CONVERGENCE OF DZIUK’S LINEARLY IMPLICIT PARAMETRIC
FINITE ELEMENT METHOD FOR CURVE SHORTENING FLOW

BUYANG LI*

Abstract. Convergence of Dziuk’s fully discrete linearly implicit parametric finite element
method for curve shortening flow on the plane remains still open since it was proposed in 1990, though
the corresponding semidiscrete method with piecewise linear finite elements has been proved to be
convergent in 1994, while the error analysis for the semidiscrete method cannot be directly extended
to higher-order finite elements or full discretization. In this paper, we present an error estimate of
Dziuk’s fully discrete linearly implicit parametric finite element method for curve shortening flow on
the plane for finite elements of polynomial degree r > 3. Numerical experiments are provided to
support and complement the theoretical convergence result.
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1. Introduction. Let I = R\Z be the periodic unit interval (i.e., the one-
dimensional torus) and consider the curve shortening flow on the plane, i.e., the
evolution of a curve

L) ={X(&¢): €€}, te][0,T],

described by a parametrization X (-,t) : I — R? satisfying the following geometric
evolution equation:

1 1
8X:Hn:a<8X> for £ €1 and t € (0,7,
' ESSRNEE O 011 (1.1)

X(£,0)=X°(¢) for £ €1,

where H and n are the curvature and normal vector of the curve, |9¢X| denotes the
length of the vector 9¢X, and X° is a given parametrization of the initial curve I'°.
Curve shortening flow is also known as mean curvature flow of curves.

Numerical approximation to the mean curvature flow by parametric finite element
methods (FEMs) was first considered in the pioneering work of Dziuk [§] in 1990.
Later on many other techniques have also been developed for approximating the mean
curvature flow by using parametric FEMs, including the method of artificial tangential
velocity introduced by Deckelnick and Dziuk [6], the methods of Barrett, Garcke and
Niirnberg based on different variational formulations [3] or different test functions [4],
and DeTurck’s trick of re-parametrization proposed by Elliott and Fritz [11]. These
methods allow the computed curves or surfaces to move tangentially in order to yield
better distribution of the nodes.

However, proving the convergence of parametric FEMs for mean curvature flow
of closed curves or closed surfaces is not an easy task. In particular, convergence
of all the methods mentioned above remains still open for mean curvature flow of
closed surfaces. Convergence of non-parametric FEMs for mean curvature flow of
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graph surfaces was proved by Deckelnick and Dziuk [B,[7], but the analysis cannot be
extended to parametric FEMs for mean curvature flow of closed surfaces. The only
convergence result of parametric FEMSs for the mean curvature flow of closed surfaces
was in [12] for an equivalent system of equations governing the evolution of normal
vector and_mean curvature, instead of for the original equation of flow map studied
by Dziuk [g].

As for curve shortening flow, convergence of the above-mentioned methods has
been proved for semidiscrete parametric FEMs with piecewise linear finite elements
in [6,9,11] (we refer to [10,14] for the anisotropic case). Convergence of a fully
implicit scheme was analyzed in [15] by essentially extending Dziuk’s proof to the
time-discrete case. Convergence of a linearly implicit fully discrete parametric FEM
was only proved for the method with DeTurck’s trick recently by Barrett, Deckelnick
and Styles [2] (this includes the method in [] as a special case). The analysis based on
DeTurck’s trick used in [ for axisymmetric mean curvature flow can also be applied
to the curve shortening flow. As mentioned in [2], the convergence proof therein
benefits from a tangential velocity which improves the parabolicity of the equation,
while the main difficulty of numerical analysis for the original equation (@ is the
lack of full parabolicity, namely there does not exist a positive constant A satisfying

1 1 9
(|85X|85X |85Y85Y) 20e(X —Y) > MNog(X —Y)| (1.2)
even if X and Y are sufficiently smooth and close to each other. Thus the convergence
proof in [2] cannot be extended to the original equation (EI) without tangential
velocity.

As far as we know, convergence of Dziuk’s original linearly implicit parametric
FEM still has not been proved in the literature. Even in the semidiscrete case, the
convergence proof in [9] is based on the finite difference structure of the piecewise
linear FEM, which allows people to write down and utilize the evolution equation of
the discrete length element. Thus the proof in [§] cannot be extended to higher-order
finite elements for which the evolution equation of the discrete length element can
hardly be written down. Nor can the proof of [J] be extended to full discretizations.

