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Abstract. An implicit energy-decaying modified Crank–Nicolson time-stepping method is constructed for the vis-
cous rotating shallow water equation on the plane. Existence, uniqueness and convergence of semidis-
crete solutions are proved by using Schaefer’s fixed point theorem and H

2 estimates of the discretized
hyperbolic–parabolic system. For practical computation, the semidiscrete method is further discretized in
space, resulting in a fully discrete energy-decaying finite element scheme. A fixed-point iterative method
is proposed for solving the nonlinear algebraic system. The numerical results show that the proposed
method requires only a few iterations to achieve the desired accuracy, with second-order convergence in
time, and preserves energy decay well.
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1. Introduction. Let Ω ⊂ R
2 be a bounded domain with smooth boundary ∂Ω. We consider

an initial and boundary value problem for the rotating viscous shallow water equation

∂tH = −∇ · (Hu) in Ω × (0, T ],(1.1)

∂tu = −∇
(1
2
|u|2 + g(H −Hb)

)
− (∇× u+ f)k̂ × u+ G(H,u) in Ω × (0, T ],(1.2)

subject to the following initial and homogeneous Dirichlet boundary conditions:

u = 0 on ∂Ω × (0, T ],(1.3)

H|t=0 = H0 and u|t=0 = u0 in Ω,(1.4)

where H : Ω × [0, T ] → R and u = (u1, u2)
T : Ω × [0, T ] → R

2 denote the fluid thickness and
velocity, respectively, and

(1.5) G(H,u) =
µ

H
∇ · (H∇u)− cf

|u|u

H

consists of the viscous and friction forces, with |u| denoting the magnitude of the velocity u.
In the two-dimensional plane, ∇ × u := ∂u2

∂x1
− ∂u1

∂x2
denotes the curl of the vector field u, and

k̂×· denotes the rotation operator that rotates a vector field counterclockwise by the angle π
2 , i.e.,

k̂ ×

(
v1

v2

)
=

(
−v2

v1

)
.

The physical parameters and given functions in this model include
g: the gravity acceleration (positive constant)

∗Submitted to the editors on March 29, 2020.
Funding: This work is supported in part by an internal grant of The Hong Kong Polytechnic University (project ID:

P0031035 ZZKQ) and the National Natural Science Foundation of China (NSFC U1930402).
†Department of Computer Science & Engineering, University of Ioannina, 451 10 Ioannina, Greece, and Institute of

Applied and Computational Mathematics, FORTH, 700 13 Heraklion, Crete, Greece. E-mail address: akrivis@ cse.uoi.gr
‡Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong. E-mail address:

buyang.li@ polyu.edu.hk
§Beijing Computational Science Research Center, Beijing, China. E-mail address: jiluwang@ csrc.ac.cn

1



2 GEORGIOS AKRIVIS, BUYANG LI, AND JILU WANG

f : the Coriolis term (function)
µ: viscosity of the fluid (positive constant)
cf : Chezy coefficient for the bottom friction (positive constant)
Hb: the bathymetry (time-independent function).
The shallow water equations (1.1)–(1.2) describe the evolution of an incompressible fluid in

response to gravitational and rotational accelerations for small enough ratio between the vertical
and the horizontal scales. They are typically used to describe vertically averaged flows in three
dimensional domains in terms of horizontal velocity and depth variation. For smooth initial data
such that H0 −Hb and u0 are sufficiently small, it is known that the initial and boundary value
problem (1.1)–(1.4) possesses a unique global smooth solution such that H > 0; cf. [7, 26, 27].

The numerical solution of the shallow water equation has wide applications in ocean modeling
to study tidal fluctuations caused by earthquakes and storms, and to study allowable discharge
allocations by industries for water quality control. A nice introduction to the mathematical and
computational modeling of ocean circulation, with a detailed derivation of the governing PDEs
and an overview of early computational developments for such problems, is given in [15].

Many efforts have been devoted in developing efficient numerical methods and analyzing stabil-
ity and convergence of numerical solutions for the shallow water equation. The energy boundedness
of several first-order time-stepping methods for the viscous shallow water equation is proved in [1].
Convergence of numerical solutions to the viscous shallow water equation is established in [9] and
[10] for a semidiscrete finite element method (FEM) and a fully discrete FEM, respectively, for
a wave shallow water model proposed in [19]. The fully discrete FEM in [10] is linearly implicit
and first-order in time, and was shown to be convergent under a grid-ratio condition τ = O(h),
which was used to prove the L∞ boundedness of numerical solutions via an inverse inequality for
finite element functions. Convergence of a fully discrete, first-order in time, nonlinearly implicit
characteristic method for the shallow water equation is shown in [12], also under the grid-ratio
condition τ = O(h) for the same reason. A leap-frog FEM is considered in [28] for the viscous shal-
low water equation on the unit sphere, and an error estimate is derived under the same grid-ratio
condition τ = O(h). Exponential time differencing methods for the shallow water equations are
constructed, discussed and implemented in the recent paper [22]. Rigorous proof of convergence
of the exponential time differencing method is still open.

Convergence of a Galerkin FEM with explicit Runge–Kutta methods in time is proved for
the hyperbolic shallow water equation in one space dimension in [3] and [4]. Optimal-order error
estimates are established under the hyperbolic CFL condition τ = O(h). For an overview of
numerical methods for the nonlinear hyperbolic shallow water equations and related models, with
the main emphasis on the spatial discretization and on practical issues, as well as for references to
the original literature, we refer to the recent review paper [30].

Since the energy of the solutions to the viscous shallow water equation alway decays in time,
it is desirable to preserve this property in numerical solutions. Some high-order well-balanced
and energy-conserving explicit methods have been constructed for the hyperbolic shallow water
equation; for example, see [6, 8, 20, 31]. For the viscous shallow water equation, these explicit
methods would preserve energy decay but require a CFL condition τ = O(h2). As far as we
know, no implicit methods have been reported to preserve energy decay for the viscous shallow
water equation without requiring a CFL condition. Therefore, the construction of energy–decaying
numerical methods (especially second-order methods without CFL conditions) for viscous shallow
water equations is still challenging.

As far as we know, all existing error analyses of implicit and linearly implicit time-stepping
methods for the viscous shallow water equation require the grid ratio condition τ = O(h), which
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is natural for the hyperbolic shallow water equation but may not be necessary for the viscous
model. Otherwise the semi-discretization in time (corresponding to the case h → 0 in the full
discretization) may not converge with optimal order. The grid-ratio condition was used to prove
the L∞ boundedness of numerical solutions by an inverse inequality of finite element functions,
which may be avoided if (i) convergence of the semi-discretization method in the H2 norm with
respect to the time stepsize can be established, (ii) the error splitting approach in [17, 18, 29] can be
adopted for analysis of the fully discrete FEM (this approach requires the temporal semi-discrete
solutions to be bounded in the H2 norm uniformly in temporal stepsizes).

In this paper, we propose a second-order energy-decaying modified Crank–Nicolson method
for the viscous problem (1.1)–(1.4) and establish (i), i.e., optimal-order convergence of the semi-
discretization method in the H2 norm with respect to the time stepsize. This would provide a
foundation for error analysis of fully discrete FEMs using the approach mentioned in (ii) without a
grid-ratio condition. The analysis of H2 convergence of the proposed nonlinearly implicit temporal
semi-discretization for the hyperbolic–parabolic system (1.1)–(1.4) is different from all existing
work using the error splitting approach, e.g., [17, 18, 29], which all concern only nonlinear parabolic
equations and linearly semi-implicit schemes. The derivation of the error estimates in this paper
is based on the boundedness of the numerical solutions in H2(Ω) (uniformly with respect to the
stepsize τ), proved by Schaefer’s fixed-point theorem, combined with discrete L∞(0, T ;H2(Ω)) and
L2(0, T ;H3(Ω)) estimates of the Crank–Nicolson scheme.

2. Energy decay and time discretization. In this section, we present a second-order implicit
modified Crank–Nicolson method preserving the energy decay property of the viscous shallow
water equation.

2.1. Energy decay property. Testing (1.1) by
1

2
|u|2 + g(H −Hb) and (1.2) by Hu, we obtain

(2.1)

∫

Ω
∂tH

(1
2
|u|2 + g(H −Hb)

)
dx = −

∫

Ω
∇ · (Hu)

(1
2
|u|2 + g(H −Hb)

)
dx

and

(2.2)

∫

Ω
∂tu · (Hu)dx = −

∫

Ω
∇
(1
2
|u|2 + g(H −Hb)

)
· (Hu)dx+

∫

Ω
G(H,u) · (Hu)dx,

respectively, where we used the orthogonality (k̂ × u) · (Hu) = 0 in the derivation of (2.2). By
adding the relations (2.1) and (2.2), the first terms on their right-hand sides cancel, while the first
terms on their left-hand sides can be combined using the product rule of differentiation. Therefore,
we obtain

(2.3)
d

dt

∫

Ω

1

2

(
|u|2H + g(H −Hb)

2
)
dx =

∫

Ω
G(H,u) · (Hu)dx.

