A NEW PERFECTLY MATCHED LAYER METHOD FOR THE HELMHOLTZ EQUATION IN NONCONVEX DOMAINS

BUYANG LI*, YONGLIN LI* ${ }^{*}$, AND WEIYING ZHENG \ddagger

Abstract

A new coupled perfectly matched layer (PML) method is proposed for the Helmholtz equation in the whole space with inhomogeneity concentrated on a nonconvex domain. Rigorous analysis is presented for the stability and convergence of the proposed coupled PML method, which shows that the PML solution converges to the solution of the original Helmholtz problem exponentially with respect to the product of the wave number and the width of the layer. An iterative algorithm and a continuous interior penalty finite element method (CIP-FEM) are also proposed for solving the system of equations associated to the coupled PML. Numerical experiments are presented to illustrate the convergence and performance of the proposed coupled PML method as well as the iterative algorithm and the CIP-FEM.

Key words. Helmholtz equation, nonconvex, perfectly matched layer, exponential convergence, finite element method

AMS subject classifications. 65N12, 65N15, 65N30, 78A40

1. Introduction. We consider the acoustic scattering problem in $\mathbb{R}^{n}, n \in\{2,3\}$, described by the Helmholtz equation under the radiation boundary condition, i.e.,

$$
\begin{align*}
\Delta u+k^{2} u & =f & & \text { in } \mathbb{R}^{n}, \tag{1.1}\\
\left|\frac{\partial u}{\partial r}-\mathbf{i} k u\right| & =o\left(r^{\frac{1-n}{2}}\right) & & \text { as } r=|x| \rightarrow \infty \tag{1.2}
\end{align*}
$$

where k is the wave number and f is a given function. Moreover, $k=k_{0}$ and $f=0$ outside a bounded, Lipschitz and nontrapping domain Ω, where k_{0} is a positive constant. The unique solvability and various stability estimates for the Helmholtz problem (1.1)-(1.2) have been studied in the literatures [21, $9,56,57,26,11,62,31,58,32$, etc.].

The Helmholtz problem (1.1)-(1.2) is often solved approximately by using the perfectly matched layer (PML) method, which was originally proposed in [5] and then developed in $[16,18,48,49,13,7,6,17,15,42,64,24,10,28$, etc.]. In the existing PML methods, one can choose a rectangular or circular domain to cover the region Ω and construct an absorbing layer outside the rectangular or circular domain, denoted by Ω_{d}, as shown in Figure 1.1 (left). The fundamental analysis indicates that the rectangular or circular PML converges exponentially to the radiation solution when the width of the layer Ω_{d} or the PML parameter tends to infinity, see, e.g., $[4,12,13,42,51,6,7,14,15]$. Then one can solve the original problem approximately in a bounded domain, with zero boundary condition at the exterior boundary of Ω_{d}. This approach generally works well in approximating the solution to the Helmholtz equation in the bounded domain Ω. Especially, the wave-number-explicit convergence analyses for PML are obtained in $[14,51,10,28]$ recently.

However, in some special cases, for example when Ω is a nonconvex slender region (such as an L-shape domain), using a convex rectangular or circular PML would require much more computational cost than solving the equation in a small neighborhood of Ω, as shown in Figure 1.1 (right). To resolve this issue, Laurens [50] proposed a new PML method through a diffeomorphism defined on an absorbing pseudo-Riemannian manifold. Such PML techniques only require one to solve equations in a small neighborhood of the nonconvex domain Ω. The convergence of the approximate solutions given by such PML for a nonconvex domain Ω, as well as the dependence on the wave number k and the

[^0]

Fig. 1.1. Left: $P M L$ in convex domain. Right: $P M L$ in nonconvex domain.
width d of the PML, is not known so far. Recently, many authors have considered radial complex scalings based on the pole condition for the Helmholtz scattering problem with a star-shaped interior domain or scatterer; see [67, 35, 36, 63]. Such a PML approach requires a parameterization of the boundary piecewise. In the exterior domain, some new finite element approaches such as Hardy space infinite elements [35] are proposed. The convergence analyses of the approximations through domain truncation and finite element discretization for the resonance problems are reported in [36]. For the scattering problem, the similar related results remain open.

The objective of this article is to construct a new coupled PML method for the Helmholtz equation on a nonconvex domain, which admits rigorous analysis for the exponential convergence with respect to k, d, and the PML parameter. The key idea is to divide the nonconvex domain into several disjoint convex subdomains and to set up a PML for each subdomain. Some auxiliary solutions are solved in these subdomains and coupled with the original solution u through some interface conditions and an impedance boundary condition. Since the subdomains are convex, most of the popular PML methods, such as the uniaxial PML, can be applied, and therefore, the usual finite element methods (FEM) can be used. Since the standard finite element method for Helmholtz problem with large wave number suffers from the pollution effect, see [44, 45, 3, 22], we adopt the CIP-FEM [66, 25, 51, 52] to reduce the pollution effect (which arises when k is large) and propose an iterative algorithm for solving the coupled PML system. For other methods to reduce the pollution error, we refer to $[56,27,1,55,33,43,30,40,41,38,39,47,8,60$, etc.]

The proposed new coupled PML method can also be applied to the multiple scattering problems in [54]. Under the well-separated assumption, i.e., the minimal distance among the scatterers is much larger than the diameters of the scatterers, two coupled methods using the multiple-DtN and PML techniques were proposed in [34] and [46], respectively. In [46], the PML solution for each scatterer is solved in the corresponding subdomain and can be extended to other subdomains by using the wave propagation operator, which is defined as the integrals of the Green's function over the subdomains, resulting in expensive costs. In contrast, the new coupled PML method in this paper does not require the well-separated assumption and avoids computing the DtN operator or the integrals of Green's function over the subdomains, but only requires computing some integrals on the boundary. In particular, the stability and exponential convergence of the new coupled PML method are proved without requiring the well-separated assumption (i.e., there is no restriction on the distance among the scatterers). In Section 5 we present some numerical tests to illustrate the effectiveness of the new PML method for a multiple scattering problem.

The outline of this article is as follows. The construction of the PML based on a domain decomposition and the derivation of the coupled PML system are presented in Section 2. The convergence analysis for the proposed coupled PML method is presented in Section 3. An iterative algorithm and a CIP-FEM for solving the system of equations associated to the coupled PML system are proposed in Section 4. Finally, numerical experiments are presented in Section 5 to illustrate the convergence and performance of the proposed coupled PML method and iterative CIP-FEM.

2. Construction of the coupled PML system.

2.1. Basic notations. For any domain $G \subset \mathbb{R}^{n}$ and part of its boundary $\Sigma \subset \partial G$, we denote by $(\cdot, \cdot)_{G}$ and $\langle\cdot, \cdot\rangle_{\Sigma}$ the inner products on the complex-valued Hilbert spaces $L^{2}(G)$ and $L^{2}(\Sigma)$, respectively. Moreover, the $H^{\frac{1}{2}}$-norm defined on the boundary Σ is given by

$$
\begin{equation*}
\|w\|_{H^{\frac{1}{2}(\Sigma)}}:=\left(\|w\|_{L^{2}(\Sigma)}^{2}+|w|_{H^{\frac{1}{2}}(\Sigma)}^{2}\right)^{\frac{1}{2}}, \tag{2.1}
\end{equation*}
$$

with

$$
\begin{equation*}
|w|_{H^{\frac{1}{2}}(\Sigma)}^{2}:=\int_{\Sigma} \int_{\Sigma} \frac{\left|w(x)-w\left(x^{\prime}\right)\right|^{2}}{\left|x-x^{\prime}\right|^{n}} d s(x) d s\left(x^{\prime}\right) . \tag{2.2}
\end{equation*}
$$

The energy norm on G is defined by

$$
\begin{equation*}
\|w\|_{G}:=\left(\|\nabla w\|_{L^{2}(G)}^{2}+k^{2}\|w\|_{L^{2}(G)}^{2}\right)^{\frac{1}{2}} . \tag{2.3}
\end{equation*}
$$

For any disjoint domains G_{1} and G_{2}, the piecewise Sobolev space is defined by

$$
H^{m}\left(G_{1} \cup G_{2}\right):=\left\{v:\left.v\right|_{G_{1}} \in H^{m}\left(G_{1}\right),\left.\quad v\right|_{G_{2}} \in H^{m}\left(G_{2}\right)\right\} \quad \text { for } m \geq 1,
$$

with the norm

$$
\|\cdot\|_{H^{m}\left(G_{1} \cup G_{2}\right)}=\|\cdot\|_{H^{m}\left(G_{1}\right)}+\|\cdot\|_{H^{m}\left(G_{2}\right)} .
$$

Throughout the paper, we denote by C a generic positive constant which is independent of k, f, the PML parameters σ_{0} and d. The notation $A \lesssim B$ or $B \gtrsim A$ stands for the statement " $A \leq C B$ for some constant C "; similarly, $A \approx B$ means " $A \lesssim B$ and $A \gtrsim B$ ". Moreover, we let $C_{p}(a, b, \cdots)$ be a generic positive constant which has at most polynomial growth in the variables a, b, and so on. The constants C and C_{p} may vary with different occurrences.
2.2. Stability estimates for the original Helmholtz problem. It is known that the solution to the Helmholtz problem (1.1)-(1.2) satisfies the following stability estimate:

$$
\begin{equation*}
\|u\|_{H^{1}(\Omega)}+\|k u\|_{L^{2}(\Omega)} \leq C_{\text {stab }}\|f\|_{L^{2}(\Omega)} \tag{2.4}
\end{equation*}
$$

In general, the stability constant $C_{\text {stab }}$ depends on the wave number k and the diameter of Ω. It is known that for problems with homogeneous medium, or nontrapping medium in general, the stability constant $C_{\text {stab }}$ is independent of k, see $[9,56,57,65]$ and $[29,32]$. For more general $k(x)$, the $C_{\text {stab }}$ may grows super-algebraically as k increases, see [62, 58, 31, 32].

For the convenience of theoretical analysis of PML, in the rest of this article, we assume that $k=k_{0}$ in \mathbb{R}^{n} and therefore the stability constant $C_{\text {stab }}$ in (2.4) is independent of k. The results in this article can be directly extended to the case of general $k(x)$ if the stability constant $C_{\text {stab }}$ in (2.4) grows at most polynomially with respect to k.
2.3. Domain decomposition into convex subdomains. For a given nonconvex bounded domain $\Omega \subset \mathbb{R}^{n}$, we divide it into several disjoint convex subdomains $\Omega_{j}, j=$ $1, \cdots, m$, such that $\bar{\Omega}=\cup_{j=1}^{m} \overline{\Omega_{j}}$, as illustrated in Figure 2.1. Let $\widehat{\Omega}_{j}$ be a neighborhood of Ω_{j} in $\mathbb{R}^{n} \backslash \overline{\Omega_{j}}$ with the thickness $d>0$, i.e., we denote by $x=\left(x_{1}, \cdots, x_{n}\right)^{\mathrm{T}}$ and define

$$
\widehat{\Omega}_{j}=\left\{x \in \mathbb{R}^{n} \backslash \overline{\Omega_{j}}: \exists y \in \partial \Omega_{j} \text { such that }\left|x_{i}-y_{i}\right|<d, i=1, \cdots, n .\right\} .
$$

The practical computational domains would be $B_{j}=\overline{\Omega_{j}} \cup \widehat{\Omega}_{j}$, with PML filled in $\widehat{\Omega}_{j}$, $j=1,2, \cdots, m$. The boundaries of these domains are denoted by $\Gamma=\partial \Omega, \Gamma_{j}=\partial \Omega_{j}$ and $\widehat{\Gamma}_{j}=\partial B_{j}$.