In this paper, we present an error estimate for Dziuk’s original linearly implicit
parametric FEM: find a solution X;* € Sj x S}, satisfying the following weak form:

1
/laﬁxiznilwalT v d€ + /WagX;:L “Ocvpd§ =0 Vop € Sp xS, (1.3)
I I EAp

with initial value X} = II,X° (the Lagrange interpolation of X°), where Sj, x S}, is
a standard vector-valued Lagrange finite element space consisting of piecewise poly-
nomials of degree r, and

m m—1
Xh — Xh

0 X =
T h =
In the error equation of the semi-discrete FEM, i.e.,

/H\85X|6t(X —Xh) . (X _Xh)df—i_/]I(M — (w) 85(X —Xh)df

_ / (196X — 106 X)) DX - (X — Xp)de.
I
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controlling the right hand side by the left-hand side is a major difficulty, which Dziuk
overcome by working with the equations satisfied by the length elements. For higher-
order finite elements, the equations satisfied by these quantities are difficult to be
written down. In this case, our idea is to use the following identity (to control the
right-hand side of the above error equation):

e X 85Xh) /1/ 1 y
Gt e (X — Xp)dE = ————|ng - Be(X — X,)|?dedd,
/H<|85X| 9, ) O T [ g e O Al
(1.4)

with Xp 9 = (1 —0) X}, + 60X and ng denoting the parametrization and normal vector
of the intermediate curve I'y g = {X},9(§) : € € I}. Equality ([l.4) is a result of the
mean value theorem under the following conditions:

1

> ol vo e |0,1], (1.5)

1 Xnollwr=m < Cx and - min |9 X ()]
where C, can be any constant independent of §. We use (@) together with the
following estimate:

- / (186X — 18 Xn]) X5 - (X — Xy )de (1.6)

1 1
1 2
< OX = Xnllrz2 (/ /W\ne c0e(X — Xh)2d§d9) + higher-oder errors,
o Ji [0 Xn.0l

which will be proved in_our error estimation in section @ Then the first term on
the right-hand side of (@) can be bounded b (@) and using Gronwall’s inequality.
The idea of using stability estimates )7(@) is realized in the fully discrete case
for Dziuk’s linearly implicit scheme (]L.3).

In the next section, we present the main theorem of this paper. The proof of the
main theorem is presented in section g. In section {l, we present numerical experiments
to support and complement the theoretical convergence result.

2. The numerical method and main result. Let 0 =&, < & < - < & =1
be a quasi-uniform partition of the periodic interval I, and denote by S, the Lagrange
finite element space of degree 7, i.e.,

Sh={v € C(I) : v|jg,,_,),.¢;,) 15 a polynomial of degree r, j =1,...,m}.

Let t,, = m7r, m = 0,1,..., N, be a partition of the time interval [0,7] with

uniform stepsize 7 = T/N. We approximate the curve I'(¢,,) at time ¢t = t,, by a curve

h={XKE): e}

parametrized by a finite element function X}’ € S) x S, determined by Dziuk’s
linearly implicit parametric FEM (E) The main result of this paper is the following
theorem.

THEOREM 2.1 (Convergence of Dziuk’s linearly implicit parametric FEM). As-
sume that the parametrization X : 1 x [0,T] — R? is sufficiently smooth and

min 0 X (&,t)| > K for some positive constant k. 21
(f,t)EIIx[O,T]‘ 3 (&) > f D o
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Then forr > 3 there exists a positive constant hy such that for h < hg and T = 0(h2'5),
the discrete problem ([L.3) has a unique solution X € Sy, x Sy, which has the following
error bound:

max (X = X7 pay < C(r + 7). (2.2)

REMARK 2.1. The stepsize restriction T = o(h*?®) is required to guarantee an
o(h) error bound in the W norm through using an inverse inequality in the error
estimate (R.4). This WY -error bound is used to control several nonlinear terms
appearing in the error estimation.

3. Proof of Theorem @

3.1. Consistency errors. Note that the exact parametrization also satisfies the
weak form

1
/|6€Xm_1|6TXm - Up, dg—‘,— /7718ng . 6§vh df = (dm,vh) Vvh € Sh X Sh7
I 1[0 X™ 1]
(3.1)

where
(dim, vn) = /Hdmvhdfa
with
dn = 0 X™ (8- X™ — 0, X™) + (|0 X™ 7 = |0 X ™) 0 X ™

1 1 .
‘3§K|agxm—l| - |85Xm|> 0 X }

being the defect of time discretization, satisfying the following consistency estimate:

ldm 2@ < CT, (3.2)
Let
ey =X"-X3", ppt=X" -1, X™ and n =I,X™ - X}", (3.3)
which satisfy
en = Pp + "

The function p;* is the interpolation error, which satisfies the following standard
estimate:

o5 @y + 16725 1oty + BllpR lwroe @y < CRTHIX™ e o 7w e 1) (34)

3.2. Mathematical induction. The convergence proof is by induction on the
integer k, with 1 < k < N. We assume that X;", m = 0,...,k — 1, are given and
satisfy the following estimate:

ller llwree @ < h (3.5)
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Since €Y = XY — 11, X", the inequality above holds for m = 0 when h is sufficiently
small. Under the induction assumption (B.5) for 0 < m < k — 1, we shall prove that
XF is uniquely defined and (@) also holds for m = k.