We infer that the energy E(u,H),

(2.4) E(u,H) :=

∫

Ω

1

2

(
|u|2H + g(H −Hb)

2
)
dx,

satisfies the relation

(2.5)
d

dt
E(u,H) =

∫

Ω
G(H,u) · (Hu)dx = −µ

∫

Ω
H|∇u|2 dx− cf

∫

Ω
|u|3 dx 6 0

if H > 0, where we have used the expression of G(H,u) in (1.5) and integration by parts. This
shows that the energy is decaying.
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2.2. A modified Crank–Nicolson method. Let tn := nτ , n = 0, 1, . . . , N, be the nodes of a
uniform partition of the time interval [0, T ] with stepsize τ = T/N , and denote

∂̄τv
n := (vn − vn−1)/τ and vn−

1

2 := (vn + vn−1)/2.

We consider the temporal discretization of the initial and boundary value problem (1.1)–(1.2)
by the following implicit scheme: for given Hn−1 ∈ H1(Ω) and un−1 ∈ [H2(Ω) ∩ H1

0 (Ω)]2, find
Hn ∈ H1(Ω) and un ∈ [H2(Ω) ∩H1

0 (Ω)]2 satisfying the following equations:

(2.6)





∂̄τH
n = −∇ ·

(
Hn− 1

2un−
1

2

)
,

∂̄τu
n = −∇

(1
4

(
|un|2 + |un−1|2

)
+ g(Hn− 1

2 −Hb)
)

− (∇× un−
1

2 + fn− 1

2 )k̂ × un−
1

2 + G(Hn− 1

2 , un−
1

2 ), n = 1, . . . , N,

with starting values H0 and u0 being the given initial values in (1.4).
In the standard Crank–Nicolson method, the term |u|2 in (1.2) would be discretized in the

form |un−
1

2 |2; instead, in the second equation of (2.6), we discretized it by
(
|un|2+ |un−1|2

)
/2; this

modification of the Crank–Nicolson method is familiar from [25] for the nonlinear Klein–Gordon
equation and from [13] for the nonlinear Schrödinger equation; see also [2]. A different type of
modified Crank–Nicolson method was also used for preserving the energy decay property of the
Cahn–Hilliard equation; see [23].

2.3. Energy decay of discrete solutions.

Theorem 2.1. If (Hn, un) ∈ H1(Ω) × [H2(Ω) ∩ H1
0 (Ω)]2, n = 1, . . . , N , is a solution of (2.6)

satisfying

Hn > 0, n = 1, . . . , N,

then the modified Crank–Nicolson scheme (2.6) is energy-decaying, i.e.,

(2.7) E(un,Hn) 6 E(un−1,Hn−1), n = 1, . . . , N.

Proof. Testing the first equation in (2.6) by 1
4

(
|un|2+ |un−1|2

)
+ g(Hn− 1

2 −Hb) and the second

by Hn− 1

2un−
1

2 , adding the results, and noticing that, as in the continuous case, the first terms
on the right-hand sides cancel, and the second term on the right-hand side of the second relation
vanishes due to the orthogonality (k̂ × un−

1

2 ) · (Hn− 1

2un−
1

2 ) = 0, we obtain

(2.8)

∫

Ω

[
∂̄τH

n
(1
4

(
|un|2 + |un−1|2

)
+ g(Hn− 1

2 −Hb)
)
+ ∂̄τu

n ·
(
Hn− 1

2un−
1

2

)]
dx

=

∫

Ω
G(Hn− 1

2 , un−
1

2 ) ·
(
Hn− 1

2un−
1

2

)
dx.

Then, substituting the identities

∂̄τu
n ·
(
Hn− 1

2un−
1

2

)
=

1

2τ
Hn− 1

2

(
|un|2 − |un−1|2

)

=
1

4τ

(
Hn|un|2 −Hn−1|un−1|2

)
+

1

4τ

(
Hn−1|un|2 −Hn|un−1|2

)
,

∂̄τH
n 1

4

(
|un|2 + |un−1|2

)
=

1

4τ

(
Hn|un|2 −Hn−1|un−1|2

)
−

1

4τ

(
Hn−1|un|2 −Hn|un−1|2

)
,

∂̄τH
ng(Hn− 1

2 −Hb) =
g

2τ

[
(Hn −Hb)

2 − (Hn−1 −Hb)
2
]
,
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into (2.8), we obtain
∫

Ω

1

2

(
Hn|un|2 + g

(
Hn −Hb

)2)
dx =

∫

Ω

1

2

(
Hn−1|un−1|2 + g

(
Hn−1 −Hb

)2)
dx

+ τ

∫

Ω
G(Hn− 1

2 , un−
1

2 ) ·
(
Hn− 1

2un−
1

2

)
dx.

By using the expression (1.5) of the viscous and friction forces, we have

∫

Ω
G(Hn− 1

2 , un−
1

2 ) ·
(
Hn− 1

2un−
1

2

)
dx = −

∫

Ω

(
µHn− 1

2 |∇un−
1

2 |2 + cf |u
n− 1

2 |3
)
dx 6 0.

This implies the energy decay property (2.7).

For practical computation, the semi-discrete scheme (2.6) can be further discretized in space
by the FEM: find (Hn

h , u
n
h) ∈ Sh × S̊2

h, with S̊h ⊂ H1
0 (Ω), satisfying the weak formulation

(2.9)





(∂̄τH
n
h , φh)−

(
H

n− 1

2

h u
n− 1

2

h ,∇φh

)
= 0 ∀φh ∈ Sh,

(∂̄τu
n
h,H

n− 1

2

h vh) +
(
µH

n− 1

2

h ∇u
n− 1

2

h ,∇vh
)
+
(
cf |u

n− 1

2

h |u
n− 1

2

h , vh
)

= −
(
∇Ph

[1
4

(
|unh|

2 + |un−1
h |2

)
+ g(H

n− 1

2

h −Hb)
]
,H

n− 1

2

h vh

)

−
(
(∇× u

n− 1

2

h + fn− 1

2 )k̂ × u
n− 1

2

h ,H
n− 1

2

h vh
)

∀ vh ∈ S̊2
h

with starting values H0
h and u0h being the Lagrange interpolants of H0 and u0, respectively. Here,

Sh and S̊2
h are the scalar- and vector-valued finite element spaces, respectively, consisting of globally

continuous piecewise linear polynomials. The L2-projection Ph (onto the finite element space Sh) in
(2.9) ensures that the energy decay property is unconditionally preserved also in the fully discrete
case. The proof proceeds along the lines of the proof of Theorem 2.1, i.e., substituting

φh = Ph

[
1

4

(
|unh|

2 + |un−1
h |2

)
+ g(H

n− 1

2

h −Hb)

]
and vh = u

n− 1

2

h

into (2.9) and summing up the two equations, we obtain
∫

Ω

1

2

(
Hn

h |u
n
h|

2 + g
(
Hn

h −Hb

)2)
dx =

∫

Ω

1

2

(
Hn−1

h |un−1
h |2 + g

(
Hn−1

h −Hb

)2)
dx

−

∫

Ω

(
µH

n− 1

2

h |∇u
n− 1

2

h |2 + cf |u
n− 1

2

h |3
)
dx

6

∫

Ω

1

2

(
Hn−1

h |un−1
h |2 + g

(
Hn−1

h −Hb

)2)
dx,

which holds whenever H
n− 1

2

h > 0. This proves the energy decay property of the fully discrete FEM.

2.4. Existence, uniqueness and convergence of discrete solutions. For simplicity, we denote
by (·, ·) and ‖ · ‖ the inner products and norms on both L2(Ω) and

(
L2(Ω)

)2
, by ‖ · ‖Hm the norms

on Hm(Ω) and on
(
Hm(Ω)

)2
, and similarly for norms on Lp(Ω)-based Sobolev spaces.

We assume that
(A1) The domain Ω is sufficiently smooth, and the solution (H,u) of the initial and boundary

value problem (1.1)–(1.4) is sufficiently smooth.

(A2) The solution of (1.1)–(1.4) satisfies

inf
(x,t)∈Ω×[0,T ]

H(x, t) > Hmin for some positive constant Hmin.
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We denote by Bn
H,u the set of pairs (H̃, ũ) ∈ H2(Ω)× [H3(Ω) ∩H1

0 (Ω)]2 such that

‖H̃ −H(tn)‖H2 + ‖H̃ −H(tn)‖L∞ 6
Hmin

2
and ‖ũ− u(tn)‖H3 6 1,(2.10)

where H(tn) := H(·, tn) and u(tn) := u(·, tn) are the exact solutions at the time level t = tn. Thus
Bn

H,u is a neighborhood of the solution (H(tn), u(tn)) in the space H2(Ω)× [H3(Ω) ∩H1
0 (Ω)]2.