Since $f=0$ outside Ω, the solution satisfies the homogeneous Helmholtz equation in the exterior domain $\mathbb{R}^{n} \backslash \bar{\Omega}$, i.e.,

$$
\begin{equation*}
\Delta u+k^{2} u=0 \quad \text { in } \mathbb{R}^{n} \backslash \bar{\Omega} . \tag{2.5}
\end{equation*}
$$

It is known that the solution u of the above homogeneous equation has the following

Fig. 2.1. A nonconvex domain Ω partitioned into convex subdomains $\Omega_{j}, j=1,2$.
boundary integral representation (see, e.g., [61, Theorem 3.1.6]):

$$
\begin{equation*}
u(x)=\int_{\Gamma} u(y) \partial_{\mathbf{n}(y)} G(x, y) \mathrm{d} s(y)-\int_{\Gamma} \partial_{\mathbf{n}} u(y) G(x, y) \mathrm{d} s(y) \quad \text { for } x \in \mathbb{R}^{n} \backslash \bar{\Omega}, \tag{2.6}
\end{equation*}
$$

where \mathbf{n} denotes the unit outward normal on $\Gamma, \partial_{\mathbf{n}(y)}$ denotes the outward normal derivative with respect to the variable y, and $G(x, y)$ is the fundamental solution to the Helmholtz equation, given by

$$
G(x, y)= \begin{cases}\frac{\mathbf{i}}{4} H_{0}^{(1)}(k|x-y|) & \text { for } \mathbb{R}^{2}, \tag{2.7}\\ \frac{e^{\mathbf{i} k|x-y|}}{4 \pi|x-y|} & \text { for } \mathbb{R}^{3},\end{cases}
$$

which satisfies the following equation:

$$
\Delta_{y} G(x, y)+k^{2} G(x, y)=-\delta(x-y)
$$

In view of (2.6), we define some new functions $u_{j}, j=1, \ldots, m$, by

$$
\begin{equation*}
u_{j}(x)=\int_{\Gamma_{j}} u(y) \partial_{\mathbf{n}_{j}(y)} G(x, y) \mathrm{d} s(y)-\int_{\Gamma_{j}} \partial_{\mathbf{n}_{j}} u(y) G(x, y) \mathrm{d} s(y) \quad \text { for } x \in \mathbb{R}^{n} \backslash \Gamma_{j}, \tag{2.8}
\end{equation*}
$$

where \mathbf{n}_{j} denotes the unit outward normal on Γ_{j}, and $\partial_{\mathbf{n}_{j}(y)}$ denotes the outward normal derivative with respect to the variable y. Since the integral of $u(y) \partial_{\mathbf{n}_{j}(y)} G(x, y)$ and $\partial_{\mathbf{n}_{j}} u(y) G(x, y)$ from two sides of Γ_{j} would cancel (the normal vectors from the two sides have opposite directions), summing up (2.8) for $j=1, \ldots, m$ yields

$$
\begin{equation*}
u(x)=\sum_{j=1}^{m} u_{j}(x) \quad \text { for } x \in \mathbb{R}^{n} \backslash \bar{\Omega} . \tag{2.9}
\end{equation*}
$$

For a function φ, define

$$
\varphi^{ \pm}(x)=\lim _{h \rightarrow 0^{+}} \varphi\left(x \pm h \mathbf{n}_{j}(x)\right) \quad \text { and } \quad \partial_{\mathbf{n}_{j}} \varphi^{ \pm}(x)=\left(\partial_{\mathbf{n}_{j}} \varphi\right)^{ \pm}(x), \quad x \in \Gamma_{j} .
$$

Let $[\varphi]:=\varphi^{-}-\varphi^{+}$denote the jump of φ on Γ_{j}. According to [59, Theorem 3.1.1], the boundary integral representation (2.8) implies that u_{j} is the solution to the following interface problem:

$$
\begin{aligned}
\Delta u_{j}+k^{2} u_{j} & =0 & & \text { in } \mathbb{R}^{n} \backslash \Gamma_{j}, \\
{\left[u_{j}\right]=-u,\left[\partial_{\mathbf{n}_{j}} u_{j}\right] } & =-\partial_{\mathbf{n}_{j} u} u & & \text { on } \Gamma_{j}, \\
\left|\partial_{\mathbf{n}} u_{j}-\mathbf{i} k u_{j}\right| & =o\left(|x|^{\frac{1-n}{2}}\right) & & \text { as }|x| \rightarrow \infty .
\end{aligned}
$$

Moreover, taking normal derivative of (2.9) yields $\partial_{\mathbf{n}} u-\mathbf{i} k u=\left.\sum_{j=1}^{m}\left(\partial_{\mathbf{n}}-\mathbf{i} k\right) u_{j}\right|_{\mathbb{R}^{n} \backslash \overline{\Omega_{j}}}$ on Γ. Therefore, the original Helmholtz problem (1.1)-(1.2) is equivalent to the following system:

$$
\begin{align*}
& \Delta u_{j}+k^{2} u_{j}=0 \tag{2.10a}\\
& {\left[u_{j}\right]=-u,\left[\partial_{\mathbf{n}_{j}} u_{j}\right] }=-\partial_{\mathbf{n}_{j} u} u \tag{2.10b}\\
&\left|\partial_{\mathbf{n}} u_{j}-\mathbf{i} k u_{j}\right|=o\left(|x|^{\frac{1-n}{2}}\right) \tag{2.10c}\\
& 4
\end{align*}
$$

$$
\begin{align*}
\Delta u+k^{2} u & =f & & \text { in } \Omega \tag{2.10d}\\
\partial_{\mathbf{n}} u-\mathbf{i} k u & =\left.\sum_{j=1}^{m}\left(\partial_{\mathbf{n}}-\mathbf{i} k\right) u_{j}\right|_{\mathbb{R}^{n} \backslash \overline{\Omega_{j}}} & & \text { on } \Gamma .
\end{align*}
$$

The equivalence between (1.1)-(1.2) and (2.10) can be seen as follows. We have shown that if u is the solution to (1.1)-(1.2) then u and the function u_{j} defined by (2.8) satisfy the equations in (2.10). Conversely, if u and u_{j} are the solutions to (2.10), the function $w=\sum_{j=1}^{m} u_{j}$ would satisfy the equations:
(2.11a) $\Delta w+k^{2} w=0 \quad$ in $\mathbb{R}^{n} \backslash \Gamma$,

$$
\begin{align*}
{[w]=-u, \quad\left[\partial_{\mathbf{n}} w\right] } & =-\partial_{\mathbf{n}} u & & \text { on } \Gamma \tag{2.11b}\\
\left|\partial_{\mathbf{n}} w-\mathbf{i} k w\right| & =o\left(|x|^{\frac{1-n}{2}}\right) & & \text { as }|x| \rightarrow \infty \tag{2.11c}
\end{align*}
$$

Combining (2.11b) and (2.10e) implies that $\left[\partial_{\mathbf{n}} w-\mathbf{i} k w\right]=-\left(\partial_{\mathbf{n}} u-\mathbf{i} k u\right)=-\left.\left(\partial_{\mathbf{n}}-\mathbf{i} k\right) w\right|_{\mathbb{R}^{n} \backslash \bar{\Omega}}$ on Γ. This means that

$$
\begin{equation*}
\left.\left(\partial_{\mathbf{n}}-\mathbf{i} k\right) w\right|_{\Omega}=0 \quad \text { on } \Gamma \tag{2.12}
\end{equation*}
$$

Since the Helmholtz equation (2.11a) with impedance boundary condition (2.12) has unique solution (see, e.g., $[57,11]$), it follows that $\left.w\right|_{\Omega}=0$. As a result of this and the interface condition (2.11b), we have $u=\left.w\right|_{\mathbb{R}^{n} \backslash \bar{\Omega}}$ and $\partial_{n} u=\left.\partial_{n} w\right|_{\mathbb{R}^{n} \backslash \bar{\Omega}}$ on the interior side of Γ. If we define $\left.u\right|_{\mathbb{R}^{n} \backslash \bar{\Omega}}:=\left.w\right|_{\mathbb{R}^{n} \backslash \bar{\Omega}}$, then $[u]=\left[\partial_{\mathbf{n}} u\right]=0$ on Γ and $\Delta u+k^{2} u=0$ in $\mathbb{R}^{n} \backslash \bar{\Omega}$, which implies that u is the solution to the original Helmholtz equation (1.1)-(1.2).

In the equivalent formulation (2.10), the equations of u_{j} are defined in an unbounded domain with radiation boundary condition. Since each Ω_{j} is a convex domain, PML can be set up in the domain $\widehat{\Omega}_{j}$ to approximate the solution u_{j} in Ω. This is presented in the next several subsections.
2.4. Uniaxial PML method. For simplicity, in the rest of this paper, we assume that all the subdomains Ω_{j} are rectangles or cuboids whose sides are parallel to the main coordinate axes. We remark that such an additional assumption is for the convenience of the presentation in our theoretical analysis. Indeed, the PML can be set up in a local Cartesian coordinate system with the origin at the centre of the subdomain and the axes parallel to the sides of the subdomain.