Let

Xpty = (1—0)X]" +6X™, (3.6)

which is the parametrization of the curve I'}'y = {X7"(§) : § € [} intermediate
between the numerical solution and exact solution. We denote by

m—1 __ aﬁX}T;}e_l (g)

=—— 00 > and a7yt = (7 hE 3.7
Th.0 |8§X;T;1(£)| h,0 (Th,e ) (3.7)

the unit tangent vector and unit normal vector on the intermediate curve I'}', L

respectively, where (73 1)+ denotes rotation of the vector Tho ! by an angle of /2.
The tangential and normal vectors on the exact curve I'™ are denoted by 7™ and n™,
respectively. For a function vg depending on a parameter 6 € [0, 1], we will use the

following notation:
1 , 3
leoligozzan = ( [ Tollaar)

From (@)f(@) we derive that for sufficiently small h
lnn [lwieeqy < 2k for 0 <m <k —1. (3.8)

Then (@)7 (@) and (@) imply the following estimates (for sufficiently small A that
is independent of k):

HeZl_lllwl,oo(H) + ||77’T_1||W1,00(H) < Cih for 1<m< ]{i, (39)
1575 e < o and - min |0cX775 (6)] Soforl<m<k.  (310)

With the properties in (), the tangential and normal vectors T,’Z?(; ! and an;l are
well defined by (@) for 1 <m <k, and

0™ = npg Hlpee@y < [In™ = 2™ ooy + I~ = np g Ly
=™ = 0™ e + 17 = 7 L)

<™ = 0™ | oo @y + Callel Hlwree )

S 04(7' -+ h)

< Csh for 1<m <k, (3.11)
where the last inequality requires a stepsize restriction 7 = O(h). The constants Cj,
Jj=1,...,5 may depend on the norm || X||c2(jo,7};#3(1)), but are independent of 7, h
and k.

In the next several subsections, we estimate the error of the numerical solution
X for 1 < m < k under the induction assumption (B.§) for 0 < m < k — 1. The
inequalities in (@)7() will be frequently used in the error estimation. To simplify
the notation, we denote by C a generic positive constant which may be different at
each occurrence but is independent of 7, h and k (since we are using mathematical
induction on k).



3.3. The error equation. With property () we immediately see that the
linear equation (|L.3) has a unique solution X ’}f € Sp X Sp. By using the mean value
theorem, for a general function f(9:X™ !, 0¢X™) we have

FOeX™ 1 0:X™) — f(Oe X1, 0: X0)
1
= / (656211 . 81f(65X,T;1,85X,%) + age}f‘ . 82f(85 h, 0 ang ))d9 (3.12)
0

For the function

e X™
e X™ 1 GeX™) = —
f( 3 3 ) |85Xm_1| ’
we have
m—1 m—1 m 8€Xf%
6feh : 81f(6th79 78§Xh,9) = 7856}1 af h 9 ‘a Xm 1|37
_ m Ogerl
Deey’ - Daf (D X'yt OcX]ly) = ——
‘aﬁXh,O

Hence, () implies
1 1
78§Xm - Tafxgn
|0 X1 |0 X,

1 m—1 m
1 1 O X 0: X
:/ ( T Ocen’ — m—1 (85621- : }:;;9—1 ) : 727—01 )d@.
0 \[0eX} 10 X3 0 X} 71/ 10 X1y

Then, by subtracting (B) from (@) and using (), we obtain the following equa-
tion for the error e’ = X™ — X;™:

(3.13)

/ 10 X7 b€ - on dE + / (106X — |0 X" )8, X" - 13, d€ — (dm, vn)
I

m 1 m
BeX 1| O X Waﬁ)(h) Ogvn, A€

~1 asXZ'fel) %X

e o e de} - Devp dE
" |06 X557 ) 10e X35 )
(

¢€h T o yvm-1)
|85X ‘8§Xh,0 !
_

(o
De XL N O Xt
(ke = o (ke ) SR o] e e
|85Xh9 ‘6§Xh,8 |6§Xh,9 | |8§Xh,9 |

( mor 0eXilg N Oe(X0ly — X35

geh ' m—1 m—1
‘aiXh,O ‘8§Xh,0

e Xyt > e Xpyt

10 X751 ) 10 X757t

d0:| . agvh d§

m—l) .

L (oer -
|agxz";1|<5(eh K

/ / \agx (ni's " - Oeeil)(nil'y " - Oevn) d&dO
+K1 (Uh) - K2 ('Uh)7 (314)

(o
i
U
S e
I

d@} - Oevp dE

where we have used the following identity in deriving the last equality:

—1 -1
angTG an}:r,LQ _ m—1 dee™ m—1
0 X757 ) 10 X5 = (o™ - deeil) iy

h.0 h,0
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By using the decomposition e} = p}* +n;", with p}* and 1} defined in (@)7 equation
(@) can be rewritten as

/|35Xm oy - Uhd5+/ /Wml(nhel Aenpyt) (ny'y - Dgon) d€
— [0 6 e
+ 06X = 0 )3 de

- [tocxm 1) = 10X o X e

[ ko -

+ K{"(vn) — Kz (vn) + (dm, vn)
=: =J{"(vn) + J3" (vn) — J3" (vn) — J{"(vn) + K7 (vn) — K3"(vn) + (dm, vn). (3.15)

In the end we will substitute v, = 1} into the error equation above. To this end,
we present the estimates for J™(n)") and K™ (n;") in the following three subsections.