The main theoretical result of this paper is

Theorem 2.2. Under assumptions (A1)–(A2), there exists a positive constant τ0 such that, for

τ 6 τ0, the modified Crank–Nicolson method (2.6) has a unique solution (Hn, un) ∈ Bn
H,u for

n = 1, . . . , N . Moreover, the solution satisfies the following error estimate:

(2.11) max
16n6N

(
‖H(tn)−Hn‖H2 + ‖u(tn)− un‖H2

)
+

(
τ

N∑

n=1

‖u(tn− 1

2

)− un−
1

2 ‖2H3

) 1

2

6 Cτ2,

with a constant C independent of τ.

Remark 2.3. An immediate consequence of Theorem 2.2 is that the discrete solution satisfies,
for τ 6 τ0,

(2.12) ‖Hn‖H2 + ‖un‖H3 + ‖(un − un−1)/τ‖H2 6 C.

This result can be used for error analysis of fully discrete FEMs, which can be viewed as the spatial
discretization of the semidiscrete problem (2.6), whose solution has regularity (2.12). By utilizing
this regularity result (uniformly in the stepsize τ), one can expect that the error between semi-
and fully discrete solutions has the following bound:

(2.13) ‖Hn −Hn
h‖+ ‖un − unh‖ 6 Ch2,

with a right-hand side independent of τ . Such type of error estimates (independent of τ) have
been proved in [18, 17, 29] for many nonlinear parabolic and wave equations. With such results
as (2.13), convergence and boundedness of fully discrete numerical solutions in L∞(0, T ;L∞(Ω))
can be proved, for τ 6 τ0 and h 6 h0, by using (2.13) and an inverse inequality, without requiring
any grid-ratio condition.

3. Proof of Theorem 2.2. In this section, we prove existence and uniqueness of discrete
solutions for sufficiently small time stepsize τ, and establish a second-order error estimate.

3.1. H2 and H3 estimates for the Crank–Nicolson scheme. In this subsection, we present
some H2 and H3 estimates of the Crank–Nicolson scheme for the heat equation, which will be
used in our error estimation for the shallow water equation. Our main tool will be the following
resolvent estimates:

Lemma 3.1 (Resolvent estimates). The Dirichlet Laplacian operator ∆ : H2(Ω) ∩ H1
0 (Ω) →

L2(Ω) satisfies the resolvent estimates

‖∆(z −∆)−1f‖L2 6 C‖f‖L2 if f ∈ L2(Ω), z ∈ C and Re z > 0,(3.1)

‖∆(z −∆)−1f‖H1 6 C‖f‖H1 if f ∈ H1(Ω), z ∈ C and Re z > 0,(3.2)

with a constant C independent of z.

Proof. It is well known that the Dirichlet Laplacian ∆ : H2(Ω)∩H1
0 (Ω) → L2(Ω) generates a

bounded analytic semigroup on L2(Ω); see [21]. Equivalently, z − ∆ is invertible for z ∈ C such
that Re z > 0 and the resolvent estimate (3.1) holds; see [5, Example 3.7.5 and Theorem 3.7.11].
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For f ∈ H1
0 (Ω),

‖∆(z −∆)−1f‖H1 = ‖(−∆)
1

2 (z −∆)−1(−∆)
1

2 f‖H1

6 ‖∆(z −∆)−1(−∆)
1

2 f‖L2

6 C‖(−∆)
1

2 f‖L2 6 C‖f‖H1 ,

where we have used (3.1) in the second to last inequality. This proves (3.2) for f ∈ H1
0 (Ω).

For f ∈ H1(Ω), we choose a sequence of functions fn = en
−1∆f ∈ H1

0 (Ω), n ∈ N. Then fn
is the solution of the heat equation at time t = 1/n with initial value f , satisfying the following
standard estimate:

fn → f in L2(Ω) as n → ∞ and ‖fn‖H1 6 C‖f‖H1 .(3.3)

In fact, we have fn = en
−1∆f → f in L2(Ω) because the heat semigroup is strongly continuous

(and analytic) on L2(Ω); see [21, Theorem 2.4]. The estimate ‖fn‖H1 6 C‖f‖H1 can be proved as
follows: let v be the solution of the heat equation

∂tv −∆v = 0 with initial condition v(·, 0) = f ∈ H1(Ω),

so that fn = v(·, 1/n). Then, testing this equation by ∂tv yields

‖∂tv‖
2
L2 +

d

dt

(1
2
‖∇v‖2L2

)
= 0,

which implies ‖∇v(·, t)‖L2 6 ‖∇v(·, 0)‖L2 . This proves that ‖∇fn‖L2 6 ‖∇f‖L2 , and, together
with the standard L2 stability estimate ‖fn‖L2 6 ‖f‖L2 , lead to ‖fn‖H1 6 ‖f‖H1 .

Since (3.2) holds for fn ∈ H1
0 (Ω), it follows that

(3.4) ‖∆(z −∆)−1fn‖H1 6 C‖fn‖H1 6 C‖f‖H1 .

This proves that ∆(z−∆)−1fn is bounded in H1(Ω). On the one hand, there exists a subsequence
∆(z −∆)−1fnk

which converges weakly in H1(Ω). On the other hand, ∆(z −∆)−1fnk
converges

strongly in L2(Ω), because fnk
→ f in L2(Ω) and ∆(z − ∆)−1 is a bounded linear operator on

L2(Ω). Thus ∆(z −∆)−1fnk
converges weakly in H1(Ω) to ∆(z −∆)−1f . Then (3.4) implies (cf.

[11, Theorem 5.12-2])

‖∆(z −∆)−1f‖H1 6 lim inf
nk→∞

‖∆(z −∆)−1fnk
‖H1 6 C‖f‖H1 ,

where we have used (3.4) in the last inequality. This proves the desired results.

Lemma 3.2. For a given sequence (fn)n∈N ⊂ Hs(Ω), with s ∈ {0, 1}, and starting value v0 = 0
in Ω, consider the sequence (vn)n∈N, with vn ∈ H1

0 (Ω), satisfying

(3.5) ∂̄τv
n −∆vn−

1

2 = fn in Ω, n ∈ N.

Then, there exists a positive constant C, independent of τ and of the sequence (fn)n∈N, such that,

for any m ∈ N,

(3.6) max
16n6m

‖vn‖2H1+s + τ

m∑

n=1

‖vn−
1

2 ‖2H2+s 6 Cτ

m∑

n=1

‖fn‖2Hs .

Proof. Without loss of generality, we assume that fn = 0 for n > m + 1. Otherwise we set
fn = 0 for n > m + 1 without affecting the value of vn for n 6 m. Then f = (fn)n∈Z is an
L2(Ω)-valued square summable sequence.

Let v = (vn)∞n=1 and f = (fn)∞n=1, and denote by F the Fourier Z-transform, which transforms
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a square summable sequence f = (fn)n∈Z to a function

Ff(ζ) =
∑

n∈Z

ζnfn

defined a.e. for ζ on the unit disk D on the complex plane.
Multiplying (3.5) by ζn and summing up the equations for n = 1, 2, . . . , we obtain

(3.7)

(
1− ζ

τ
−

1 + ζ

2
∆

)
Fv(ζ) = Ff(ζ),

which furthermore implies

1 + ζ

2
∆Fv(ζ) = ∆

(
2

τ

1− ζ

1 + ζ
−∆

)−1

Ff(ζ)

and therefore (taking the inverse transform of F)

(3.8) (∆vn−
1

2 )∞n=1 = F−1M(ζ)F (fn)∞n=1,

where M(ζ) = ∆
(
2
τ
1−ζ
1+ζ −∆

)−1
.

Since Re
(
2
τ
1−ζ
1+ζ

)
> 0 for ζ ∈ ∂D\{±1}, it follows that the operator M(ζ) is bounded in L2(Ω)

and inH1(Ω), uniformly for ζ ∈ ∂D\{±1}; see Lemma 3.1. By Parseval’s identity, the boundedness
of M(ζ) implies that the operator F−1M(ζ)F is bounded on both ℓ2(L2(Ω)) and ℓ2(H1(Ω)), i.e.,

τ

∞∑

n=1

‖∆vn−
1

2 ‖2L2 6 Cτ

m∑

n=1

‖fn‖2L2 and τ

∞∑

n=1

‖∆vn−
1

2 ‖2H1 6 Cτ

m∑

n=1

‖fn‖2H1 .