Let $\widetilde{x}^{j}:=F_{j}(x)=x+\mathbf{i} \sigma_{j}(x)$ be a transformation with a function $\sigma_{j} \in C^{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfying the following conditions:

$$
\begin{align*}
(x-y) \cdot \operatorname{Im} \widetilde{x}^{j}=(x-y) \cdot \sigma_{j}(x)>0 & \text { for } x \in \widehat{\Omega}_{j}, y \in \Gamma_{j}, \tag{2.13a}\\
\sigma_{j}(x)=0 & \text { for } x \in \overline{\Omega_{j}}, \tag{2.13b}\\
\sigma_{0} d \leq\left|\sigma_{j}(x)\right| \leq \beta \sigma_{0} d & \text { for } x \in \widehat{\Gamma}_{j}, \tag{2.13c}
\end{align*}
$$

where $\sigma_{0}>0$ is a given constant and $\beta \geq 1$ is a constant depending only on n. Denote the centre of Ω_{j} by $O_{j}=\left(O_{j, 1}, \cdots, O_{j, n}\right)^{\overline{\mathrm{T}}}$ and the diameter of Ω_{j} in the i-th dimension by $L_{j, i}$. Then according to the definition of PML in Section 2.3, the layer is given by

$$
\widehat{\Omega}_{j}=\left\{x \in \mathbb{R}^{n} \backslash \overline{\Omega_{j}}:\left|x_{i}-O_{j, i}\right| \leq d+L_{j, i} / 2, i=1, \cdots, n .\right\}
$$

In order to use the results in [14, 7] on the inf-sup conditions and uniquenesses of the PML problems, we let $\sigma_{j}(x)$ be defined as follows:

$$
\begin{equation*}
\sigma_{j}(x)=\left(\sigma_{j, 1}\left(x_{1}\right), \cdots, \sigma_{j, n}\left(x_{n}\right)\right)^{\mathrm{T}} \quad \text { with } \quad \sigma_{j, i}\left(x_{i}\right)=\int_{O_{j, i}}^{x_{i}} \tilde{\sigma}_{j, i}(t) \mathrm{d} t \tag{2.14}
\end{equation*}
$$

where $\tilde{\sigma}_{j, i}(t) \in C(\mathbb{R})$ satisfies $\tilde{\sigma}_{j, i} \geq 0, \tilde{\sigma}_{j, i}\left(O_{j, i}+t\right)=\tilde{\sigma}_{j, i}\left(O_{j, i}-t\right)$ and

$$
\tilde{\sigma}_{j, i}(t)=0 \text { for }\left|t-O_{j, i}\right| \leq \frac{L_{j, i}}{2} \quad \text { and } \quad \tilde{\sigma}_{j, i}(t)=\bar{\sigma}_{j, i} \text { for }\left|t-O_{j, i}\right| \geq \bar{d}+\frac{L_{j, i}}{2}
$$

where $\bar{d} \in(0, d)$ is a constant and $\bar{\sigma}_{j, i}>0$ is given by σ_{0}. More precisely, $\bar{\sigma}_{j, i}$ satisfies

$$
\int_{O_{j, i}+\frac{L_{j, i}}{2}}^{O_{j, i}+\frac{L_{j, i}}{2}+\bar{d}} \tilde{\sigma}_{j, i}(t) \mathrm{d} t+\bar{\sigma}_{j, i}(d-\bar{d})=\int_{O_{j, i}}^{O_{j, i}+\frac{L_{j, i}}{2}+d} \tilde{\sigma}_{j, i}(t) \mathrm{d} t=\sigma_{0} d
$$

Let $\beta=\sqrt{n}$. It's easy to verify that $\sigma_{j}(x)$ defined by (2.14) satisfies all the conditions in (2.13). Notice that $\sigma_{j, i}\left(x_{i}\right)$ depends only on x_{i}, such a construction of PML is called the uniaxial PML method (see, e.g., [13, 14, 7]).

Condition (2.13a) guarantees

$$
\begin{align*}
\left(\widetilde{x}_{1}^{j}-y_{1}\right)^{2}+\left(\widetilde{x}_{2}^{j}-y_{2}\right)^{2}+\left(\widetilde{x}_{3}^{j}-y_{3}\right)^{2} & =|x-y|^{2}-\left|\sigma_{j}(x)\right|^{2}+2(x-y) \cdot \sigma_{j}(x) \mathbf{i} \tag{2.15}\\
& \in \mathbb{C} \backslash(-\infty, 0] \text { for } x \in \widehat{\Omega}_{j}
\end{align*}
$$

Since the square root function $\sqrt{\cdot}: \mathbb{C} \backslash(-\infty, 0] \rightarrow\{z \in \mathbb{C}: \operatorname{Re} z>0\}$ is analytic, it follows that the complex distance function

$$
\rho(z, y)=\sqrt{\left(z_{1}-y_{1}\right)^{2}+\left(z_{2}-y_{2}\right)^{2}+\left(z_{3}-y_{3}\right)^{2}}
$$

is well defined and analytic for z in some neighborhood of \widetilde{x}^{j}. This implies that the function

$$
\begin{equation*}
u_{j}\left(\widetilde{x}^{j}\right):=\int_{\Gamma_{j}} u(y) \partial_{\mathbf{n}_{j}(y)} \widetilde{G}_{j}(x, y) \mathrm{d} s(y)-\int_{\Gamma_{j}} \partial_{\mathbf{n}_{j}} u(y) \widetilde{G}_{j}(x, y) \mathrm{d} s(y) \tag{2.16}
\end{equation*}
$$

where

$$
\widetilde{G}_{j}(x, y):= \begin{cases}\frac{\mathbf{i}}{4} H_{0}^{(1)}\left(k \rho\left(\widetilde{x}^{j}, y\right)\right) & \text { for } \mathbb{R}^{2} \tag{2.17}\\ \frac{e^{\mathbf{i} k \rho\left(\widetilde{x}^{j}, y\right)}}{4 \pi \rho\left(\widetilde{x}^{j}, y\right)} & \text { for } \mathbb{R}^{3}\end{cases}
$$

is analytic in a small neighborhood of \widetilde{x}^{j} and then satisfies the Helmholtz equation, i.e.

$$
\Delta_{\widetilde{x}^{j}} u_{j}\left(\widetilde{x}^{j}\right)+k^{2} u_{j}\left(\widetilde{x}^{j}\right)=0 .
$$

By using the chain rule (cf. [49, Theorem 2.5]), we find that the function $\widetilde{u}_{j}(x):=u_{j}\left(\widetilde{x}^{j}\right)$ satisfies the following PML equation

$$
\begin{equation*}
\operatorname{div}\left(A_{j} \nabla \widetilde{u}_{j}\right)+k^{2} J_{j} \widetilde{u}_{j}=0, \tag{2.18}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{j}=J_{j} H_{j}^{\mathrm{T}} H_{j}, \quad H_{j}=\left(I+\mathbf{i}\left(D \sigma_{j}\right)^{\mathrm{T}}\right)^{-1}=\left(D F_{j}\right)^{-\mathrm{T}} \quad \text { and } \quad J_{j}=\operatorname{det}\left(D F_{j}\right) . \tag{2.19}
\end{equation*}
$$

In particular, $A_{j}^{\mathrm{T}}=A_{j}$ is symmetric; condition (2.13b) implies that $A_{j}=I, J_{j}=1$ in $\overline{\Omega_{j}}$, and

$$
\begin{equation*}
\widetilde{u}_{j}=u_{j} \quad \text { in } \overline{\Omega_{j}} . \tag{2.20}
\end{equation*}
$$

Since Ω_{j} is convex, by using [49, Corollary 3.2 and Lemma 4.2], A_{j} is elliptic and J_{j} is bounded. More precisely, the following coercivity and continuity hold for any domain $G \subset \mathbb{R}^{n}$ and $\varphi, \psi \in H^{1}(G):$

$$
\begin{align*}
\operatorname{Re}\left(A_{j} \nabla \varphi, \nabla \varphi\right)_{G} & \geq C_{p}\left(\sigma_{0}\right)^{-1}\|\nabla \varphi\|_{L^{2}(G)}^{2} \tag{2.21}\\
\left|\left(A_{j} \nabla \varphi, \nabla \psi\right)_{G}-k^{2}\left(J_{j} \varphi, \psi\right)_{G}\right| & \leq C_{p}\left(\sigma_{0}\right)\|\varphi\|\left\|_{G}\right\| \psi \|_{G} \tag{2.22}
\end{align*}
$$

In the next subsection we show that \widetilde{u}_{j} decays exponentially with respect to $k \sigma_{0} d$ and therefore close to zero on $\widehat{\Gamma}_{j}$. As a result, we can approximate \widetilde{u}_{j} by solving (2.18) with zero boundary condition.
2.5. Exponential decay in the PML. We denote

$$
\begin{aligned}
& \gamma:=\min _{1 \leq j \leq m} \frac{d}{\sqrt{\sum_{i=1}^{n}\left(L_{j, i}+d\right)^{2}}} \quad \text { and } \\
& \lambda:=\max _{\substack{1 \leq i \leq n \\
1 \leq j \leq m}}\left\|\partial_{x_{i}} \widetilde{x}_{i}^{j}\right\|_{L^{\infty}\left(\widehat{\Gamma}_{j}\right)} \approx 1+\max _{\substack{1 \leq i \leq n \\
1 \leq j \leq m}}\left\|\tilde{\sigma}_{j, i}\right\|_{L^{\infty}\left(\widehat{\Gamma}_{j}\right)}
\end{aligned}
$$

The following estimates for the modified Green function $\widetilde{G}_{j}(x, y)$ hold:

Lemma 2.1. Let (2.13a)-(2.13c) be satisfied and
$\gamma k \sigma_{0} d \geq 1$.
Then there exists a positive constant C depending only on the constant β in (2.13c) such that for any $x \in \widehat{\Gamma}_{j}, y \in \bar{\Omega}_{j}$ and $1 \leq i, l \leq n$, there hold:

$$
\begin{align*}
\left|\widetilde{G}_{j}(x, y)\right| & \leq C\left(\gamma \sigma_{0} d\right)^{-1} e^{-\gamma k \sigma_{0} d} \tag{2.24}\\
\left|\partial_{y_{i}} \widetilde{G}_{j}(x, y)\right| & \leq C k \gamma^{-1}\left(\gamma \sigma_{0} d\right)^{-1} e^{-\gamma k \sigma_{0} d} \tag{2.25}\\
\left|\partial_{x_{l}} \widetilde{G}_{j}(x, y)\right| & \leq C \lambda k \gamma^{-1}\left(\gamma \sigma_{0} d\right)^{-1} e^{-\gamma k \sigma_{0} d} \tag{2.26}\\
\left|\partial_{x_{l}} \partial_{y_{i}} \widetilde{G}_{j}(x, y)\right| & \leq C \lambda k^{2} \gamma^{-2}\left(\gamma \sigma_{0} d\right)^{-1} e^{-\gamma k \sigma_{0} d} . \tag{2.27}
\end{align*}
$$

Proof. We consider only the case of $n=3$ and refer to [13, Lemma 3.3] (which considered a rectangular PML) for $n=2$. By using (2.15) and (2.13a), it is easy to verify that

$$
\operatorname{Im} \rho\left(\widetilde{x}^{j}, y\right) \geq \frac{(x-y) \cdot \operatorname{Im} \widetilde{x}^{j}}{|x-y|}=\frac{(x-y) \cdot \sigma_{j}(x)}{|x-y|}
$$

(i) Since $x \in \widehat{\Gamma}_{j}$ and $y \in \bar{\Omega}_{j}$, from (2.13a) and (2.13c) we derive the following inequality:

$$
(x-y) \cdot \sigma_{j}(x)=\left|\sigma_{j}(x)\right||x-y| \cos \left\langle x-y, \sigma_{j}(x)\right\rangle \geq \sigma_{0} d \cdot \operatorname{dist}\left(x, \Gamma_{j}\right) \geq \sigma_{0} d^{2}
$$

which implies that

$$
\left|\rho\left(\widetilde{x}^{j}, y\right)\right| \geq \operatorname{Im} \rho\left(\widetilde{x}^{j}, y\right) \geq \frac{\sigma_{0} d^{2}}{\sqrt{\sum_{i=1}^{n}\left(L_{j, i}+d\right)^{2}}} \geq \gamma \sigma_{0} d
$$