3.4. Estimation for K*(n"), J*(ni"), J3*(ny*) and Ji*(n)*). From (@) we
obtain

XM — Xy = (1—0)(X™ — XJ") = (1— ).

By using this relation, for any vj, € Sj, we decompose K{"(v) into two parts, i.e.,

K" (vp)
1 m—1 m m—1
1 0 X Oe( X7 — X
/[/ m—1 (35621_1' : };710—1 ) é( - m—1h,9 )de] '8£”h dg
1LJo |9:X3 0 X} 10 X3
| DXyt N (X — X1
= /|:/ m—1 (8567}?1 ’ }:7)1071 ) 5( m—1 )d9:| 'aﬁvh dé‘
ILJo \8€Xh,0 ‘8€Xh,0 ‘anh,O
1 1 a mel 8 m a m—1
+/{/ m_1<5'£€hm_1' : no ) < mgelh (1—9)d9} - Ogvp, d§
1lLJo |3£Xh,9 |8€Xh,0 |3£X

= KH(’U}L) + Kg(’l]h)



By using properties (@)f() of the induction assumption, it is easy to see that for
1 < m < k the following estimates hold:

[ KT (vn))]

< Clloeer 2@l (X™ = X™ )| Lo |06 vnll 2

< CT”aEehm_lHLZ(]I)HaEUh||L2(]I)

< C’h2||8562”_1||L2(H)||6§vh||Lz(]I) (use the stepsize restriction 7 = O(h?))

< CR2(0ep gy + 10 2o lOevnll iz (use €™t = g 4 =)
<C(h™ + HnZn_lHL2(H))||Uh||L2(]I) (use (@) and inverse inequality)

(K3 ()|

< Cllocer ™ lpeo 10 (e = ep ™ lzam 10cvnll L2y

< Ch((|0e(n = np o + 19(oh — o)l 2@)lldevnll oy (use (B9)
<C(h e — 77,’1”_1||L2(H) +h")Jvnllr2@y  (use (@) and inverse inequality)

Combining the two estimates above, we have
[KT (vn)| < Ch™ + [l ez qy + Bl =03~ Hlzz@) lonll 2y (3.16)

As for K3*(vy,), defined in (), we have the following rough estimate (which will be
refined in the next subsection):

K3 (vn)| < C|10e(eit — ep Dl 2 l0cvnll L2y
< Ch (|0 — n ez + 19 (op — o™ Il 2 llvnll L2
< Ch M M = m e + A llowll 2 (3.17)

By using the interpolation error estimate (@) and properties (@)7() of the
induction assumption, it is easy to see that for 1 < m < k the following estimates

hold:

I (0n)| < ClI6zpit L2 llvnll L2y < CR™Hlwnll L2, (3.18)
|J1" (vn)| < C'||3§P?f||L2(1I)||nZl,a_1 - O¢vnllL2(0,1;22())

< Ch|lngg " - OevnllLz 0,102 ) (3.19)

T3 (vn)] < Clloeer M L2y lvnll L2y
< C10eny Nz + 10 lrz@)lonll L2
< Ch M Mre + h)llvwll 22, (3.20)

where we have used the decomposition ehm_l = pzn_l + 772“_1 and inverse inequality
in deriving the estimate for |J5"(v;,)|. As for [J5*(vh)|, by using (B.9) we have

|3 (vn)| < Cll0eer ™z @ l6-m L2y lvnll 2y < CAIG R L2 llonll L2y (3-21)
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To obtain an estimate for ||6:7;"||z2r) in the last inequality, we rewrite () as
[1oex o, - vn e
1

1
m m 1 m— my e
= —J{"(vn) — J5"(vn) */ / e (4 L. ey )(n' L Oevp) dé
0 J1 |9:X;y
+ K1"(vn) — K3"(vn) + (dim, vn)
which does not contain J3*(vp) and Ji*(vs) now. By using the estimates of K7 (vp,),
K3 (vp), J7(vr) and J5*(vp) in (B.16)—(B.20), the equation above implies

‘/ﬂlasXT15Tn?-vh dﬁ’