Since ‖vn−
1

2‖Hs+2 6 C‖∆vn−
1

2 ‖Hs for s = 0, 1 (cf. [14, Theorem 5 of Chapter 6]), these two
inequalities imply

τ
∞∑

n=1

‖vn−
1

2‖2H2 6 Cτ
m∑

n=1

‖fn‖2L2 and τ
∞∑

n=1

‖vn−
1

2‖2H3 6 Cτ
m∑

n=1

‖fn‖2H1 .

This proves the estimate for the second term of (3.6).

Testing (3.5) by −∆vn−
1

2 immediately yields

‖∇vn‖2L2 − ‖∇vn−1‖2L2

2τ
+ ‖∆vn−

1

2‖2L2 = (fn,∆vn−
1

2 )

6 ‖fn‖L2‖∆vn−
1

2‖L2

6
1

2
‖fn‖2L2 +

1

2
‖∆vn−

1

2 ‖2L2 ,

which implies

(3.9) max
16n6m

‖vn‖2H1 6 Cτ
m∑

n=1

‖fn‖2L2 .

This proves the estimate for the first term of (3.6) in the case s = 0.

If fn ∈ H1
0 (Ω), then ∆vn−

1

2 ∈ H1
0 (Ω), and testing (3.5) by ∆2vn−

1

2 yields

‖∆vn‖2L2 − ‖∆vn−1‖2L2

2τ
+ ‖∇∆vn−

1

2 ‖2L2 = (∇fn,∇∆vn−
1

2 )

6 ‖fn‖H1‖∇∆vn−
1

2‖L2
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6
1

2
‖fn‖2H1 +

1

2
‖∇∆vn−

1

2‖2L2 ,

which implies

max
16n6m

‖∆vn‖2L2 6 Cτ

m∑

n=1

‖fn‖2H1 ;

therefore,

(3.10) max
16n6m

‖vn‖2H2 6 Cτ

m∑

n=1

‖fn‖2H1 .

If fn ∈ H1(Ω), then we choose fn
j = ej

−1∆fn. Similarly as (3.3), fn
j has the following properties:

fn
j ∈ H1

0 (Ω), fn
j → fn in L2(Ω) and ‖fn

j ‖H1 6 C‖fn‖H1 as j → ∞.

Then, the corresponding vnj satisfies

(3.11) max
16n6m

‖vnj ‖
2
H2 6 Cτ

m∑

n=1

‖fn
j ‖

2
H1 6 Cτ

m∑

n=1

‖fn‖2H1 .

Since fn
j → fn in L2(Ω) as j → ∞, (3.9) implies that vnj → vn in H1(Ω). This together with

(3.11) imply that vnj is bounded and convergent to vn weakly in H2(Ω). Letting j → ∞, we obtain

(3.10) for fn ∈ H1(Ω). This proves the estimate for the first term of (3.6) in the case s = 1.

3.2. Consistency of the method. We abbreviate u(·, t) by u(t) and H(·, t) by H(t). Further-
more, we denote

Hn
⋆ = H(tn), H

n− 1

2
⋆ =

1

2
(Hn

⋆ +Hn−1
⋆ ),(3.12)

un⋆ = u(tn), u
n− 1

2
⋆ =

1

2
(un⋆ + un−1

⋆ ),(3.13)

and tn− 1

2

:= (tn + tn−1)/2.

Let ηnH and ηnu be the consistency errors of the modified Crank–Nicolson method (2.6), defined
by

(3.14)





∂̄τH
n
⋆ +∇ ·

(
H

n− 1

2
⋆ u

n− 1

2
⋆

)
= ηnH ,

∂̄τu
n
⋆ +∇

(1
4

(
|un⋆ |

2 + |un−1
⋆ |2

)
+ g(H

n− 1

2
⋆ −Hb)

)

+ (∇× u
n− 1

2
⋆ + fn− 1

2 )k̂ × u
n− 1

2
⋆ − G(H

n− 1

2
⋆ , u

n− 1

2
⋆ ) = ηnu , n = 1, . . . , N.

It is straightforward to show that

(3.15) max
16n6N

(
‖ηnH‖H2 + ‖ηnu‖H2

)
6 Cτ2,

provided that the solution (H,u) is sufficiently smooth.

3.3. Existence of discrete solutions. Let enu := un⋆ −un and enH := Hn
⋆ −Hn denote the errors

of the modified Crank–Nicolson method (2.6). Subtracting (2.6) from the consistency equations
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(3.14), we obtain the error equations

(3.16)





∂̄τ e
n
H +∇ ·

(
e
n− 1

2

H un−
1

2 +H
n− 1

2
⋆ e

n− 1

2
u

)
= ηnH ,

∂̄τ e
n
u −

µ

Hn− 1

2

∇ · (Hn− 1

2∇e
n− 1

2
u )

−
µ

Hn− 1

2

∇ · (e
n− 1

2

H ∇u
n− 1

2
⋆ ) +

µ

Hn− 1

2H
n− 1

2
⋆

e
n− 1

2

H ∇ · (H
n− 1

2
⋆ ∇u

n− 1

2
⋆ )

+ cf

(
|u

n− 1

2
⋆ |u

n− 1

2
⋆

H
n− 1

2
⋆

−
|un−

1

2 |un−
1

2

Hn− 1

2

)

+
1

4
∇
(
|un⋆ |

2 − |un|2 + |un−1
⋆ |2 − |un−1|2

)
+ g∇e

n− 1

2

H

+ (∇× u
n− 1

2
⋆ )k̂ × u

n− 1

2
⋆ − (∇× un−

1

2 )k̂ × un−
1

2 + fn− 1

2 k̂ × e
n− 1

2
u = ηnu .

Remark 3.3. Obviously, if (enH , enu) ∈ H2(Ω) × [H3(Ω) ∩H1
0 (Ω)]2 is a solution of (3.16) with

Hn = Hn
⋆ − enH and un = un⋆ − enu, then (Hn, un) is a solution of (2.6).

To prove existence of a solution (enH , enu) to (3.16) with Hn = Hn
⋆ − enH and un = un⋆ − enu, we

first prove existence of a solution for a regularized approximating problem (for which the proof
of existence is easier, as explained in Remark 3.4). To this end, we let E : L1(Ω) → L1(R2) be
a linear extension operator that is bounded also from W k,p(Ω) to W k,p(R2) for all k > 0 and
1 6 p 6 ∞. Such an extension operator indeed exists; see [24, p. 181, Theorem 5]. Then, we let
σε be a standard smooth mollifier in R

2 and define

σε ⋆ ϕ
n− 1

2 := σε ⋆ Eϕn− 1

2 .

The mollified function σε ⋆ ϕ
n− 1

2 is smooth and satisfies

(3.17) ‖σε ⋆ ϕ
n− 1

2 ‖Hm(R2) 6 C0ε
−(m−k)‖ϕn− 1

2‖Hk(Ω) ∀ϕn− 1

2 ∈ W k,p(Ω), 0 6 k 6 m.

We consider the following regularized problem an approximation to (3.16):

(3.18)





∂̄τe
n
H +∇ ·

(
e
n− 1

2

H un−
1

2 +H
n− 1

2
⋆ e

n− 1

2
u

)
= ηnH ,

∂̄τe
n
u −

µ

H
n− 1

2
ε

∇ · (H
n− 1

2
ε ∇e

n− 1

2
u )

−
µ

H
n− 1

2
ε

∇ · (σε ⋆ e
n− 1

2

H ∇u
n− 1

2
⋆ ) +

µ

H
n− 1

2
ε H

n− 1

2
⋆

σε ⋆ e
n− 1

2

H ∇ · (H
n− 1

2
⋆ ∇u

n− 1

2
⋆ )

+ cf

(
|u

n− 1

2
⋆ |u

n− 1

2
⋆

H
n− 1

2
⋆

−
|un−

1

2 |un−
1

2

H
n− 1

2
ε

)

+
1

4
∇
(
(un⋆ + un) · (un⋆ − un) + (un−1

⋆ + un−1) · (un−1
⋆ − un−1)

)
+ g∇(σε ⋆ e

n− 1

2

H )

+∇× (u
n− 1

2
⋆ − un−

1

2 )k̂ × un−
1

2 − (∇× u
n− 1

2
⋆ )k̂ × (u

n− 1

2
⋆ − un−

1

2 )

+ fn− 1

2 k̂ × e
n− 1

2
u = ηnu ,

with

(3.19) Hn
ε = Hn

⋆ − σε ⋆ e
n
H and un = un⋆ − enu.
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Remark 3.4. If (3.18) has a solution (enH , enu) bounded in H2(Ω)× [H3(Ω)∩H1
0 (Ω)]2 uniformly

for 1 6 n 6 N and ε ∈ (0, 1), then there exists a sequence εk → 0 such that the corresponding
sequence of solutions of (3.18) converges strongly in H1(Ω) × [H2(Ω) ∩ H1

0 (Ω)]2 and weakly in
H2(Ω) × [H3(Ω) ∩H1

0 (Ω)]2 to a solution of (3.16). The rigorous proof of this “pass to limit” is
routine.