Substituting this into (2.17) yields (2.24).
(ii) Some straightforward calculations yield

$$
\partial_{y_{i}} \widetilde{G}_{j}(x, y)=\left(\mathbf{i} k-\rho^{-1}\right) \widetilde{G}_{j}(x, y) \partial_{y_{i}} \rho\left(\widetilde{x}^{j}, y\right) \quad \text { and } \quad \partial_{y_{i}} \rho=\frac{y_{i}-\widetilde{x}_{i}^{j}}{\rho} .
$$

If $|x-y| \geq 2\left|\sigma_{j}(x)\right|$, then from (2.15) we derive that

$$
|\rho| \geq\left|\operatorname{Re} \rho^{2}\right|^{1 / 2}=\left(|x-y|^{2}-\left|\sigma_{j}(x)\right|^{2}\right)^{1 / 2} \geq \frac{\sqrt{3}}{2}|x-y|
$$

and therefore

$$
\left|\partial_{y_{i}} \rho\right|=\left|\frac{\widetilde{x}_{i}^{j}-y_{i}}{\rho}\right| \leq \frac{2\left(|x-y|^{2}+\left|\sigma_{j}(x)\right|^{2}\right)^{1 / 2}}{\sqrt{3}|x-y|} \leq \sqrt{\frac{5}{3}} .
$$

Else if $|x-y|<2\left|\sigma_{j}(x)\right|$, then by using $|\rho| \geq \operatorname{Im} \rho \geq \gamma \sigma_{0} d$ and (2.13c), we have

$$
\left|\partial_{y_{i}} \rho\right|=\left|\frac{\widetilde{x}_{i}^{j}-y_{i}}{\rho}\right| \leq \frac{\left(|x-y|^{2}+\left|\sigma_{j}(x)\right|^{2}\right)^{1 / 2}}{\gamma \sigma_{0} d} \leq \frac{\sqrt{5}\left|\sigma_{j}(x)\right|}{\gamma \sigma_{0} d} \leq \sqrt{5} \beta \gamma^{-1}
$$

In this case, from (2.23) and $\gamma^{-1} \geq 1$ we obtain

$$
\left|\partial_{y_{i}} \widetilde{G}_{j}(x, y)\right| \lesssim\left(k+\left(\gamma \sigma_{0} d\right)^{-1}\right) \gamma^{-1}\left(\gamma \sigma_{0} d\right)^{-1} e^{-\gamma k \sigma_{0} d} \lesssim k \gamma^{-1}\left(\gamma \sigma_{0} d\right)^{-1} e^{-\gamma k \sigma_{0} d}
$$

where in the second inequality we have used $\left(\gamma \sigma_{0} d\right)^{-1} \leq k$.
(iii) Similarly to (ii), by noting $\partial_{x_{l}} \widetilde{x}_{i}^{j}=\left(1+\mathbf{i} \tilde{\sigma}_{j, i}\right) \delta_{l, i}$, where $\delta_{l, i}$ is the Kronecker delta function, and using

$$
\partial_{x_{l}} \rho=\frac{\left(\widetilde{x}_{l}^{j}-y_{l}\right)\left(1+\mathbf{i} \tilde{\sigma}_{j, l}\right)}{\rho} \quad \text { and } \quad \partial_{x_{l}} \widetilde{G}_{j}(x, y)=\left(\mathbf{i} k-\rho^{-1}\right) \widetilde{G}_{j}(x, y) \partial_{x_{l}} \rho\left(\widetilde{x}^{j}, y\right),
$$

we can prove $\left|\partial_{x_{l}} \rho\right| \lesssim \lambda \beta \gamma^{-1}$ and then obtain (2.26).
(iv) Note that

$$
\partial_{x_{l}} \partial_{y_{i}} \widetilde{G}_{j}(x, y)=\left(\mathbf{i} k-\rho^{-1}\right)^{2} \widetilde{G}_{j} \partial_{y_{i}} \rho \partial_{x_{l}} \rho+\widetilde{G}_{j}\left(\rho^{-2} \partial_{x_{l}} \rho \partial_{y_{i}} \rho+\left(\mathbf{i} k-\rho^{-1}\right) \partial_{x_{l}} \partial_{y_{i}} \rho\right)
$$

and

$$
\left|\partial_{x_{l}} \partial_{y_{i}} \rho\right|=\left|\rho^{-1} \partial_{x_{l}} \widetilde{x}_{i}^{j}-\rho^{-1} \partial_{y_{i}} \rho \partial_{x_{l}} \rho\right| \lesssim\left(\gamma \sigma_{0} d\right)^{-1}\left(\lambda+\lambda \gamma^{-2}\right) \lesssim \lambda\left(\gamma^{3} \sigma_{0} d\right)^{-1},
$$

which imply that

$$
\begin{aligned}
\left|\partial_{x_{l}} \partial_{y_{i}} \widetilde{G}_{j}(x, y)\right| & \lesssim\left(\lambda k^{2} \gamma^{-2}+\lambda\left(\gamma \sigma_{0} d\right)^{-2} \gamma^{-2}+\lambda k\left(\gamma^{3} \sigma_{0} d\right)^{-1}\right)\left|\widetilde{G}_{j}\right| \\
& \lesssim \lambda k^{2} \gamma^{-2}\left(\gamma \sigma_{0} d\right)^{-1} e^{-\gamma k \sigma_{0} d}
\end{aligned}
$$

The proof of this lemma is completed.
Next we present the exponential decaying estimate of $\widetilde{u}_{j}(x)$ defined in (2.16).
Lemma 2.2. Let (2.13a)-(2.13c) and (2.23) be satisfied. Then there exists a positive constant C depending only on β and Ω such that

$$
\begin{equation*}
\left|\widetilde{u}_{j}(x)\right| \leq C C_{\text {stab }} k^{2} \gamma^{-1}\left(\gamma \sigma_{0} d\right)^{-1} e^{-\gamma k \sigma_{0} d}\|f\|_{L^{2}(\Omega)}, \quad x \in \widehat{\Gamma}_{j}, \tag{2.28}
\end{equation*}
$$

where $C_{\text {stab }}$ is from the stability estimate (2.4).
Proof. From (2.16) we see that

$$
\left|\widetilde{u}_{j}(x)\right| \leq\|u\|_{L^{2}\left(\Gamma_{j}\right)}\left\|\partial_{\mathbf{n}_{j}} \widetilde{G}_{j}(x, \cdot)\right\|_{L^{2}\left(\Gamma_{j}\right)}+\left\|\partial_{\mathbf{n}_{j}} u\right\|_{H^{-1 / 2}\left(\Gamma_{j}\right)}\left\|\widetilde{G}_{j}(x, \cdot)\right\|_{H^{1 / 2}\left(\Gamma_{j}\right)} .
$$

Since

$$
\left|\widetilde{G}_{j}(x, y)-\widetilde{G}_{j}\left(x, y^{\prime}\right)\right| \leq\left\|\nabla_{y} \widetilde{G}_{j}(x, y)\right\|_{L^{\infty}\left(\Gamma_{j}\right)}\left|y-y^{\prime}\right|
$$

the following inequalities hold in view of the notation in (2.1)-(2.2):

$$
\int_{\Gamma_{j}} \int_{\Gamma_{j}} \frac{1}{\left|y-y^{\prime}\right|^{n-2}} \mathrm{~d} s(y) \mathrm{d} s\left(y^{\prime}\right) \leq C(\Omega)^{2}
$$

and therefore

$$
\left|\widetilde{G}_{j}(x, \cdot)\right|_{H^{1 / 2}\left(\Gamma_{j}\right)} \leq C(\Omega)\left\|\nabla_{y} \widetilde{G}_{j}(x, y)\right\|_{L^{\infty}\left(\Gamma_{j}\right)},
$$

where $C(\Omega)>0$ denotes some constant depending only on Ω. By using (2.24)-(2.25) and (2.23) we obtain

$$
\begin{aligned}
\left|\widetilde{u}_{j}(x)\right| & \lesssim \max _{x \in \widehat{\Gamma}_{j}, y \in \Gamma_{j}}\left\{\left|\nabla_{y} \widetilde{G}_{j}(x, y)\right|,\left|\widetilde{G}_{j}(x, y)\right|\right\}\left(\|u\|_{H^{1}\left(\Omega_{j}\right)}+\|\Delta u\|_{L^{2}\left(\Omega_{j}\right)}\right) \\
& \lesssim k \gamma^{-1}\left(\gamma \sigma_{0} d\right)^{-1} e^{-\gamma k \sigma_{0} d}\left(\|u\|_{H^{1}\left(\Omega_{j}\right)}+\left\|f-k^{2} u\right\|_{L^{2}\left(\Omega_{j}\right)}\right) \\
& \lesssim C_{\text {stab }} k^{2} \gamma^{-1}\left(\gamma \sigma_{0} d\right)^{-1} e^{-\gamma k \sigma_{0} d}\|f\|_{L^{2}(\Omega)},
\end{aligned}
$$

where we have used the stability estimate (2.4) in the last inequality. The proof is completed.

Remark 2.3. For example, we consider a two-dimensional narrow nonconvex domain whose subdomains are all rectangles with length L and width W satisfying $L \gg W$. We choose the PML width d such that $d \lesssim L$, then $\gamma \approx d L^{-1}$ and the PML condition (2.23) requires $k \sigma_{0} d^{2} \gtrsim L$. One possible choice for the PML parameters is $\sigma_{0} \approx 1$ and $d \approx(L / k)^{1 / 2}$. Since the degrees of freedom in the discrete system is $N \approx L(d+W) / h^{2}$, where h denotes the mesh size, which is generally chosen to be about $1 / k$, it follows that $N \approx(L k)^{3 / 2}+(L W) k^{2}$ for the coupled PML. However, for the standard PML method, there holds $N \approx(L / h)^{2} \approx(L k)^{2}$. Therefore, the proposed PML method has less degrees of freedom when $L k$ is large and $L \gg W$.

In the rest of this paper, for simplicity, we denote by

$$
\begin{equation*}
L:=\max _{1 \leq i \leq n, 1 \leq j \leq m} L_{j, i} . \tag{2.29}
\end{equation*}
$$

It is easy to see that $\frac{d}{\sqrt{n}(L+d)} \leq \gamma \leq \frac{d}{L+d}$.
2.6. A system of equations for coupled PML. Before presenting the coupled PML system, we define some linear operators to be used in the subsequent analysis.