1
m m 1 m— m m—
< T (o) + 15 (on)] + \ | st i - e - dgun) s
0 H|85Xh,9

+ [KT"(0n)] + [K3" (va)] + [(dim, vn)|
< CH w2 + CHmp ™ i@ + R llonll L2y
+ ||n;7?,e_1 ) 8£€?HL3(0,1;L2(J1))H”Zfe_l '5’£Uh||Lg(o,1;L2(11))
+ (CH T+ Clln 2@ + CR 2 g = i 2@ lonll 2@y + CTllonll 2y

By using the inverse inequality |}, " - Oevnllr201:22(m)) < Ch™vn | L2qy, the in-
equality above is furthermore reduced to

| [1oex o
r—1 —1y,,m—1 —21|,,m m—1
< (O1+CR 1+ Ch Ml gz + Ch7 2l —m" ez m) lvnll 2y
+ChHInggt - Beeq |l L2 0,1:L2ay lvnll L2y (3.22)

where v, € S, can be arbitrary. If we denote by (-, ), and | - ||, the inner product
and norm on .S;, defined by

(Oh, Vh)m = /H|(9£X;T*1| ¢n-vpdé and  |[onllm = V(Pn, On)m,

then the two norms || - ||,, and || - || ;2 are equivalent because both |9 X" !| and
|0¢ X}~ |~ are bounded, as shown in (@) By using this equivalence, (@) implies
(8- vn)m] < onllvallm  Von € Sh, (3.23)
with
on =07+ Ch"™ + Ch™ i~ Hlzay + Ch72|lnit = ni 2y
+ Ch™ Mg - Oeeq Nl 3o, 22y -

Substituting vy, = 6,715 into (), we obtain ||0;17" ||l < Cop. Then, by using the
equivalence between the two norms || - ||, and || - || 21, we obtain

llorni L2y < Cop.
9



This together with the definition of o) imply

607 | 2@y < CT+ Ch™™ !+ Ch™Hn M ey + Ch 2 |mi — 0 e
+ Ch7Yngy " - Oeeq 20,02 (1)) (3.24)

Then, substituting () into (), we obtain

T3 (o) < C(r+ B+ B =0 Mieza + 0 ezw) ol 22
+ C”“Zl,(;l ’ 8577}7:1||L§(0,1;L2(H))||vh||L2(H)' (3.25)

The estimates for K3"(n}*) and Ji*(n}*) obtained in this subsection cannot be
used directly in our error estimation. Improved estimates for these two terms are
presented in the next two subsections.

3.5. Estimation for K3"(n;"). We first present estimates for K3*(ej*) and K3*(p}).
Then the estimate of K3*(n})") follows from the decomposition K3*(n*) = K3*(ef*) —

K3 (pp')-
We decompose K3*(e}") into three parts, i.e.,
K3 (er')
a _m—1 ) Xm—l ) Xm—l
// Sl o ) (o o o) - ageqnana
|8§Xh6 ‘anh,() |35Xh,9 \
85 eh _eT 1) 8€Xm_1 ang—l
. - Oeeltdld
/ A |85Xm i \Jaxm] @ ooy ) en s

|agx oy © ey X © foex T
~3§eh dodg
a Xm—l 8 Xm—l
5 e ( e o 2 )
// (lagX;%l |3£Xm 1|> elef! ) |0 XM= 7 [0 X1
. BeendOde
=: K} (ep') + K3 (ep) + K3 (ept). (3.26)

By setting X! = X and using the inequality

1 1 1
(a—0b)-a= §(a2—b2)+§(a—b)2 > i(az—bz), (3.27)
with
dec- X d b= geept . O
a= em. = = s
S JoeX T g
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we obtain the following estimate for 1 < m < k:

K21 €h
om 65Xm71 2 1 m—1 85Xm71 2
: - S22 )dgd
/ / (|agxm |2 pexm]| T foexmo1] | %k [ xm] ¢
m ang71 2 1 m—1 ang72 2
_ 1 . _ [t dod
L (|8€Xm,1| e o] | T g | o )
1 1 1 o1 OeX™TL P 1 mo1 OeX™2 7
= - : - C2 ) )ded
2// (|85me1| 0 x| Jaexmr | % o, xm ¢
1 ! 1 deXm 1| 1 19X
> - Ol - mot, 9% | )dod
= 2// (ngww el [pexm]| T foexm7)| % [ xm] .
— C7||0eer 72
1 1 1 35Xm71 2 1 BgX’"*Z 2
= e - mot %2 | ) dgd
2// (|agxm—1| el [pexm=]| T Joexm7]| %k [ xmr] ¢
- C||772171Hi2(11) - Ch* 2, (3.28)

where we have used the stepsize restriction 7 = O(h?) and inverse inequality in
deriving the last inequality. Since the term

1 2

|0 X2

ang72
|0 X2

Dee ™t -

is artificially introduced _in ()7 in the case m = 1 we can simply set X ! = X0,
Furthermore, by using (B.9) we have
[K35(er')

