, we consider the estimate of the second term on the right-hand side of (A.2). The

standard H2-regularity estimate of problem (A.1) implies
∥v∥H2 ⩽ C∥∆hvh∥L2 . (A.3)

By the definition of ∆h in (3.10), we have
(∆hvh,wh) = −(∇vh,∇wh) ⩽ Ch−2∥vh∥L2∥wh∥L2

for wh ∈ Sr
h, which implies

∥∆hvh∥L2 ⩽ Ch−2∥vh∥L2 . (A.4)

Then, assuming ψ ∈ H2 to be the solution of the problem{
∆ψ = v in Ω,

∂νψ = 0 on ∂Ω,

with
∫
Ω
ψdV = 0, it follows from (A.4) and integration by parts that

(v,v) = (∆ψ,v) = (ψ,∆v) = (ψ,∆hvh)

= (Rhψ,∆hvh) + (ψ −Rhψ,∆hvh)

⩽ −(∇Rhψ,∇vh) + ∥ψ −Rhψ∥L2∥∆hvh∥L2

⩽ −(∇ψ,∇vh) + Ch2∥ψ∥H2∥∆hvh∥L2 (here (A.4) is used)
⩽ (∆ψ,vh) + C∥ψ∥H2∥vh∥L2

⩽ C∥ψ∥H2∥vh∥L2

⩽ C∥v∥L2∥vh∥L2 ,

where Rhψ denotes the Ritz projection defined in (3.3). As a result, we have
∥v∥L2 ⩽ C∥vh∥L2 , (A.5)

which together with the Sobolev interpolation inequality [1, Theorem 5.9] and (A.3) yields

∥v∥L∞ ⩽ C∥v∥1−
d
4

L2 ∥v∥
d
4

H2 ⩽ C∥vh∥
1− d

4

L2 ∥∆hvh∥
d
4

L2 . (A.6)
Next, we consider the estimate of the first term on the right-hand side of (A.2). By

(A.1), there holds(
∇(vh − v),∇(vh − v)

)
=

(
∇(vh − v),∇v

)
=

(
∇(vh − v),∇(Ihv − v)

)
⩽ ∥∇(vh − v)∥L2∥∇(Ihv − v)∥L2 ,

which leads to

∥∇(vh − v)∥L2 ⩽ ∥∇(Ihv − v)∥L2 ⩽ Ch∥v∥H2 . (A.7)

Let g := vh − 1
|Ω|

∫
Ω
vhdV − v so that

∫
Ω
gdV = 0, and define φg to be the solution of{

∆φg = g in Ω,

∂νφg = 0 on ∂Ω,

with
∫
Ω
φgdV = 0. Then, we have

∥g∥2L2 = −(∇g,∇φg) = −(∇(vh − v),∇φg) = −(∇(vh − v),∇(φg − Ihφg))

⩽ ∥∇(vh − v)∥L2∥∇(φg − Ihφg)∥L2

⩽ Ch2∥v∥H2∥φg∥H2

⩽ Ch2∥v∥H2∥g∥L2 ,

which implies ∥∥∥vh − 1

|Ω|

∫
Ω

vhdV − v
∥∥∥
L2

⩽ Ch2∥v∥H2 .
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Thus, we bound the first term on the right-hand side of (A.2) by∥∥∥vh − 1

|Ω|

∫
Ω

vhdV − v
∥∥∥
L∞

⩽
∥∥∥vh − 1

|Ω|

∫
Ω

vhdV − Ihv
∥∥∥
L∞

+ ∥Ihv − v∥L∞

⩽ Ch−
d
2

∥∥∥vh − 1

|Ω|

∫
Ω

vhdV − Ihv
∥∥∥
L2

+ Ch2−
d
2 ∥v∥H2 (here Lemma 3.1 is used)

⩽ Ch−
d
2

∥∥∥vh − 1

|Ω|

∫
Ω

vhdV − v
∥∥∥
L2

+ Ch−
d
2 ∥v − Ihv∥L2 + Ch2−

d
2 ∥v∥H2

⩽ Ch2−
d
2 ∥v∥H2

⩽ Ch2−
d
2 ∥∆hvh∥L2 , (A.8)

where (A.3) is used in the last inequality.
Substituting (A.6) and (A.8) into (A.2) results in

∥vh∥L∞ ⩽ Ch2−
d
2 ∥∆hvh∥

1− d
4

L2 ∥∆hvh∥
d
4

L2 + C∥vh∥
1− d

4

L2 ∥∆hvh∥
d
4

L2 + ∥vh∥L2

⩽ C∥vh∥
1− d

4

L2 ∥∆hvh∥
d
4

L2 + ∥vh∥
1− d

4

L2 ∥vh∥
d
4

L2

⩽ C∥vh∥
1− d

4

L2 (∥vh∥L2 + ∥∆hvh∥L2)
d
4 ,

where we have used (A.4) in the second to last inequality.
Furthermore, by the inverse inequality (3.7) and (A.7), we get

∥∇vh∥L6 ⩽ ∥∇(Ihv − vh)∥L6 + ∥∇Ihv∥L6

⩽ Ch−
d
3 ∥∇(Ihv − vh)∥L2 + C∥v∥H2

⩽ Ch−
d
3 ∥∇(Ihv − v)∥L2 + Ch−

d
3 ∥∇(v − vh)∥L2 + C∥v∥H2

⩽ Ch1−
d
3 ∥v∥H2 + C∥v∥H2

⩽ C∥∆hvh∥L2 ,

where (A.3) is used in the last inequality. The proof of Lemma 3.5 is complete.