First, we define the single and double layer potentials (see, e.g., [59, 61]) as

$$
S_{j} \varphi(x)=\int_{\Gamma_{j}} \varphi(y) G(x, y) \mathrm{d} s(y) \quad \text { and } \quad D_{j} \psi(x)=\int_{\Gamma_{j}} \psi(y) \partial_{\mathbf{n}_{j}(y)} G(x, y) \mathrm{d} s(y)
$$

Let $T_{j}: H^{1 / 2}\left(\Gamma_{j}\right) \rightarrow H^{-1 / 2}\left(\Gamma_{j}\right)$ be the DtN operator for Helmholtz problem [19], namely, for any $\varphi \in H^{1 / 2}\left(\Gamma_{j}\right)$, let $T_{j} \varphi=\partial_{\mathbf{n}_{j}} w$ on Γ_{j}, where $w \in H_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n} \backslash \overline{\Omega_{j}}\right)$ solves

$$
\begin{align*}
\Delta w+k^{2} w & =0 & & \text { in } \mathbb{R}^{n} \backslash \overline{\Omega_{j}}, \\
w & =\varphi & & \text { on } \Gamma_{j}, \\
\left|\frac{\partial w}{\partial r}-\mathbf{i} k w\right| & =o\left(r^{\frac{1-n}{2}}\right) & & \text { as } r=|x| \rightarrow \infty . \tag{2.30}
\end{align*}
$$

By the Green's formula (see, e.g., [20, Theorem 2.5]), we have

$$
\begin{equation*}
w=D_{j} w-S_{j} \partial_{\mathbf{n}_{j}} w=\left(D_{j}-S_{j} T_{j}\right) \varphi \quad \text { in } \mathbb{R}^{n} \backslash \overline{\Omega_{j}} . \tag{2.31}
\end{equation*}
$$

Define the extension operator as

$$
\begin{equation*}
E_{j}:=\left(D_{j}-S_{j} T_{j}\right): H^{1 / 2}\left(\Gamma_{j}\right) \rightarrow H_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n} \backslash \overline{\Omega_{j}}\right) \tag{2.32}
\end{equation*}
$$

From (2.31), there hold

$$
\begin{equation*}
\partial_{\mathbf{n}_{j}} E_{j} \varphi=T_{j} \varphi \quad \text { and } \quad E_{j} \varphi=\varphi \quad \text { on } \Gamma_{j} . \tag{2.33}
\end{equation*}
$$

Moreover, noting from (2.10a) and (2.10c), we get $T_{j} u_{j}^{+}=\partial_{\mathbf{n}_{j}} u_{j}^{+}$and $\left.u_{j}\right|_{\mathbb{R}^{n} \backslash \overline{\Omega_{j}}}=E_{j} u_{j}^{+}$.
Next, we define

$$
\begin{equation*}
\widetilde{E}_{j} \varphi(x):=\int_{\Gamma_{j}} \varphi(y) \partial_{\mathbf{n}_{j}(y)} \widetilde{G}_{j}(x, y) \mathrm{d} s(y)-\int_{\Gamma_{j}} T_{j} \varphi(y) \widetilde{G}_{j}(x, y) \mathrm{d} s(y), \quad x \in \mathbb{R}^{n} \backslash \overline{\Omega_{j}} \tag{2.34}
\end{equation*}
$$

Obviously, for any $\varphi \in H^{1 / 2}\left(\Gamma_{j}\right)$, we have

$$
\begin{equation*}
\widetilde{E}_{j} \varphi=E_{j} \varphi, \partial_{\mathbf{n}_{j}} \widetilde{E}_{j} \varphi=\partial_{\mathbf{n}_{j}} E_{j} \varphi \quad \text { on } \Gamma_{j} ; \quad \text { and } \quad \widetilde{u}_{j}=\widetilde{E}_{j} u_{j}^{+} \quad \text { in } \mathbb{R}^{n} \backslash \overline{\Omega_{j}} . \tag{2.35}
\end{equation*}
$$

Let $\widehat{T}_{j}: H^{1 / 2}\left(\Gamma_{j}\right) \rightarrow H^{-1 / 2}\left(\Gamma_{j}\right)$ be the DtN operator for the PML problem [13], namely, for any $\varphi \in H^{1 / 2}\left(\Gamma_{j}\right)$, let $\widehat{T}_{j} \varphi=\partial_{\mathbf{n}_{j}} w$ on Γ_{j}, where w solves the PML problem in the layer:

$$
\begin{align*}
\operatorname{div}\left(A_{j} \nabla w\right)+k^{2} J_{j} w & =0 & & \text { in } \widehat{\Omega}_{j}, \\
w & =\varphi & & \text { on } \Gamma_{j}, \tag{2.36}\\
w & =0 & & \text { on } \widehat{\Gamma}_{j} .
\end{align*}
$$

Define the extension operator with respect to \widehat{T}_{j} as

$$
\begin{equation*}
\widehat{E}_{j}:=\left(D_{j}-S_{j} \widehat{T}_{j}\right): H^{1 / 2}\left(\Gamma_{j}\right) \rightarrow H_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n} \backslash \overline{\Omega_{j}}\right) \tag{2.37}
\end{equation*}
$$

Now we give the coupled PML system by using these extension operators. From (2.10), (2.18), (2.28), and noting $u_{j}^{+}=\widetilde{u}_{j}^{+}$on Γ_{j}, we see that the solution u to Helmholtz equation (1.1)-(1.2) and the PML functions \widetilde{u}_{j} defined in (2.16) satisfy the following coupled system of four equations and an inequality:

$$
\begin{align*}
\operatorname{div}\left(A_{j} \nabla \widetilde{u}_{j}\right)+k^{2} J_{j} \widetilde{u}_{j} & =0 & & \text { in } \mathbb{R}^{n} \backslash \Gamma_{j}, \tag{2.38a}\\
{\left[\widetilde{u}_{j}\right]=-u, \quad\left[\partial_{\mathbf{n}_{j}} \widetilde{u}_{j}\right] } & =-\partial_{\mathbf{n}_{j}} u & & \text { on } \Gamma_{j}, \tag{2.38b}\\
\widetilde{u}_{j} & \text { is bounded } & & \text { as }|x| \rightarrow \infty, \tag{2.38c}\\
\Delta u+k^{2} u & =f & & \text { in } \Omega, \tag{2.38d}\\
\partial_{\mathbf{n}} u-\mathbf{i} k u & =\sum_{j=1}^{m}\left(\partial_{\mathbf{n}}-\mathbf{i} k\right) E_{j} \widetilde{u}_{j}^{+} & & \text {on } \Gamma . \tag{2.38e}
\end{align*}
$$

The motivation of (2.38) is as follows: First, (2.38a)-(2.38c) follow directly from (2.10), (2.18) and (2.28). From (2.38a)-(2.38c) we see that \widetilde{u}_{j} is uniquely determined by the values u and $\partial_{\mathbf{n}_{j}} u$ on Γ_{j}. Therefore, it suffices to couple \widetilde{u}_{j} with the equation of u to have
a closed system. An impedance type of boundary conditions such as (2.38e) would lead to good stability estimates. In particular, the boundary condition in (2.38e) is due to the fact that $u=\sum_{j=1}^{m} u_{j}$ in $\mathbb{R}^{n} \backslash \bar{\Omega}$ and $u_{j}=E_{j} u_{j}^{+}=E_{j} \widetilde{u}_{j}^{+}$(see the text below (2.33) and note that $u_{j}^{+}=\widetilde{u}_{j}^{+}$on Γ_{j}), which implies that $u=\sum_{j=1}^{m} E_{j} \widetilde{u}_{j}^{+}$outside $\bar{\Omega}$. Therefore, applying operator $\partial_{\mathbf{n}}-\mathbf{i} k$ to the relation $u=\sum_{j=1}^{m} E_{j} \widetilde{u}_{j}^{+}$yields (2.38e). In addition, it should be mentioned that, we cannot use \widetilde{u}_{j} instead of $E_{j} \widetilde{u}_{j}^{+}$in the right-hand side of (2.38e) since $\left.\widetilde{u}_{j}\right|_{\Gamma \backslash \Gamma_{j}} \neq\left. u_{j}\right|_{\Gamma \backslash \Gamma_{j}}$.

In view of Lemma 2.2, the solution \widetilde{u}_{j} is close to zero on the outer boundary $\widehat{\Gamma}_{j}$ of the PML region. Therefore, we can truncate the exterior domain to a bounded one and set homogeneous Dirichlet boundary condition on the truncation boundary $\widehat{\Gamma}_{j}$. This leads to the following system of equations for the coupled PML:

$$
\begin{align*}
\operatorname{div}\left(A_{j} \nabla v_{j}\right)+k^{2} J_{j} v_{j} & =0 & & \text { in } B_{j} \backslash \Gamma_{j}, \tag{2.39a}\\
{\left[v_{j}\right]=-v, \quad\left[\partial_{\mathbf{n}_{j}} v_{j}\right] } & =-\partial_{\mathbf{n}_{j}} v & & \text { on } \Gamma_{j}, \\
v_{j} & =0 & & \text { on } \widehat{\Gamma}_{j} \tag{2.39b}\\
\Delta v+k^{2} v & =f & & \text { in } \Omega, \tag{2.39c}\\
\partial_{\mathbf{n}} v-\mathbf{i} k v & =\sum_{j=1}^{m}\left(\partial_{\mathbf{n}}-\mathbf{i} k\right) \widehat{E}_{j} v_{j}^{+} & & \text {on } \Gamma \tag{2.39d}
\end{align*}
$$

where we have replaced $(2.38 \mathrm{c})$ by $(2.39 \mathrm{c})$ and E_{j} in (2.38e) by \widehat{E}_{j} in (2.39e).
Remark 2.4. Some important explanations for the coupled systems are as follows.
(i) From (2.39a)-(2.39c) we see that v_{j} solves an elliptic interface problem and is uniquely determined by the values v and $\partial_{\mathbf{n}_{j}} v$ on Γ_{j}. Moreover, v_{j} is the PML approximation of $\left.\widetilde{u}_{j}\right|_{B_{j} \backslash \Gamma_{j}}$ if v is an approximation of u.
(ii) The PML approximation of u in Ω is v, which is coupled with v_{j} through the interface conditions (2.39b) and boundary condition (2.39e). Let $D=\cup_{j=1}^{m} B_{j}$. If we define

$$
\hat{u}= \begin{cases}v & \text { in } \Omega \\ \sum_{j=1}^{m} v_{j} & \text { in } D \backslash \Omega\end{cases}
$$

where v_{j} is extended by zero in $D \backslash B_{j}$, then \hat{u} is the PML approximation of u with Dirichlet boundary condition $\hat{u}=0$ on ∂D. In view of this, the PML in the global domain is actually with nonconvex shape.
(iii) The motivation of (2.39e) is as follows: First, we cannot use v_{j} in the right-hand side of (2.39e) as $\left.v_{j}\right|_{\Gamma \backslash \Gamma_{j}}$ is not an approximation of $\left.u_{j}\right|_{\Gamma \backslash \Gamma_{j}}=\left.E_{j} \widetilde{u}_{j}^{+}\right|_{\Gamma \backslash \Gamma_{j}}$. Second, since the error between operators T_{j} and \widehat{T}_{j} is exponentially small (see [13]), $\widehat{E}_{j} v_{j}^{+}$is an approximation of $E_{j} v_{j}^{+}$, and also an approximation of $\left.u_{j}\right|_{\mathbb{R}^{n} \backslash \overline{\Omega_{j}}}=E_{j} \widetilde{u}_{j}^{+}$if v_{j} is the PML approximation of \widetilde{u}_{j} in $B_{j} \backslash \overline{\Omega_{j}}$. Third, in practice, \widehat{E}_{j} is easier to implement than E_{j}, because the latter requires computing the DtN operator T_{j}.
(iv) Noting that $\left.v_{j}\right|_{\widehat{\Omega}_{j}}$ satisfies (2.36) with $\varphi=v_{j}^{+}$, we have