/ / lefy — et ) (ainTel QX pexme 85Xm1>
9 XTy PSS G B Tl S

Dy dédg‘

< Cl|0e(ep’ — ep Mz 19eer Iz 1 9ee 2
< C(10 i = m ™ lz2y + 19 (o — o L2 @) ChUIOeni L2y + 19epi 22 y)
< Ch Ml = np M2 + A" Ch(A Ingt 2@ + A7)
< eh?|mpt = ||L2(H) + Ce iy HL?(H) +Ce ', (3.29)

where € can be arbitrarily small. By the same estimation as (), we have

[ K33 (en)]

- <|65Xg"91 ] e

agxm 1 8§X7" 1 m
(oo ® o) Ok

< Cloeer ™ lp= e = ep ™2 19eer |2
< eh 2|l =y ey + Ce T 1oy + Ce R (3.30)

11



Combining the estimates of K37?(e"), Ki(em) and Kfi(e™) shown in (B.28)-(B.30),
we obtain

K3 (ep!

L (e

—eh™2|lni" = ny " ey — O Iy Zey + I 7)) — Ce7 M7

o 8§Xm_1
T joexm T

1
|0 X2

65Xm_2
|0 X2

(95€m 1

2
>d9 ¢

(3.31)

In the case m = 1 we have X! = X° in () From the expression of K7*(v,) in
() we can see that

K5 (o)

< Cloe(er — ez leny 2

< Clloe(ef — el zh” (use (B.9))

< (OO — 2 + Clloe (o — o lze@)h”  (use e = nit + o)

< (ClDemi = m | p2ry + CH7)A" (use (B.9) again)

<eh 2|y — e + Ce 'R, (3.32)

where we have used inverse inequality in the last inequality. By using the relation
= et — pi* and estimates (@)7(@), we obtain

K3 (ny")
= K3 6h) K3" (Ph)
De X1 1 | OXm2 )
m. - mTi.—=———1 ]dfd
> [ / <|agxm 1|0 x| T Taexnr % g x| )10

—eh 2|l = e — CeHlmn ™ e + 10l 2@) — Ce~'R*T (3.33)
with X~1 = X© in the case m = 1.

3.6. Estimation for Jj"(vy). We use () to estimate |9 X™ 1| — [0 X"
with

—1
DXL 9X™) = 10X and Oy FOX] e X[y) = Sk
f(€ » U¢ )—|£ | an 1f(£ h,67€h,9)_ 1
10 X7
This yields

1 8Xm_l
0X™ 1|~ oeXp | = [ SR ey ia

AT
0 10: X}
12



By using the definition of J§*(vp,) in (), we have

T (on) = [ (10X = 06X )8 X" -, dg

8 X]’;ne 1 o .

/ /(|8€X 3geh )(67—X -’Uh) d§d0
8 XxXm 1

/ / (wixm T )“ X ded0

athg e X1
+/ /( o i )'367”_1 0 X™ - wy)dédd
o J1 |65Xh79 L |35Xm_1| £%n ( h)

Using integration by parts, the first term on the right-hand side above can be written

as
/ /(I%iz 1| 856?_1)(57Xm'vh)d€d6
/ / <8§: 1| 6?_1>(5TX”“8wh>d§da
//(&?Zq 1)(%6 X™ - vp) dedo

//( (|§§Z 1) )(6 X" - vy) dédd.

Substituting this into the expression of Ji*(vy) above, we obtain

1 - m— m
ng(’l}h) = \/Hla)('m_”(aEXm 1 . eh 1)(5TX . 8£'Uh) dg
a xXm 1
- [ (e b ) oxoex )
O X™ 1
- Jor ) X o)t

DXy Pexm !
+/ /( e — - >~8em1(5TX’”-vh dédo
o i |6£Xh,91 |9 X1 €°h )

=: J31 (vn) + J55(vn) + J55(vn) + J5x(vn). (3.34)

Note that

0, X" =0 X"+ (6 X" -0, X™")=H"n™ + E™,
where H™ and n™ are the curvature and normal vector on the exact curve I, and
E™ = §,X™ — 0, X™ is the truncation error of the backward Euler method. The

latter satisfies the following estimate:

|E™ || ooy < CT.
13



Substituting 6, X™ = H™n™ + E™ into the expression of J37 (vp) in (), we obtain

m D G QX e
ng(’Uh) = AW(H 8gvh) d£+/ﬂ|a§)('ml|(E 8gvh) df

de XML et -
// 5|<9§Xm 1] (Hm"%l@gvh)dgde
De XM=t 1 o .
// |0 X 1| [H™(n™ —nj'y ") - Ogup] d€dO

aXm 1, m 1

= Uh) + J31(Uh) + J31 (vn).-
where

\jgf(vh)\ < C”ezn_lHL?(H)””Zfa_l ) a&”hHLg(o,LLZ(H)),

1
|57 (vn)| S/O Clley 2@ lln™ = n3g oo 1) | Ogvnll L2 1y 46

< Chlle M| o l10evnll 2 (estimate (B.11) is used)
<Clle Nzmllonll L2 (inverse inequality is used)

|53 (vn)| < Cllei ™ 2o llOevnl L2y
< Chlleprt | 2@ 1O vnll L2 (1) (stepsize restriction 7 = O(h) is used)
< Cller rzmllvnll Lz

where we have used inverse inequality in the last inequality. Combining the above
three estimates, we obtain

|J31 (vn)| (3.35)