To prove existence of solutions for the regularized problem (3.18), we use Schaefer’s fixed point
theorem (cf. [14, Chapter 9.2, Theorem 4]).

Schaefer’s Fixed Point Theorem: Let Y be a Banach space and let M : Y → Y be a

continuous and compact map (possibly nonlinear). If the set

(3.20)
{
φ ∈ Y : φ = θM(φ) for some θ ∈ [0, 1]

}

is bounded in Y , then the map M has a fixed point.

Construction of the map M : Let X = H1(Ω)×
(
H3(Ω)∩H1

0 (Ω)
)2

and consider the space
(XN , ‖ · ‖ℓ∞(X)) of sequences (φ

n, ϕn)Nn=1 with (φn, ϕn) ∈ X, endowed with the following norm:

‖(φn, ϕn)Nn=1‖ℓ∞(X) := max
16n6N

‖(φn, ϕn)‖X .

For any sequence (φn, ϕn)Nn=1 ∈ XN we define

ρHφ,ε := min

(
Hmin

2

1

max
16n6N

(‖σε ⋆ φ
n‖H2 + ‖σε ⋆ φ

n‖L∞)
, 1

)
,(3.21)

ρuϕ := min

(
1

max
16n6N

(‖ϕn‖H3 + ‖∇ · ϕn‖L∞)
, 1

)
,(3.22)

Hn
φ,ε = Hn

⋆ − ρHφ,ε σε ⋆ φ
n and unϕ = un⋆ − ρuϕϕ

n.(3.23)

Then ‖ρHφ,ε σε ⋆ φ
n‖L∞ 6

Hmin

2 and therefore

Hn
φ,ε >

Hmin

2
.

For any fixed ε > 0, the quantities ρHφ,ε and ρuϕ depend continuously on (φn, ϕn)Nn=1 ∈ XN , and

‖ρHφ,ε σε ⋆ φ
n‖H2 6

Hmin

2
and ‖ρuϕϕ

n‖H3 6 1,(3.24)

‖Hn
φ,ε‖H2 6 ‖Hn

⋆ ‖H2 +
Hmin

2
and ‖unϕ‖H3 + ‖∇ · unϕ‖L∞ 6 ‖un⋆‖H3 + ‖∇ · un⋆‖L∞ + 1.(3.25)

For any given (φn, ϕn)Nn=1 ∈ XN , we define (enH , enu)
N
n=1 ∈ XN to be the solution of the following

linear problem:

∂̄τ e
n
H +∇ ·

(
e
n− 1

2

H u
n− 1

2
ϕ +H

n− 1

2
⋆ ϕn− 1

2

)
= ηnH ,(3.26)

∂̄τ e
n
u −

µ

H
n− 1

2

φ,ε

∇ · (H
n− 1

2

φ,ε ∇e
n− 1

2
u )

−
µ

H
n− 1

2

φ,ε

∇ · (σε ⋆ φ
n− 1

2∇u
n− 1

2
⋆ ) +

µ

H
n− 1

2

φ,ε H
n− 1

2
⋆

σε ⋆ φ
n− 1

2∇ · (H
n− 1

2
⋆ ∇u

n− 1

2
⋆ )

+ cf

(
|u

n− 1

2
⋆ |u

n− 1

2
⋆

H
n− 1

2
⋆

−
|u

n− 1

2
ϕ |u

n− 1

2
ϕ

H
n− 1

2

φ,ε

)
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+
1

4
∇
(
(un⋆ + unϕ)ϕ

n + (un−1
⋆ + un−1

ϕ )ϕn−1
)
+ g∇σε ⋆ φ

n− 1

2

+ (∇× ϕn− 1

2 )k̂ × u
n− 1

2
ϕ + (∇× u

n− 1

2
⋆ )k̂ × ϕn− 1

2 + fn− 1

2 k̂ × ϕn− 1

2 = ηnu ,(3.27)

with starting values e0H = e0u = 0. The map from (φn, ϕn)Nn=1 to (enH , enu)
N
n=1 is denoted by M .

Lemma 3.5. Let τ be sufficiently small (independent of ε),

(3.28) τ 6
1

‖u‖L∞(0,T ;H3) + ‖∇ · u‖L∞(0,T ;L∞) + 1
.

Then, for any given ηnH , ηnu ∈ H2(Ω), given ε, and given (φn, ϕn)Nn=1 ∈ XN , the system (3.26)–
(3.27) has a unique solution (enH , enu) ∈ H2(Ω)× [H4(Ω) ∩H1

0 (Ω)]2, n = 1, . . . , N . Moreover, the

map M : XN → XN is well defined, continuous and compact.

Proof. For given en−1
H ∈ H2(Ω), (3.26) can be written as

(3.29)
2

τ
e
n− 1

2

H + u
n− 1

2
ϕ · ∇e

n− 1

2

H + (∇ · u
n− 1

2
ϕ )e

n− 1

2

H = gnH

with

gnH = ηnH −∇ · (H
n− 1

2
⋆ ϕn− 1

2

)
+

2

τ
en−1
H ∈ H2(Ω).

The linear hyperbolic equation (3.29) has a unique solution e
n− 1

2

H ∈ H2(Ω) and satisfies the fol-
lowing estimate (see Appendix):

‖e
n− 1

2

H ‖H2 6 C‖gnH‖H2 .

This implies that (3.26) has a unique solution enH ∈ H2(Ω), n = 1, . . . , N .
Similarly, for given en−1

u ∈ H3(Ω) ∩H1
0 (Ω), (3.27) can be written as a linear elliptic equation

(3.30)
2

τ
e
n− 1

2
u −

µ

H
n− 1

2

φ,ε

∇ · (H
n− 1

2

φ,ε ∇e
n− 1

2
u ) = −gnu

with gnu ∈ H2(Ω) given by

gnu = −
µ

H
n− 1

2

φ,ε

∇ · (σε ⋆ φ
n− 1

2∇u
n− 1

2
⋆ ) +

µ

H
n− 1

2

φ,ε H
n− 1

2
⋆

σε ⋆ φ
n− 1

2∇ · (H
n− 1

2
⋆ ∇u

n− 1

2
⋆ )

+ cf

(
|u

n− 1

2
⋆ |u

n− 1

2
⋆

H
n− 1

2
⋆

−
|u

n− 1

2
ϕ |u

n− 1

2
ϕ

H
n− 1

2

φ,ε

)

+
1

4
∇
(
(un⋆ + unϕ)ϕ

n + (un−1
⋆ + un−1

ϕ )ϕn−1
)
+ g∇(σε ⋆ φ

n− 1

2 )

+ (∇× ϕn− 1

2 )k̂ × u
n− 1

2
ϕ + (∇× u

n− 1

2
⋆ )k̂ × ϕn− 1

2 + fn− 1

2 k̂ × ϕn− 1

2 − ηnu +
2

τ
en−1
u .

It is well known that the elliptic equation (3.30) has a unique solution e
n− 1

2
u ∈ [H4(Ω) ∩H1

0 (Ω)]2,
satisfying the following estimate:

‖e
n− 1

2
u ‖H4 6 C‖gnu‖H2 .

Therefore, the map M : XN → XN is well defined. Furthermore, if (φn, ϕn)Nn=1 is bounded in
XN , then (enH , enu)

N
n=1 is bounded in (H2(Ω)× [H4(Ω)∩H1

0 (Ω)]2)N , which is compactly embedded
into XN . Thus the map M : XN → XN is compact.

The continuity of the map can be proved in the standard way, and the proof is omitted.
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Remark 3.6. For any fixed ε > 0, the mollified functions H
n− 1

2

φ,ε and σε ⋆ φn− 1

2 are suffi-

ciently smooth. As a result, the solution of (3.27) is in [H4(Ω) ∩ H1
0 (Ω)]2, compactly embed-

ded into [H3(Ω) ∩ H1
0 (Ω)]2. Hence, the regularization using mollifiers guarantees that the map

M : XN → XN is compact. Without the regularization, the map M : XN → XN is well defined
and continuous, but it is difficult to prove its compactness.

In Lemma 3.5, we proved that the first condition of Schaefer’s Fixed Point Theorem is satisfied,
i.e., that the proposed map M : XN → XN is well defined, continuous and compact. In the
following lemma, we will prove that the second condition of Schaefer’s Fixed Point Theorem is also
satisfied, i.e., the set defined in (3.20) is bounded in Y = XN .