$$
\partial_{\mathbf{n}_{j}} v_{j}^{+}=\widehat{T}_{j} v_{j}^{+} \quad \text { on } \Gamma_{j}, \text { hence, } \widehat{E}_{j} v_{j}^{+}=\left(D_{j}-S_{j} \widehat{T}_{j}\right) v_{j}^{+}=\left(D_{j}-S_{j} \partial_{\mathbf{n}_{j}}\right) v_{j}^{+},
$$

which means that (2.39e) can be simply obtained by evaluating two integrals on the boundary Γ_{j}. The coupled PML system (2.39) can be solved by an interface penalty FEM presented in Section 4.
To end this section, we give a stability estimate for v_{j} when $v \in H^{1}(\Omega)$ is given.
LEmma 2.5. For given $v \in H^{1}(\Omega)$, the problem (2.39a)-(2.39c) is well-defined and

$$
\begin{equation*}
\left\|v_{j}\right\|_{\Omega_{j} \cup \widehat{\Omega}_{j}} \leq C_{p}\left(\sigma_{0}\right) k^{3 / 2}\left(\|v\|_{H^{1 / 2}\left(\Gamma_{j}\right)}+\left\|\partial_{\mathbf{n}_{j}} v\right\|_{H^{-1 / 2}\left(\Gamma_{j}\right)}\right), \tag{2.40}
\end{equation*}
$$

where $\left|\left\|\cdot\left|\left\|_{\Omega_{j} \cup \widehat{\Omega}_{j}}^{2}:=\left.\left|\left|\left|\cdot\left\|\left.\right|_{\Omega_{j}} ^{2}+\right\|\right| \cdot\right|\right|\right|_{\widehat{\Omega}_{j}} ^{2}\right.\right.\right.\right.$.

Proof. Let $\Phi_{1} \in H^{1}\left(\Omega_{j} \cup \widehat{\Omega}_{j}\right)$ solve the elliptic interface problem

$$
\begin{align*}
-\operatorname{div}\left(A_{j} \nabla \Phi_{1}\right)+\Phi_{1} & =0 & & \text { in } B_{j} \backslash \Gamma_{j}, \\
{\left[\Phi_{1}\right]=-v, \quad\left[\partial_{\mathbf{n}_{j}} \Phi_{1}\right] } & =-\partial_{\mathbf{n}_{j}} v & & \text { on } \Gamma_{j}, \tag{2.41}\\
\Phi_{1} & =0 & & \text { on } \widehat{\Gamma}_{j},
\end{align*}
$$

and let $\Phi_{2} \in H^{1}\left(B_{j}\right)$ solve the PML problem

$$
\begin{align*}
-\operatorname{div}\left(A_{j} \nabla \Phi_{2}\right)-k^{2} J_{j} \Phi_{2} & =\left(1+k^{2} J_{j}\right) \Phi_{1} & & \text { in } B_{j}, \\
\Phi_{2} & =0 & & \text { on } \widehat{\Gamma}_{j}, \tag{2.42}
\end{align*}
$$

respectively. It's easy to see that $v_{j}=\Phi_{1}+\Phi_{2}$ solves (2.39a)-(2.39c). By the proof of [53, Theorem 2.1] and utilizing the coercivity in (2.21), we know that problem (2.41) has a unique solution and satisfies the following stability estimate:

$$
\begin{equation*}
\left\|\Phi_{1}\right\|_{\Omega_{j} \cup \widehat{\Omega}_{j}} \lesssim C_{p}\left(\sigma_{0}\right)\left(\|v\|_{H^{1 / 2}\left(\Gamma_{j}\right)}+\left\|\partial_{\mathbf{n}_{j}} v\right\|_{H^{-1 / 2}\left(\Gamma_{j}\right)}\right) . \tag{2.43}
\end{equation*}
$$

On the other hand, from $\left[14, \S 3.1\right.$ and eq. (3.4)], and noting that B_{j} is convex, problem (2.42) has a unique solution and satisfies the stability estimate

$$
\left\|\Phi_{2}\right\|_{B_{j}} \lesssim C_{p}\left(\sigma_{0}\right) k^{1 / 2}\left\|\left(1+k^{2} J_{j}\right) \Phi_{1}\right\|_{L^{2}\left(B_{j}\right)} \lesssim C_{p}\left(\sigma_{0}\right) k^{3 / 2}\left\|\mid \Phi_{1}\right\| \|_{\Omega_{j} \cup \widehat{\Omega}_{j}}
$$

which together with (2.43) gives (2.40) and concludes the proof of this lemma.
3. Convergence analysis for the truncated PML problem. In this section, we prove the exponential convergence of v to u with respect to k, σ_{0} and d, where u is the solution to problem (2.10) and v is the solution to the truncated PML problem (2.39). The well-posedness for the PML system (2.39) is derived as a consequence of the truncation error analysis.
3.1. Exponentially decaying estimates of the $\mathbf{P M L}$ extension. Firstly, we show the continuity of the DtN operator T_{j} with explicit dependence on k.

Lemma 3.1. There exists a constant C (which depends only on Γ_{j}) such that

$$
\begin{equation*}
\left\|T_{j} \varphi\right\|_{H^{-1 / 2}\left(\Gamma_{j}\right)} \leq C k\|\varphi\|_{H^{1 / 2}\left(\Gamma_{j}\right)} \quad \forall \varphi \in H^{1 / 2}\left(\Gamma_{j}\right) \tag{3.1}
\end{equation*}
$$

Proof. Since $T_{j} \varphi=\partial_{\mathbf{n}_{j}} w$ on Γ_{j}, where w is the solution to the exterior Helmholtz problem with the boundary condition $w=\varphi$ on Γ_{j} and Sommerfeld radiation boundary condition at infinity, the well-known stability estimate for w (see, e.g., [9]) yields

$$
\|w \mid\|_{B_{R} \backslash \overline{\Omega_{j}}} \leq C(R)\|\varphi\|_{H^{1 / 2}\left(\Gamma_{j}\right)}
$$

where $B_{R} \supset \Omega_{j}$ denotes the ball with some radius R. Therefore,

$$
\left\|T_{j} \varphi\right\|_{H^{-1 / 2}\left(\Gamma_{j}\right)}=\left\|\partial_{\mathbf{n}_{j}} w\right\|_{H^{-1 / 2}\left(\Gamma_{j}\right)} \lesssim\|\nabla w\|_{L^{2}\left(B_{R} \backslash \overline{\Omega_{j}}\right)}+\|\Delta w\|_{L^{2}\left(B_{R} \backslash \overline{\Omega_{j}}\right)} \lesssim k\|w\|_{B_{R} \backslash \overline{\Omega_{j}}}
$$

which implies (3.1) and concludes the proof of this lemma.
Then, the following estimate for \widetilde{E}_{j} defined in (2.34) holds:
Lemma 3.2. Let (2.13a)-(2.13c) and (2.23) be satisfied. For any $\varphi \in H^{1 / 2}\left(\Gamma_{j}\right)$, there exists a positive constant C independent of k, σ_{0} and d, but depends on Ω, such that

$$
\left\|\widetilde{E}_{j} \varphi\right\|_{H^{1 / 2}\left(\widehat{\Gamma}_{j}\right)} \leq C \lambda k^{3} \gamma^{-2}\left(\gamma \sigma_{0} d\right)^{-1}\left(1+d \gamma^{-1}\right)^{n-1} e^{-\gamma k \sigma_{0} d}\|\varphi\|_{H^{1 / 2}\left(\Gamma_{j}\right)}
$$

Proof. Similarly to the proof of Lemma 2.2, from (2.24)-(2.25) and (3.1), when $x \in \widehat{\Gamma}_{j}$, we have

$$
\begin{aligned}
\left|\widetilde{E}_{j} \varphi(x)\right| & \leq\|\varphi\|_{L^{2}\left(\Gamma_{j}\right)}\left\|\partial_{\mathbf{n}_{j}} \widetilde{G}_{j}(x, \cdot)\right\|_{L^{2}\left(\Gamma_{j}\right)}+\left\|T_{j} \varphi\right\|_{H^{-1 / 2}\left(\Gamma_{j}\right)}\left\|\widetilde{G}_{j}(x, \cdot)\right\|_{H^{1 / 2}\left(\Gamma_{j}\right)} \\
& \lesssim \max _{x \in \widehat{\Gamma}_{j}, y \in \Gamma_{j}}\left\{\left|\nabla_{y} \widetilde{G}_{j}(x, y)\right|,\left|\widetilde{G}_{j}(x, y)\right|\right\} k\|\varphi\|_{H^{1 / 2}\left(\Gamma_{j}\right)} \\
& \lesssim k^{2} \gamma^{-1}\left(\gamma \sigma_{0} d\right)^{-1} e^{-\gamma k \sigma_{0} d}\|\varphi\|_{H^{1 / 2}\left(\Gamma_{j}\right)}
\end{aligned}
$$

Then we get

$$
\left\|\widetilde{E}_{j} \varphi\right\|_{L^{2}\left(\widehat{\Gamma}_{j}\right)} \lesssim\left|\hat{\Gamma}_{j}\right|^{\frac{1}{2}}\left\|\widetilde{E}_{j} \varphi\right\|_{L^{\infty}\left(\widehat{\Gamma}_{j}\right)} \lesssim k^{2} \gamma^{-1}\left(\gamma \sigma_{0} d\right)^{-1}(L+d)^{\frac{n-1}{2}} e^{-\gamma k \sigma_{0} d}\|\varphi\|_{H^{1 / 2}\left(\Gamma_{j}\right)} .
$$

To estimate $\left|\widetilde{E}_{j} \varphi\right|_{H^{1 / 2}\left(\widehat{\Gamma}_{j}\right)}$, we start by noting

$$
\left|\widetilde{E}_{j} \varphi(x)-\widetilde{E}_{j} \varphi\left(x^{\prime}\right)\right| \leq\left\|\nabla \widetilde{E}_{j} \varphi\right\|_{L^{\infty}\left(\widehat{\Gamma}_{j}\right)}\left|x-x^{\prime}\right| .
$$