< ClleyH2mllvall 2@y + Cller M2 Inits - devnll Lz 0,122y

< CeMlep Mz +ellngyy aEUh||2Lg(o,1;L2(ﬂ)) + Cllonl?2

< Ce 'R 4 0571”77?_1“%2(]1) + 5””;:9_1 ) a&”#z”%gm,gm@» + OHUh||2L2(]1)a
where ¢ can be arbitrarily small, and we have used the decomposition e*~* = 5" ~' +

P! with estimate (@) in the last inequality.
Similarly, using the expression of Ji5(vp), J55(vr) and J3i(vp) in (), we have

. X™ 1 m
(o) + 15300001 = | [ (G e ) @edx™ ) e
O X! m
| fo (o) b 0oxm g

< Clley Mz llvall 2
< CUm Mlezw + llep ™z llvnllz2
< CR* 2 4+ Clln 2@y + CllonllZe (3.36)

14



and

Ll oeXyyt gexmt
m € h,0 S m—1 m
J3(vp)| = / /< — — ) - Oce O X" vy d{de‘
| 34( h)l ’ o " |8§X;:’L01 |a£)<mfl‘ IS5 ( )

1
< [ Clloeer =106 e lenll oo
0

< Chl|deerr ™ | g lonll 2 (here (B.9) is used)

< C’h(||6§p’” 1HL2(H) + ||3577m 1||L2(11))th||L2(11)

< O™ 4 |~ 1||L2(J1))||Uh“L2(H) (inverse inequality is used)

< ChY 2+ Ol M2y + CllonlF2q)- (3.37)

Then, substituting the estimates of J37(vy), J33(vp), J55(vp) and J34 (vp) into (),
we obtain

T3 (on)] <Ce™ 'R *2 4 Ce a0y + CeHlvnl 22
+ 5””;3971 ) 65vh||%§(0,1;L2(H))7 (3.38)

where € can be arbitrarily small.

3.7. Error_estimation for 1 < m < k. Now we substitute vy, = 1" into the
error egruation ()7 move K5 (n;") to the left side of () and use its lower bound

in (8.39), and use the upper bounds of LI () LI (nf )], | ()], 122 ()| and
|K7 ()] in (B.19), (@)), (B-38), (B-19) and (B.16), respectively. Then we obtain

e X™ 10, d+// g Oeni| dgdo
/H|£ |6-np" - £ |8§Xm o=t Mhe ey |” g

+1/ 1 oo DX 1 /
2 Jr |0 X1 |0 X2

S g x ]
< Ce™ (2 4+ B27) 4 Ce M (I ey + I 2

_ 2
m—1 8§Xm 2

e o]

+ 5h72||7721 - 772”_1H%2(J1) + 5“”;29_1 '3677iT||%g(0,1;L2(11))'

By choosing a sufficiently small €, the last term above can be absorbed by the left-hand
side, and we obtain

/lagX’”‘lwmh mdey L / / Lt B P dedo
1 |35Xhe

+;/ 1 De X~ dg 1/ 1 BeXm=2 |
2 Jp [0e X \35Xm‘1| 2 Jy [0e X2 |0 X2

< Ce M2+ 1) + Ce (Init ey + I HZ2m) + b2l = nit ™Mz -
(3.39)

Ocep - deej d¢

Similarly as (), by using the formula

m m ‘77 |2 ‘77;7:“71|2 m m—1|2
e e = ML L e |

15



we have

/ 0 X8, - e

m|2 _ m—1|2
2T 2T
D X |y |2 axmlnml? e X =0 XM
/Is |y 1° — |§ I |d£/£ \2|£ ||77h 12 ¢
1 T
/|a xXm- 1‘|nh |2 E
ml|,,m|2 _ m—1{[,,;m—12
Z/|3£X |75 | |35X [l de
I 2T
m 1 m m—
= Cllnp, ||%2(H)+EH77}1 =y, 1||2L2(]I)' (3.40)

Substituting this result into () yields

O X™ m 2 _ a Xm— 1 112 - -
hG

1 1 deXxm=1 |2 o Oexm2 P
S geer 22| g S P S S
*2/]1 9exm1]| %k Jo x0mm1| 447 / G| % g |
< O (72 1+ 1) + Ce (I 2oy + I )
1 — m m—
o Gt [ A
< O+ 12) 4+ O o + 170 e (3.41)

where the last inequality holds if 7 = O(h?) and if we choose a sufficiently small ¢.
By summing up the above inequality for m =1,...,¢ < k, we obtain