Appendix B: Proof of Lemma 3.6. In the case d = 1 there holds∣∣∣(1, Ihf − f)K

∣∣∣ ⩽ C∥f∥L∞(K) ⩽ C∥f∥W 2r,1(K) ∀ f ∈W 2r,1(K).

Hence, the functional F : W 2r,1(K) → R defined by F (f) := (1, Ihf − f)K satisfies the
condition (i) in Lemma 3.3. We further note that the (r + 1)-point Gaussian–Lobatto
quadrature is exact for polynomials of degree not larger than 2r − 1, i.e., F (f) = 0 for all
f that are polynomials of degree less than or equal to 2r − 1. As a result, F satisfies the
condition (ii) in Lemma 3.3 for k = 2r−1. As a result of Lemma 3.3, the following inequality
holds: ∣∣(1, Ihf − f)K

∣∣ ⩽ Ch2r∥∂2rx f∥L1(K) ∀ f ∈W 2r,1(K).

This proves the desired inequality (3.11) in the case d = 1.
In the case d = 3, it follows from (2.1) that∣∣(1, Ihf − f)K

∣∣
=

∣∣(1, IhxIhyIhz f − IhyIhz f)K
∣∣+ ∣∣(1, IhyIhz f − Ihz f)K

∣∣+ ∣∣(1, Ihz f − f)K
∣∣

⩽ Ch2r∥∂2rx (Ihy
Ihz

f)∥L1(K) + Ch2r∥∂2ry (Ihz
f)∥L1(K) + Ch2r∥∂2rz f∥L1(K)

⩽ Ch2r+d∥∂2rx (IhyIhz f)∥L∞(K) + Ch2r+d∥∂2ry (Ihz f)∥L∞(K) + Ch2r+d∥∂2rz f∥L∞(K)

= Ch2r+d∥Ihy
Ihz

∂2rx f∥L∞(K) + Ch2r+d∥Ihz
∂2ry f∥L∞(K) + Ch2r+d∥∂2rz f∥L∞(K)

⩽ Ch2r+d∥∂2rx f∥L∞(K) + Ch2r+d∥∂2ry f∥L∞(K) + Ch2r+d∥∂2rz f∥L∞(K).
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If f ∈ Vh, then (3.11) follows from the inequality above and the inverse inequality (3.6).
The proof for the case d = 2 is similar and thus omitted.

Appendix C: Proof of Lemma 3.7. We first consider the case d = 1. Let [a, b] :=
∪J
j=1Ij . Since u− Ihu = 0 at the two end points of each subinterval Ij , by using integration

by parts on each subinterval Ij we obtain∣∣∣(∂x(u− Ihu), ∂xvh

)∣∣∣ = ∣∣∣ J∑
j=1

(
∂x(u− Ihu), ∂xvh

)
Ij

∣∣∣ = ∣∣∣ J∑
j=1

(
u− Ihu, ∂xxvh

)
Ij

∣∣∣
=

∣∣∣ J∑
j=1

(
u, ∂xxvh

)
Ij

−
(
Ihu, ∂xxvh

)
Ij

∣∣∣.
Due to the fact that Ihu · ∂xxvh on each subinterval Ij is a polynomial of degree not higher
than 2r − 2; hence (Ihu, ∂xxvh)Ij

equals the Gauss–Lobatto quadrature for u · ∂xxvh on Ij .
Employing Lemma 3.6, it follows that∣∣∣(∂x(u− Ihu), ∂xvh

)∣∣∣ ⩽ J∑
j=1

Ch2r∥u∂xxvh∥W 2r,1(Ij) ⩽
J∑

j=1

Ch2r∥u∥H2r(Ij)∥vh∥Hr(Ij)

⩽ Ch2r∥u∥H2r(a,b)∥vh∥Hr(a,b)

⩽ Chr+1∥vh∥H1(a,b).

When d > 1, for example d = 2, we have∣∣∣(∇(u− Ihu),∇vh

)∣∣∣ ⩽ ∣∣∣(∂x(u− Ihu), ∂xvh

)∣∣∣+ ∣∣∣(∂y(u− Ihu), ∂yvh

)∣∣∣
⩽

∫ by

ay

Chr+1∥vh∥H1
x
dy +

∫ bx

ax

Chr+1∥vh∥H1
y
dx,

where∫ by

ay

Chr+1∥vh∥H1
x
dy = Chr+1

∫ by

ay

(∫ bx

ax

(|∂xvh|2 + |vh|2)dx
) 1

2

dy

⩽ Chr+1
(∫ by

ay

∫ bx

ax

(|∂xvh|2 + |vh|2)dxdy
) 1

2 ⩽ Chr+1∥vh∥H1 ,

and similarly ∫ bx

ax

Chr+1∥vh∥H1
y
dx ⩽ Chr+1∥vh∥H1 .

The above results yield (3.12) immediately. When d = 3, the estimate (3.12) can be also
proved by similar analysis. The proof of Lemma 3.7 is complete.
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