Lemma 3.7. There exists a positive constant τ0 such that the following result holds for τ 6 τ0:
if (φn, ϕn)Nn=1 satisfies

(3.31) (φn, ϕn)Nn=1 = θM [(φn, ϕn)Nn=1] for some θ ∈ [0, 1],

then (φn, ϕn)Nn=1 is bounded in (H2(Ω)× [H3(Ω)∩H1
0 (Ω)]2)N →֒ XN uniformly for θ ∈ [0, 1] and

ε ∈ (0, 1). More precisely, ρHφ,ε = ρuϕ = 1 and

(3.32) max
16n6N

(‖φn‖H2 + ‖φn‖L∞) 6
Hmin

2
and max

16n6N
‖ϕn‖H3 6 1,

The proof of Lemma 3.7 is presented in the next two subsections together with error estimates
for the discrete solutions.

Lemma 3.7 and Schaefer’s fixed point theorem imply that the map M has at least one fixed
point, which we denote by (enH , enu)

N
n=1. In the case ρHφ,ε = ρuϕ = 1, the fixed point (enH , enu)

N
n=1 of

M satisfies

Hn
φ,ε = Hn

⋆ − σε ⋆ e
n
H = Hn

ε and unϕ = un⋆ − enu = un,

where Hn
ε and un are defined in (3.19). Therefore, (3.26)–(3.27) reduces to (3.18). Hence, Lemma

3.7 implies existence of a solution to the regularized problem (3.18).
Lemma 3.7 implies that the fixed point (enH , enu) is bounded in (H2(Ω)× [H3(Ω) ∩H1

0 (Ω)]2)N

uniformly for ε ∈ (0, 1). This implies that there exists a subsequence εk → 0 such that the
corresponding solutions of the regularized problem converge to a solution of (3.16) with

Hn = Hn
⋆ − enH and un = un⋆ − enu.

This proves existence of a solution for the proposed method (2.6), as explained in Remark 3.3,
while (3.32) implies that the solution is in Bn

H,u, which is defined in (2.10).

Proof of Lemma 3.7. If (φn, ϕn)Nn=1 ∈ XN satisfies (3.31), then (enH , enu)
N
n=1 = M [(φn, ϕn)Nn=1]

is the solution of (3.26)–(3.27) and

(3.33) φn = θenH and ϕn = θenu.

In view of this, we assume that (enH , enu)
N
n=1 is the solution of (3.26)–(3.27) for some ε ∈ [0, 1] with

(φn, ϕn) given by (3.33). Then, we estimate enH and enu separately in the next two subsections.

Remark 3.8. Although the proof of Lemma 3.7 only needs the case ε ∈ (0, 1), the estimates
obtained in the next two subsections include the case ε = 0 (assuming that there exists a solution
in this case).

3.4. Estimation of enH . We rewrite (3.26) as

(3.34) ∂̄τe
n
H + u

n− 1

2
ϕ · ∇e

n− 1

2

H = ηnH + In1 + In2 + In3 ,
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with

(3.35) In1 = −e
n− 1

2

H ∇ · u
n− 1

2
ϕ , In2 = −θe

n− 1

2
u · ∇H

n− 1

2
⋆ , In3 = −θH

n− 1

2
⋆ ∇ · e

n− 1

2
u .

Let ∂i be the partial differentiation operator with respect to xi and let ∂ij = ∂i∂j , i, j = 1, 2.
Application of the differential operator ∂i∂j to (3.34) yields

(3.36) ∂̄τ∂ije
n
H + u

n− 1

2
ϕ · ∇∂ije

n− 1

2

H = ∂ijη
n
H + ∂ijI

n
1 + ∂ijI

n
2 + ∂ijI

n
3 + In4 ,

with

(3.37) In4 = −∂iu
n− 1

2
ϕ · ∇∂je

n− 1

2

H − ∂ju
n− 1

2
ϕ · ∇∂ie

n− 1

2

H − ∂iju
n− 1

2
ϕ · ∇e

n− 1

2

H .

Then, testing (3.36) by 2∂ije
n− 1

2

H , we obtain

(3.38)

∂̄τ‖∂ije
n
H‖2 = (∇ · u

n− 1

2
ϕ , 2|∂ije

n− 1

2

H |2) + (∂ijη
n
H , 2∂ije

n− 1

2

H )

+
3∑

ℓ=1

(∂ijI
n
ℓ , 2∂ije

n− 1

2

H ) + (In4 , 2∂ije
n− 1

2

H ).

By using the expressions in (3.35) and (3.37), we have

|(∂ijI
n
1 , 2∂ije

n− 1

2

H )| 6 |(∂ije
n− 1

2

H ∇ · u
n− 1

2
ϕ , 2∂ije

n− 1

2

H )|+ |(∂ie
n− 1

2

H ∇ · ∂ju
n− 1

2
ϕ , 2∂ije

n− 1

2

H )|

+ |(∂je
n− 1

2

H ∇ · ∂iu
n− 1

2
ϕ , 2∂ije

n− 1

2

H )|+ |(e
n− 1

2

H ∇ · ∂iju
n− 1

2
ϕ , 2∂ije

n− 1

2

H )|

6 C‖u
n− 1

2
ϕ ‖H3‖e

n− 1

2

H ‖2H2 ,

|(∂ijI
n
2 , 2∂ije

n− 1

2

H )| 6 |(∂ije
n− 1

2
u · ∇H

n− 1

2
⋆ , 2∂ije

n− 1

2

H )|+ |(∂ie
n− 1

2
u · ∇∂jH

n− 1

2
⋆ , 2∂ije

n− 1

2

H )|

+ |(∂je
n− 1

2
u · ∇∂iH

n− 1

2
⋆ , 2∂ije

n− 1

2

H )|+ |(e
n− 1

2
u · ∇∂ijH

n− 1

2
⋆ , 2∂ije

n− 1

2

H )|

6 C‖e
n− 1

2
u ‖H2‖e

n− 1

2

H ‖H2 ,

|(∂ijI
n
3 , 2∂ije

n− 1

2

H )| 6 |(∂ijH
n− 1

2
⋆ ∇ · e

n− 1

2
u , 2∂ije

n− 1

2

H )|+ |(∂iH
n− 1

2
⋆ ∇ · ∂je

n− 1

2
u , 2∂ije

n− 1

2

H )|

+ |(∂jH
n− 1

2
⋆ ∇ · ∂ie

n− 1

2
u , 2∂ije

n− 1

2

H )|+ |(H
n− 1

2
⋆ ∇ · ∂ije

n− 1

2
u , 2∂ije

n− 1

2

H )|

6 C‖e
n− 1

2
u ‖H3‖e

n− 1

2

H ‖H2 ,

|(In4 , 2∂ije
n− 1

2

H )| 6 |(∂iu
n− 1

2
ϕ · ∇∂je

n− 1

2

H , 2∂ije
n− 1

2

H )|+ |(∂ju
n− 1

2
ϕ · ∇∂ie

n− 1

2

H , 2∂ije
n− 1

2

H )|

+ |(∂iju
n− 1

2
ϕ · ∇e

n− 1

2

H , 2∂ije
n− 1

2

H )|

6 C‖u
n− 1

2
ϕ ‖H3‖e

n− 1

2

H ‖2H2 .

Substituting these estimates into (3.38) and using estimate (3.25), we obtain

∂̄τ‖∂ije
n
H‖2 6 C‖e

n− 1

2

H ‖2H2 +C‖e
n− 1

2
u ‖2H3 + C‖∂ijη

n
H‖2, i, j = 1, 2.

Similar estimates can also be obtained for ∂je
n
H and enH ,

∂̄τ‖∂je
n
H‖2 6 C‖e

n− 1

2

H ‖2H1 + C‖e
n− 1

2
u ‖2H3 + C‖∂jη

n
H‖2, j = 1, 2,
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and

∂̄τ‖e
n
H‖2 6 C‖e

n− 1

2

H ‖2 + C‖e
n− 1

2
u ‖2H3 + C‖ηnH‖2.

Summing up these estimates yields

(3.39) ∂̄τ‖e
n
H‖2H2 6 C‖e

n− 1

2

H ‖2H2 + C‖e
n− 1

2
u ‖2H3 +C‖ηnH‖2H2 .