Similarly, from (2.26)-(2.27) and (3.1), when $x \in \widehat{\Gamma}_{j}$, we get

$$
\begin{aligned}
& \left|\nabla \widetilde{E}_{j} \varphi(x)\right| \\
& \lesssim\|\varphi\|_{L^{2}\left(\Gamma_{j}\right)} \max _{x \in \widetilde{\Gamma}_{j}, y \in \Gamma_{j}}\left|\nabla_{x} \nabla_{y} \widetilde{G}_{j}(x, y)\right|+\left\|T_{j} \varphi\right\|_{H^{-1 / 2}\left(\Gamma_{j}\right)} \max _{x \in \widetilde{\Gamma}_{j}}\left\|\nabla_{x} \widetilde{G}_{j}(x, \cdot)\right\|_{H^{1 / 2}\left(\Gamma_{j}\right)} \\
& \lesssim \max _{x \in \widetilde{\Gamma}_{j}, y \in \Gamma_{j}}\left\{\left|\nabla_{x} \nabla_{y} \widetilde{G}_{j}(x, y)\right|,\left|\nabla_{x} \widetilde{G}_{j}(x, y)\right|\right\} k\|\varphi\|_{H^{1 / 2}\left(\Gamma_{j}\right)} \\
& \lesssim \lambda k^{3} \gamma^{-2}\left(\gamma \sigma_{0} d\right)^{-1} e^{-\gamma k \sigma_{0} d}\|\varphi\|_{H^{1 / 2}\left(\Gamma_{j}\right)},
\end{aligned}
$$

which implies that

$$
\left|\widetilde{E}_{j} \varphi\right|_{H^{1 / 2}\left(\widehat{\Gamma}_{j}\right)} \lesssim\left|\hat{\Gamma}_{j}\right|\left\|\nabla \widetilde{E}_{j} \varphi\right\|_{L^{\infty}\left(\widehat{\Gamma}_{j}\right)} \lesssim \lambda k^{3} \gamma^{-2}\left(\gamma \sigma_{0} d\right)^{-1}(L+d)^{n-1} e^{-\gamma k \sigma_{0} d}\|\varphi\|_{H^{1 / 2}\left(\Gamma_{j}\right)} .
$$

This completes the proof of the lemma by noting (2.1) and $L+d \approx d \gamma^{-1}$.
3.2. Stability estimates for the PML equation in the layer. In this subsection, we consider the following Dirichlet PML equation in the layer $\widehat{\Omega}_{j}$:

$$
\begin{array}{rlrl}
\operatorname{div}\left(A_{j} \nabla w\right)+k^{2} J_{j} w & =0 & \text { in } \widehat{\Omega}_{j}, \\
w & =0 & & \text { on } \Gamma_{j}, \tag{3.2}\\
w & =g & \text { on } \widehat{\Gamma}_{j} .
\end{array}
$$

From [14, §3.1], the inf-sup condition in $H_{0}^{1}\left(\widehat{\Omega}_{j}\right)$ holds

$$
\sup _{\varphi \in H_{0}^{\left(\widehat{\Omega}_{j}\right)}} \frac{\left|\left(A_{j} \nabla \psi, \nabla \varphi\right)_{\widehat{\Omega}_{j}}-k^{2}\left(J_{j} \psi, \varphi\right)_{\widehat{\Omega}_{j}}\right|}{\|\varphi\|_{\widehat{\Omega}_{j}}} \geq \mu\|\psi\|_{\widehat{\Omega}_{j}} \quad \forall \psi \in H_{0}^{1}\left(\widehat{\Omega}_{j}\right) .
$$

where $\mu^{-1} \leq C_{p}\left(\sigma_{0}, \gamma^{-1}\right) k^{3 / 2}$. Moreover, by following the proof in [7, Theorem 5.7], the PML problem (3.2) in the layer has a unique solution and satisfies the stability estimates. Since the proof is quite similar, we omit it.

Lemma 3.3. Let $g \in H^{1 / 2}\left(\hat{\Gamma}_{j}\right)$ and w be the solution to (3.2), for sufficiently large $\sigma_{0} d$, there holds

$$
\begin{equation*}
\|w\|_{\widehat{\Omega}_{j}}+k^{-1}\left\|\partial_{\mathbf{n}_{j}} w\right\|_{H^{-1 / 2}\left(\Gamma_{j}\right)} \leq C_{p}\left(k, \sigma_{0}, \gamma^{-1}\right)\|g\|_{H^{1 / 2}\left(\widehat{\Gamma}_{j}\right)} . \tag{3.3}
\end{equation*}
$$

3.3. Convergence of the PML problem. In this subsection, we give the convergence analysis for the PML problem (2.39). First, we derive the PML truncation error equation and divide it into two subproblems. Then, the stability estimates of these subproblems are obtained.
3.3.1. PML truncation error. Let $\eta=u-v$ in $\Omega, \eta_{j}=u_{j}-v_{j}$ in Ω_{j}, and $\widetilde{\eta}_{j}=$ $E_{j}\left(u_{j}^{+}-v_{j}^{+}\right)$in $\mathbb{R}^{n} \backslash \overline{\Omega_{j}}$. By combining (2.10) and (2.39), and noting that $\left.u_{j}\right|_{\mathbb{R}^{n} \backslash \overline{\Omega_{j}}}=E_{j} u_{j}^{+}$, we obtain the following system of equations for η_{j} and η :

$$
\begin{align*}
\Delta \eta_{j}+k^{2} \eta_{j} & =0 & & \text { in } \Omega_{j}, \tag{3.4a}\\
\Delta \widetilde{\eta}_{j}+k^{2} \widetilde{\eta}_{j} & =0 & & \text { in } \mathbb{R}^{n} \backslash \overline{\Omega_{j}}, \tag{3.4b}\\
\eta_{j}-\widetilde{\eta}_{j}=-\eta, & \partial_{\mathbf{n}_{\mathbf{n}} \eta_{j}-\partial_{\mathbf{n}_{j}} \widetilde{\eta}_{j}}=-\partial_{\mathbf{n}_{j} \eta+\partial_{\mathbf{n}_{j}} \xi_{j}} & & \text { on } \Gamma_{j}, \tag{3.4c}\\
\left|\partial_{\mathbf{n}} \widetilde{\eta}_{j}-\mathbf{i} k \widetilde{\eta}_{j}\right| & =o\left(|x|^{\frac{1-n}{2}}\right) & & \text { for }|x| \rightarrow \infty, \tag{3.4d}\\
\Delta \eta+k^{2} \eta & =0 & & \text { in } \Omega, \tag{3.4e}
\end{align*}
$$

$$
\begin{equation*}
\partial_{\mathbf{n}} \eta-\mathbf{i} k \eta=\sum_{j=1}^{m}\left(\partial_{\mathbf{n}}-\mathbf{i} k\right)\left(\widetilde{\eta}_{j}+\zeta_{j}\right) \quad \text { on } \Gamma \tag{3.4f}
\end{equation*}
$$

where $\xi_{j}=\left.\left(\widetilde{E}_{j} v_{j}^{+}-v_{j}\right)\right|_{\widehat{\Omega}_{j}}$ and $\zeta_{j}=\left(E_{j}-\widehat{E}_{j}\right) v_{j}^{+}$. Obviously, $\xi_{j}=0$ on Γ_{j} and $\xi_{j}=\widetilde{E}_{j} v_{j}^{+}$ on $\widehat{\Gamma}_{j}$. Therefore, ξ_{j} is the solution to the PML equation (3.2) in the layer with $g=\widetilde{E}_{j} v_{j}^{+}$. From Lemma 3.3 and Lemma 3.2, and noting $\gamma^{-1} \leq k \sigma_{0} d$, we know that

$$
\begin{equation*}
\left\|\xi_{j}\right\|_{\widehat{\Omega}_{j}}+\left\|\partial_{\mathbf{n}_{j}} \xi_{j}\right\|_{H^{-1 / 2}\left(\Gamma_{j}\right)} \lesssim C_{p}\left(k, \sigma_{0}, d\right) e^{-\gamma k \sigma_{0} d}\left\|v_{j}^{+}\right\|_{H^{1 / 2}\left(\Gamma_{j}\right)} \tag{3.5}
\end{equation*}
$$

On the other hand, from (2.32) and (2.37) we see that $\zeta_{j}=\left(E_{j}-\widehat{E}_{j}\right) v_{j}^{+}=-S_{j}\left(T_{j}-\widehat{T}_{j}\right) v_{j}^{+}$. From (2.33), (2.35) and Remark 2.4 (iv), we get

$$
\left(T_{j}-\widehat{T}_{j}\right) v_{j}^{+}=\partial_{\mathbf{n}_{j}} E_{j} v_{j}^{+}-\partial_{\mathbf{n}_{j}}\left(\left.v_{j}\right|_{\widehat{\Omega}_{j}}\right)=\partial_{\mathbf{n}_{j}} \xi_{j} \quad \text { and } \quad \zeta_{j}=-S_{j} \partial_{\mathbf{n}_{j}} \xi_{j}
$$

By using the trace theorem and (3.5), and the fact that $\Delta \zeta_{j}+k^{2} \zeta_{j}=0$ in $\mathbb{R}^{n} \backslash \overline{\Omega_{j}}$ and the operator $S_{j}: H^{-1 / 2}\left(\Gamma_{j}\right) \rightarrow H_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n} \backslash \overline{\Omega_{j}}\right)$ is continuous (see [61, Theorem 3.1.16]), it follows that

$$
\begin{align*}
\left\|\partial_{\mathbf{n}} \zeta_{j}\right\|_{H^{-1 / 2}(\Gamma)}+\left\|\zeta_{j}\right\|_{H^{1 / 2}(\Gamma)} & \lesssim k^{2}\left\|\zeta_{j}\right\|_{H^{1}(B \backslash \bar{\Omega})} \lesssim C_{p}(k)\left\|\partial_{\mathbf{n}_{j}} \xi_{j}\right\|_{H^{-1 / 2}\left(\Gamma_{j}\right)} \\
& \lesssim C_{p}\left(k, \sigma_{0}, d\right) e^{-\gamma k \sigma_{0} d}\left\|v_{j}^{+}\right\|_{H^{1 / 2}\left(\Gamma_{j}\right)} \tag{3.6}
\end{align*}
$$

where B denotes a sufficiently large ball which contains $\bar{\Omega}$.
To estimate η, we divide (3.4) into two subproblems. First, we denote

$$
w=\eta_{j}+\sum_{i \neq j} \widetilde{\eta}_{i} \quad \text { in } \Omega_{j} \quad \text { and } \quad \widetilde{w}=\sum_{j=1}^{m} \widetilde{\eta}_{j} \quad \text { in } \mathbb{R}^{n} \backslash \bar{\Omega}
$$

From (3.4c), we have

$$
\begin{array}{rll}
{[w]=0 \quad \text { and } \quad\left[\partial_{\mathbf{n}_{j}} w\right]=\partial_{\mathbf{n}_{j}} \xi_{j}+\partial_{\mathbf{n}_{j^{\prime}}} \xi_{j^{\prime}}} & \text { on } \Gamma_{j} \cap \Gamma_{j^{\prime}}, \\
w-\widetilde{w}=-\eta \quad \text { and } \quad \partial_{\mathbf{n}_{j}} w-\partial_{\mathbf{n}_{j}} \widetilde{w}=-\partial_{\mathbf{n}} \eta+\partial_{\mathbf{n}} \xi_{j} & \text { on } \Gamma_{j} \cap \Gamma . \tag{3.8}
\end{array}
$$