‘
1 211,,¢ T m—1 m
/H§|85X ||77h|2df+ B} Z ||”h,e - Oy, H%Z(O,l;LZ(H))
m=1

T 1 . OeXL P
3 | e e o 26
> | o et X e o 1)+ 0r Y I
2 J; 10 X0[|* M WIL2 ()

"9 X0]
YA
<O +R7)+ 0 Y 03 )-

m=1

m=1

Then, by applying Gronwall’s inequality, we obtain
k
k —
th”%?(ﬂ) +7 Z ||”Zl,9 ! '3577/71\@3(0,1@2(]1)) < C(r° + h*). (3.42)
m=1
3.8. End of mathematical induction. By using inverse inequality, we have

9 lwrse@y < Ch™2 0kl L2y < Ch™2 (7 + R7).

16



This together with the interpolation error estimate (@) yields
_3 o3 -
lekllwoo@y < Imsllwee@y + Ik llwieq < C(Th™2 + ™" 2) + Ch'.
If 7 > 3 then for sufficiently small A and 7 = o(h?®) there holds
legllwroe @ < .

This completes the mathematical induction on ﬁ) Therefore, the estimate ()

holds for all 1 < k < N. The proof of Theorem is complete. 0

4. Numerical experiments. In this section, we illustrate the convergence of
Dziuk’s linearly implicit method ([l.3) for the curve shortening flow with initial value

XO(€) := (cos(§),sin(€)), & € [0,2q], (4.1)

which is the unit circle on the plane. The radius of the circle evolving under the curve
shortening flow satisfies (cf. [13])

R(t)=v1-2t, for te|0,3).

We approximate the curve shortening flow with initial value (%ﬁ)@ming method
(IL.3) with a uniform mesh size h and time stepsize 7. Tables contain the
errors and convergence rates of numerical solutions at time T = % computed by using
different degrees of finite elements. The spatial convergence rates are computed by
choosing stepsize 7, = h™+! and using the formula

m m m m
log (1§Hw1za§)3\/h [X™ — Xy ||L2(J1)/191r{121>\§h/2 X — Xh/2||L2(]I))

convergence rate =

log(2)
with N, = T/, based on_the numerical results of the finest two meshes. The
numerical results in Tables indicate that the numerical solutions using finite

elements of polynomial degree r have rth-order convergence in the L? norm when
r = 3, and (r+1)th-order convergence in the L? norm when r = 1,2. The convergence
rate when r = 3 is consistent with the result proved in this article. In the case r =1, 2,
some special properties of low-order finite elements may play a role for the method to
have optimal-order convergence. In the semidiscrete case this was shown in [J] for the
case 7 = 1 by completely different error analysis. In the case r = 1,2, error estimates
of Dziuk’s linearly implicit schemes still remain open.

In Table .4, we present the errors and convergence rates of time discretization,
with a sufficiently small spatial mesh size h = 1(2)% so that the errors from spatial
discretization are negligibly small. In particular, by choosing such a sufficiently small
spatial mesh size, the numerical results obtained by using finite elements of polyno-
mial degrees r = 1,2, 3 all agree. The numerical results in Table indicate that
the stepsize restriction 7 = o(h%®) in our proof may not be necessary in practical
computation in observing the first-order convergence in time.
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TABLE 4.1

27

Error of numerical solutions up to T = i (with r = 1 and mesh sizes h= 3}, 7= VT2)

M 131}1%%% [ X™ = X320y 131225\&, |X™ = X3 [y
8 1.782E-1 5.603E-1
16 4.483E-2 2.831E-1
32 1.122E-2 1.419E-1
convergence rate 2.00 1.00
TABLE 4.2

27

Error of numerical solutions up to T = i (with r = 2 and mesh sizes h = S T= %)

M 12, X"~ Xl |, e, X7~ Xy
8 6.942E-3 5.711E-2
16 8.722E-4 1.437E-2
32 1.091E-4 3.599E-3
convergence rate 3.00 2.00
TABLE 4.3

2m

Error of numerical solutions up to T = i (with r = 3 and mesh sizes h = o T= %)

M | Jnax X7 = X" 22y | Jnax | X7 = X3 @y
8 8.937E-4 7.183E-3
16 1.104E-4 1.808E-3
32 1.376E-5 4.534E-4
convergence rate 3.00 1.99
TABLE 4.4
Error of numerical solutions up to T' = % (with mesh sizes h = % and T = %)

N 1%1713%(]\, [X™ — X}THL?(H)
r=1 r=2 r=3
8 5.043E-2 | 5.044E-2 | 5.044E-2
16 2.684E-2 | 2.685E-2 | 2.685E-2
32 1.387E-2 | 1.389E-2 | 1.389E-2
64 7.057E-3 | 7.069E-3 | 7.069E-3
convergence rate 0.97 0.97 0.97
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