3.5. Estimation of enu. We rewrite (3.27) as

(3.40) ∂̄τe
n
u − µ∆e

n− 1

2
u = ηnu +

8∑

i=1

Jn
i ,

with

Jn
1 =

µ

H
n− 1

2

φ,ε

∇H
n− 1

2

φ,ε · ∇e
n− 1

2
u ,

Jn
2 =

θµ

H
n− 1

2

φ,ε

∇ · (σε ⋆ e
n− 1

2

H ∇u
n− 1

2
⋆ ),

Jn
3 = −

θµ

H
n− 1

2

φ,ε H
n− 1

2
⋆

σε ⋆ e
n− 1

2

H ∇ · (H
n− 1

2
⋆ ∇u

n− 1

2
⋆ ),

Jn
4 = −cf

(
|u

n− 1

2
⋆ |u

n− 1

2
⋆

H
n− 1

2
⋆

−
|u

n− 1

2
ϕ |u

n− 1

2
ϕ

H
n− 1

2

φ,ε

)

= cfθ
ρHφ,εσε ⋆ e

n− 1

2

H

H
n− 1

2
⋆ H

n− 1

2

φ,ε

|u
n− 1

2
⋆ |u

n− 1

2
⋆ − cf

|u
n− 1

2
⋆ |u

n− 1

2
⋆ − |u

n− 1

2
ϕ |u

n− 1

2
ϕ

H
n− 1

2

φ,ε

,

Jn
5 = −

θ

4
∇
(
(un⋆ + unϕ)e

n
u + (un−1

⋆ + un−1
ϕ )en−1

u ),

Jn
6 = −θg∇(σε ⋆ e

n− 1

2

H ),

Jn
7 = −θ(∇× e

n− 1

2
u )k̂ × u

n− 1

2
ϕ − θ(∇× u

n− 1

2
⋆ )k̂ × e

n− 1

2
u ,

Jn
8 = −θfn− 1

2 k̂ × e
n− 1

2
u ,

where we have substituted φn = θenH and ϕn = θenu into the expressions above. Notice that

m∑

n=1

‖∂̄τ e
n
u‖

2
H1 =

m∑

n=1

‖µ∆e
n− 1

2
u + ηnu +

7∑

i=1

Jn
i ‖

2
H1 6 C

m∑

n=1

(
‖e

n− 1

2
u ‖2H3 + ‖ηnu +

7∑

i=1

Jn
i ‖

2
H1

)
.

Therefore, applying Lemma 3.2 with s = 1 to equation (3.40), we obtain

(3.41) max
16n6m

‖enu‖
2
H2 + τ

m∑

n=1

(
‖∂̄τ e

n
u‖

2
H1 + ‖e

n− 1

2
u ‖2H3

)
6 Cτ

m∑

n=1

(
‖ηnu‖

2
H1 +

7∑

i=1

‖Jn
i ‖

2
H1

)
.

By using estimate (3.25), it is straightforward to verify that

‖Jn
1 ‖H1 6 C(‖H

n− 1

2

φ,ε ‖H2‖∇e
n− 1

2
u ‖L∞ + ‖H

n− 1

2

φ,ε ‖W 1,4‖e
n− 1

2
u ‖W 2,4)
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6 C‖e
n− 1

2
u ‖

H
5
2

(Sobolev embedding inequality)

6 Cδ‖e
n− 1

2
u ‖H2 + δ‖e

n− 1

2
u ‖H3 , (interpolation inequality)

where δ ∈ (0, 1) can be arbitrarily small at the expense of enlarging the constant Cδ.
Similarly, we have

‖Jn
2 ‖H1 6 C‖e

n− 1

2

H ‖H2 ,

‖Jn
3 ‖H1 6 C‖e

n− 1

2

H ‖H1 ,

‖Jn
5 ‖H1 6 C

(
‖enu‖H2 + ‖en−1

u ‖H2

)
,

‖Jn
6 ‖H1 6 C‖e

n− 1

2

H ‖H2 ,

‖Jn
7 ‖H1 6 C‖e

n− 1

2
u ‖H2 ,

‖Jn
8 ‖H1 6 C‖e

n− 1

2
u ‖H1 .

By the integral form of the mean value theorem,

|u
n− 1

2
⋆ |u

n− 1

2
⋆ − |u

n− 1

2
ϕ |u

n− 1

2
ϕ = (u

n− 1

2
⋆ − u

n− 1

2
ϕ ) ·

∫ 1

0
2|(1 − s)u

n− 1

2
⋆ + su

n− 1

2
ϕ |ds

= ρuϕϕ
n− 1

2

∫ 1

0
2|(1 − s)u

n− 1

2
⋆ + su

n− 1

2
ϕ |ds

= ρuϕθe
n− 1

2
u

∫ 1

0
2|(1 − s)u

n− 1

2
⋆ + su

n− 1

2
ϕ |ds,

which implies (together with |ρuϕ| 6 1 and θ 6 1)

‖Jn
4 ‖H1 6 C(‖e

n− 1

2

H ‖H1 + C‖e
n− 1

2
u ‖H1).

Substituting the estimates of ‖Jn
i ‖H1 , i = 1, . . . , 8, into (3.41), we obtain

(3.42)

max
16n6m

‖enu‖
2
H2 + τ

m∑

n=1

(
‖∂̄τe

n
u‖

2
H1 + ‖e

n− 1

2
u ‖2H3

)

6 Cδ τ

m∑

n=1

(
‖ηnu‖

2
H1 + ‖enu‖

2
H2 + ‖en−1

u ‖2H2 + ‖e
n− 1

2

H ‖2H2

)
+ δτ

m∑

n=1

‖e
n− 1

2
u ‖2H3 .

Adding δ×(3.39) to (3.42), we have

max
16n6m

(
δ‖enH‖2H2 + ‖enu‖

2
H2

)
+ τ

m∑

n=1

(
‖∂̄τ e

n
u‖

2
H1 + ‖e

n− 1

2
u ‖2H3

)

6 δτ
m∑

n=1

‖e
n− 1

2
u ‖2H3 + Cδ τ

m∑

n=1

(
‖ηnH‖2H2 + ‖ηnu‖

2
H1 + ‖enu‖

2
H2 + ‖en−1

u ‖2H2 + ‖e
n− 1

2

H ‖2H2

)
.

Choosing here sufficiently small δ, the first term on the right-hand side of the above inequality can
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be absorbed by the left-hand side, and we infer that

(3.43)

max
16n6m

(
‖enH‖2H2 + ‖enu‖

2
H2

)
+ τ

m∑

n=1

(
‖∂̄τ e

n
u‖

2
H1 + ‖e

n− 1

2
u ‖2H3)

6 Cτ
m∑

n=1

(
‖ηnH‖2H2 + ‖ηnu‖

2
H1 + ‖enu‖

2
H2 + ‖en−1

u ‖2H2 + ‖e
n− 1

2

H ‖2H2

)
.

Then, by using the discrete Gronwall inequality, for sufficiently small τ we obtain

(3.44)

max
16n6N

(
‖enH‖2H2 + ‖enu‖

2
H2

)
+ τ

N∑

n=1

(
‖∂̄τ e

n
u‖

2
H1 + ‖e

n− 1

2
u ‖2H3

)

6 Cτ
N∑

n=1

(
‖ηnH‖2H2 + ‖ηnu‖

2
H1

)
.

This and the consistency estimate (3.15) imply

max
16n6N

(
‖enH‖H2 + ‖enu‖H2

)
6 Cτ2(3.45)

τ

N∑

n=1

‖e
n− 1

2
u ‖2H3 6 Cτ4.(3.46)

In all the estimates above, the generic constant C is independent of ε.
Now, (3.46) implies ‖enu‖H3 6 ‖en−1

u ‖H3 + Cτ3/2 and, therefore,

(3.47) max
16n6N

‖enu‖H3 6 Cτ
1

2 .

In view of (3.45) and (3.47), there exists a positive constant τ0 such that, for 0 < τ 6 τ0, we have

(3.48) max
16n6N

‖enH‖H2 6
Hmin

2
and max

16n6N
‖enu‖H3 6 1.

Thus,

(3.49) max
16n6N

‖φn‖H2 6
Hmin

2
and max

16n6N
‖ϕn‖H3 6 1

and we infer that indeed

(3.50) ρHφ,ε = ρuϕ = 1.

In particular, (3.49) implies that (φn, ϕn)Nn=1 is bounded in (H2(Ω)× [H3(Ω)∩H1
0 (Ω)]2)N →֒ XN

uniformly for θ ∈ [0, 1], ε ∈ (0, 1), and 0 < τ 6 τ0. This proves Lemma 3.7.

3.6. Error estimate. The analysis following Lemma 3.7 proves existence of a solution to (2.6)
in Bn

H,u.
If (Hn, un) ∈ Bn

H,u is a solution of (2.6), then the error (enH , enu) is a solution of (3.26)–(3.27)
with (φn, ϕn) given by (3.33), with θ = 1 and ε = 0. Then, the proof of Lemma 3.7 implies
(3.45)–(3.46); see Remark 3.8 for the case ε = 0. This proves the error estimate (2.11).

3.7. Uniqueness of discrete solutions. If there are two solutions of (2.6), say (Hn, un) ∈ Bn
H,u

and (H̃n, ũn) ∈ Bn
H,u, then the error functions

eH = H̃n −Hn and eu = ũn − un
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satisfy (3.16) with H
n− 1

2
⋆ and u

n− 1

2
⋆ replaced by H̃n and ũn, respectively, and with ηnH = ηnu = 0.

Then, the error estimate (3.44) holds, which implies enH = enu = 0. This proves uniqueness of
discrete solutions.

4. Numerical results. In this section, we present numerical results to support our theoretical
analysis in Theorems 2.1 and 2.2.

We test energy decay and convergence rates of the proposed method by solving the initial and
boundary value problem (1.1)–(1.4) in the domain Ω = [0, 1] × [0, 1] with the following initial
values:

H0(x, y) = 1.0 + 0.2 sin(πx), u0(x, y) = (sin2(πx)y2(1− y)2, x2(1− x)2 sin2(πy))⊤,

and with g = 10 and Hb = µ = cf = 1.
We solve the problem by using the proposed time discretization method with the FEM in

(2.9), with a sufficiently small mesh size h such that the spatial discretization error is negligible in
observing the temporal convergence rates. The nonlinear system (2.9) is solved by the following
fixed-point iteration: choose unh,0 = un−1

h and compute (Hn
h,ℓ, u

n
h,ℓ), ℓ = 1, 2, . . . , by

(4.1)





(∂̄τH
n
h,ℓ, φh)−

(
H

n− 1

2

h,ℓ u
n− 1

2

h,ℓ−1,∇φh

)
= 0 ∀φh ∈ Sh,

(∂̄τu
n
h,ℓ,H

n− 1

2

h,ℓ vh) +
(
µH

n− 1

2

h,ℓ ∇u
n− 1

2

h,ℓ ,∇vh
)
+
(
cf |u

n− 1

2

h,ℓ−1|u
n− 1

2

h,ℓ , vh
)

= −∇
(1
4
Ph

(
|unh,ℓ−1|

2 + |un−1
h |2

)
+ g(H

n− 1

2

h,ℓ −Hb),H
n− 1

2

h,ℓ vh

)

−
(
(∇× u

n− 1

2

h,ℓ−1 + fn− 1

2 )k̂ × u
n− 1

2

h,ℓ ,H
n− 1

2

h,ℓ vh
)

∀ vh ∈ S̊2
h.

For given u
n− 1

2

h,ℓ−1, one can determine Hn
h,ℓ from the first equation of (4.1) and then compute H

n− 1

2

h,ℓ .

By using this computed H
n− 1

2

h,ℓ , one can determine unh,ℓ from the second equation of (4.1). The
iteration is terminated when the following tolerance error is reached:

(4.2) ‖Hn
h,ℓ −Hn

h,ℓ−1‖L∞(Ω) < 10−7 and ‖unh,ℓ − unh,ℓ−1‖L∞(Ω) < 10−7,

which is much smaller than the temporal discretization errors observed in our numerical results.
The number of iterations at each time level, with τ = 1/128, is presented in Figure 4.1 (left),

which shows that the nonlinear system can be effectively solved with a few iterations to achieve
the accuracy in (4.2). The energy of numerical solutions is presented in Figure 4.1 (right), which
shows that the energy decays in time, consistent with the theoretical result of Theorem 2.1.
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Figure 4.1. Number of iterations and energy at each time level.

SinceH2(Ω) →֒ L∞(Ω) in the two-dimensional space, the error estimate in Theorem 2.2 implies
that the proposed method has second-order convergence in L∞(Ω). Since the exact solution is
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unknown, we present the L∞(Ω)-errors of numerical solutions in Table 4.1 based on the difference
between two numerical solutions using consecutive stepsizes, with a sufficiently small mesh size h
such that the spatial discretization error is negligible in observing the temporal convergence rates,
which are computed by using the formula

convergence rate = log2

(
‖uNh,2τ − uNh,τ‖L∞(Ω)

‖uNh,τ − uNh,τ/2‖L∞(Ω)

)

based on the three finest stepsizes. The numerical results indicate that the proposed method has
second-order convergence in time, consistent with the theoretical result of Theorem 2.2.

Table 4.1
Numerical results at T = 1.

∥∥HN
h,τ −HN

h,τ/2

∥∥
L∞(Ω)

∥∥uNh,τ − uNh,τ/2
∥∥
L∞(Ω)

τ = 1/8 6.706×10−4 7.517×10−3

τ = 1/16 1.104×10−4 1.805×10−3

τ = 1/32 2.073×10−5 4.463×10−4

τ = 1/64 4.232×10−6 1.176×10−4

convergence rate 2.28 2.01

Appendix: Well-posedness of the linear hyperbolic equation (3.29). First, we prove unique-
ness of the solution of (3.29) for sufficiently small τ . If w and v are solutions of (3.29), then

(A.1)
2

τ
(w − v) + u

n− 1

2
ϕ · ∇(w − v) + (∇ · u

n− 1

2
ϕ )(w − v) = 0.

Testing (A.1) by w − v immediately yields

2

τ
‖w − v‖2L2 = −

1

2
(∇ · u

n− 1

2
ϕ , |w − v|2) 6

1

2
‖∇ · u

n− 1

2
ϕ ‖L∞‖w − v‖2L2 .

Hence, for

(A.2) τ 6
1

‖∇ · u
n− 1

2
ϕ ‖L∞

,

this estimate implies w − v = 0.

Second, we prove existence of a solution e
n− 1

2

H ∈ H2(Ω) to (3.29). To this end, we let gnH

and u
n− 1

2
ϕ be extended to H2(R2) and H3(R2), respectively, both with compact supports in some

bounded domain Ω′ ⊃ Ω, and consider the viscous approximating problem

(A.3)
2

τ
vδ + u

n− 1

2
ϕ · ∇vδ + (∇ · u

n− 1

2
ϕ )vδ − δ∆vδ = gnH

with a small parameter δ > 0. It is well known that, for sufficiently small τ , satisfying (A.2), the
elliptic equation (A.3) has a unique solution vδ ∈ H4(R2). Clearly, (3.25) and (3.28) imply (A.2).
Thus (A.3) has a solution vδ ∈ H4(R2) under condition (3.28).

In the following, we prove that vδ converges strongly in H1(Ω) and weakly in H2(Ω) to a
solution of (3.29) as δ → 0. In fact, differentiating (A.3) twice yields

2

τ
∂ijvδ + u

n− 1

2
ϕ · ∇∂ijvδ + (∇ · u

n− 1

2
ϕ )∂ijvδ − δ∆∂ijvδ

= ∂ijg
n
H − ∂iu

n− 1

2
ϕ · ∇∂jvδ − ∂ju

n− 1

2
ϕ · ∇∂ivδ − ∂iju

n− 1

2
ϕ · ∇vδ
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− (∇ · ∂iu
n− 1

2
ϕ )∂jvδ − (∇ · ∂ju

n− 1

2
ϕ )∂ivδ − (∇ · ∂iju

n− 1

2
ϕ )vδ.

Then, testing this equation by ∂ijvδ, we obtain

2

τ
‖∂ijvδ‖

2
L2(R2) + δ‖∇∂ijvδ‖

2
L2(R2) 6 C‖gnH‖H2‖vδ‖H2(Ω′) + C‖u

n− 1

2
ϕ ‖H3‖vδ‖

2
H2(Ω′)

6 C‖gnH‖2H2 + (C + C‖u
n− 1

2
ϕ ‖H3)‖vδ‖

2
H2(R2).

Similarly, one can obtain

2

τ
‖vδ‖

2
L2(R2) + δ‖∇vδ‖

2
L2(R2) 6 C‖gnH‖2H2 + (C + C‖u

n− 1

2
ϕ ‖H3)‖vδ‖

2
H2(R2)

and

2

τ
‖∂jvδ‖

2
L2(R2) + δ‖∇∂jvδ‖

2
L2(R2) 6 C‖gnH‖2H2 + (C + C‖u

n− 1

2
ϕ ‖H3)‖vδ‖

2
H2(R2).

These estimates imply

(A.4)
2

τ
‖vδ‖

2
H2(R2) + δ‖∇∂ijvδ‖

2
L2(R2) 6 C‖gnH‖2H2 + (C + C‖u

n− 1

2
ϕ ‖H3)‖vδ‖

2
H2(R2).

When τ is sufficiently small, the last term on the right-hand side of (A.4) can be absorbed by the
left-hand side. Then, we have

‖vδ‖H2(R2) 6 C‖gnH‖H2 ,

with a constant C independent of δ. Hence, there exists a subsequence δk → 0 such that vδk
converges strongly in H1(Ω) and weakly in H2(Ω) to some function, which we denote by enH ∈
H2(Ω). Then, by letting δ = δk → 0 in (A.3), we obtain that enH is the solution of (3.29) on R

2

(therefore it is also a solution on Ω). Uniqueness of such a solution has already been proved.
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