Hence, from (3.8) and (3.4f), we get

$$
\begin{aligned}
\left(\partial_{\mathbf{n}} w-\mathbf{i} k w\right)-\left(\partial_{\mathbf{n}} \widetilde{w}-\mathbf{i} k \widetilde{w}\right) & =-\left(\partial_{\mathbf{n}}-\mathbf{i} k\right) \eta+\partial_{\mathbf{n}} \xi_{j} \\
& =-\left(\partial_{\mathbf{n}}-\mathbf{i} k\right) \widetilde{w}-\sum_{i=1}^{m}\left(\partial_{\mathbf{n}}-\mathbf{i} k\right) \zeta_{i}+\partial_{\mathbf{n}} \xi_{j} \quad \text { on } \Gamma_{j} \cap \Gamma,
\end{aligned}
$$

which yields

$$
\partial_{\mathbf{n}} w-\mathbf{i} k w=\partial_{\mathbf{n}} \xi_{j}-\sum_{i=1}^{m}\left(\partial_{\mathbf{n}}-\mathbf{i} k\right) \zeta_{i} \quad \text { on } \Gamma_{j} \cap \Gamma
$$

Therefore, by using (3.7), w is the solution to the interior Helmholtz problem:

$$
\begin{align*}
\Delta w+k^{2} w & =0 & & \text { in } \Omega_{j}, j=1, \cdots, m \\
{[w]=0, \quad\left[\partial_{\mathbf{n}_{j}} w\right] } & =\partial_{\mathbf{n}_{j}} \xi_{j}+\partial_{\mathbf{n}_{j^{\prime}}} \xi_{j^{\prime}} & & \text { on } \Gamma_{j} \cap \Gamma_{j^{\prime}}, \tag{3.9}\\
\partial_{\mathbf{n}} w-\mathbf{i} k w & =\partial_{\mathbf{n}} \xi_{j}-\sum_{i=1}^{m}\left(\partial_{\mathbf{n}}-\mathbf{i} k\right) \zeta_{i} & & \text { on } \Gamma_{j} \cap \Gamma .
\end{align*}
$$

Second, we extend η by defining $\widetilde{\eta}=\widetilde{w}$, from (3.4e), (3.8) and the definition (2.32), it can be shown that η and $\widetilde{\eta}$ are the solutions to the full-space transmission problem:

$$
\begin{align*}
\Delta \eta+k^{2} \eta & =0 & & \text { in } \Omega \\
\Delta \widetilde{\eta}+k^{2} \widetilde{\eta} & =0 & & \text { in } \mathbb{R}^{n} \backslash \bar{\Omega} \\
\eta-\widetilde{\eta}=-w, \partial_{\mathbf{n}} \eta-\partial_{\mathbf{n}} \widetilde{\eta} & =\partial_{\mathbf{n}} \xi_{j}-\partial_{\mathbf{n}} w & & \text { on } \Gamma_{j} \cap \Gamma \tag{3.10}\\
\left|\partial_{\mathbf{n}} \widetilde{\eta}-\mathbf{i} k \widetilde{\eta}\right| & =o\left(|x|^{\frac{1-n}{2}}\right) & & \text { as }|x| \rightarrow \infty
\end{align*}
$$

3.3.2. Estimate for w. Denote the sesquilinear form by

$$
\begin{equation*}
b_{\Omega}(\psi, \varphi):=(\nabla \psi, \nabla \varphi)_{\Omega}-k^{2}(\psi, \varphi)_{\Omega}-\mathbf{i} k\langle\psi, \varphi\rangle_{\Gamma} \quad \forall \psi, \varphi \in H^{1}(\Omega) \tag{3.11}
\end{equation*}
$$

The weak formulation of (3.9) reads as: find $w \in H^{1}(\Omega)$ such that

$$
\begin{equation*}
b_{\Omega}(w, \varphi)=\sum_{j=1}^{m}\left\langle\partial_{\mathbf{n}_{j}} \xi_{j}, \varphi\right\rangle_{\Gamma_{j}}-\sum_{j=1}^{m}\left\langle\left(\partial_{\mathbf{n}}-\mathbf{i} k\right) \zeta_{j}, \varphi\right\rangle_{\Gamma} \quad \forall \varphi \in H^{1}(\Omega) \tag{3.12}
\end{equation*}
$$

For given ξ_{j} and ζ_{j}, problem (3.12) has a unique solution and satisfies the inf-sup condition (see, e.g., [57, 11])

$$
\begin{equation*}
\inf _{0 \neq \psi \in H^{1}(\Omega)} \sup _{0 \neq \varphi \in H^{1}(\Omega)} \frac{\left|b_{\Omega}(\psi, \varphi)\right|}{\|\psi\|_{\Omega} \mid\|\varphi\|_{\Omega}} \geq C_{p}(k)^{-1} . \tag{3.13}
\end{equation*}
$$

By using the trace theorem, we obtain

$$
\begin{aligned}
C_{p}(k)^{-1}\| \| w \|_{\Omega} & \leq \sup _{0 \neq \varphi \in H^{1}(\Omega)} \frac{\left|b_{\Omega}(w, \varphi)\right|}{\|\varphi\|_{\Omega}} \\
& \lesssim \sum_{j=1}^{m}\left\|\partial_{\mathbf{n}_{j}} \xi_{j}\right\|_{H^{-1 / 2}\left(\Gamma_{j}\right)}+\sum_{j=1}^{m}\left\|\partial_{\mathbf{n}} \zeta_{j}\right\|_{H^{-1 / 2}(\Gamma)}+k \sum_{j=1}^{m}\left\|\zeta_{j}\right\|_{L^{2}(\Gamma)},
\end{aligned}
$$

which together with (3.5) and (3.6) gives

$$
\begin{equation*}
\|w\|_{\Omega} \lesssim C_{p}\left(k, \sigma_{0}, d\right) e^{-\gamma k \sigma_{0} d} \sum_{j=1}^{m}\left\|v_{j}^{+}\right\|_{H^{1 / 2}\left(\Gamma_{j}\right)} . \tag{3.14}
\end{equation*}
$$

Furthermore, integration by parts results in

$$
\begin{aligned}
\left\|\partial_{\mathbf{n}_{j}} w^{-}\right\|_{H^{-1 / 2}\left(\Gamma_{j}\right)} & \lesssim\|\Delta w\|_{L^{2}\left(\Omega_{j}\right)}+\|\nabla w\|_{L^{2}\left(\Omega_{j}\right)}=k^{2}\|w\|_{L^{2}\left(\Omega_{j}\right)}+\|\nabla w\|_{L^{2}\left(\Omega_{j}\right)} \\
& \lesssim k\|w\|_{\Omega} \lesssim C_{p}\left(k, \sigma_{0}, d\right) e^{-\gamma k \sigma_{0} d} \sum_{j=1}^{m}\left\|v_{j}^{+}\right\|_{H^{1 / 2}\left(\Gamma_{j}\right)}
\end{aligned}
$$

3.3.3. Estimate for η. In view of the last three equations of (3.10), $\widetilde{\eta}$ satisfies the exterior Helmholtz problem with Dirichlet data $\widetilde{\eta}=\eta+w$ on Γ, by applying the DtN operator T on Γ (see, e.g., $[58,19,9]$), we deduce $\partial_{\mathbf{n}} \widetilde{\eta}=T(\eta+w)$ on Γ. Then combining with the first and third equations of (3.10) yields

$$
\begin{aligned}
\Delta \eta+k^{2} \eta & =0 & & \text { in } \Omega, \\
\partial_{\mathbf{n}} \eta-T(\eta+w) & =\partial_{\mathbf{n}} \xi_{j}-\partial_{\mathbf{n}} w & & \text { on } \Gamma_{j} \cap \Gamma .
\end{aligned}
$$

Since T is linear, $\eta \in H^{1}(\Omega)$ is the weak solution to

$$
c_{\Omega}(\eta, \varphi)=\sum_{j=1}^{m}\left\langle T w+\partial_{\mathbf{n}} \xi_{j}-\partial_{\mathbf{n}} w, \varphi\right\rangle_{\Gamma_{j} \cap \Gamma} \quad \forall \varphi \in H^{1}(\Omega),
$$

where

$$
\begin{equation*}
c_{\Omega}(\psi, \varphi):=(\nabla \psi, \nabla \varphi)_{\Omega}-k^{2}(\psi, \varphi)_{\Omega}-\langle T \psi, \varphi\rangle_{\Gamma} . \tag{3.16}
\end{equation*}
$$

Using the interface condition (3.9), we can get

$$
c_{\Omega}(\eta, \varphi)=\langle T w, \varphi\rangle_{\Gamma}+\sum_{j=1}^{m}\left\langle\partial_{\mathbf{n}_{j}} \xi_{j}, \varphi\right\rangle_{\Gamma_{j}}-\sum_{j=1}^{m}\left\langle\partial_{\mathbf{n}_{j}} w^{-}, \varphi\right\rangle_{\Gamma_{j}}
$$

for all $\varphi \in H^{1}(\Omega)$. By applying the inf-sup condition of c_{Ω} (see, e.g., [9]), the continuity of T (see, e.g., [19]) and the trace theorem, the following stability for η holds:

$$
\begin{align*}
C_{p}(k)^{-1}\|\eta\|_{\Omega} & \lesssim\|T w\|_{H^{-1 / 2}(\Gamma)}+\sum_{j=1}^{m}\left\|\partial_{\mathbf{n}} \xi_{j}-\partial_{\mathbf{n}} w^{-}\right\|_{H^{-1 / 2}\left(\Gamma_{j}\right)} \\
& \lesssim C_{p}(k)\|w\|_{\Omega}+\sum_{j=1}^{m}\left\|\partial_{\mathbf{n}_{j}} \xi_{j}\right\|_{H^{-1 / 2}\left(\Gamma_{j}\right)}+\sum_{j=1}^{m}\left\|\partial_{\mathbf{n}_{j}} w^{-}\right\|_{H^{-1 / 2}\left(\Gamma_{j}\right)} . \tag{3.17}
\end{align*}
$$

Finally, we have the following convergence theorem.
THEOREM 3.4. Let u and v denote the solutions to (2.38) and (2.39), respectively. There exists a positive constant Λ_{0} such that if $\gamma k \sigma_{0} d \geq \Lambda_{0}$, then

$$
\begin{equation*}
\|u-v\|_{\Omega} \leq C_{p}\left(k, \sigma_{0}, d\right) e^{-\gamma k \sigma_{0} d}\|f\|_{L^{2}(\Omega)} \tag{3.18}
\end{equation*}
$$

Proof. By combining (3.5) and (3.14)-(3.17), we get

$$
\|u-v\|_{\Omega} \lesssim C_{p}\left(k, \sigma_{0}, d\right) e^{-\gamma k \sigma_{0} d} \sum_{j=1}^{m}\left\|v_{j}^{+}\right\|_{H^{1 / 2}\left(\Gamma_{j}\right)}
$$

Using the trace theorem and Lemma 2.5, we obtain

$$
\begin{aligned}
\left\|v_{j}^{+}\right\|_{H^{1 / 2}\left(\Gamma_{j}\right)} & \lesssim\left\|v_{j}\right\|_{H^{1}\left(\widehat{\Omega}_{j}\right)} \lesssim C_{p}(k)\left(\|v\|_{H^{1 / 2}\left(\Gamma_{j}\right)}+\left\|\partial_{\mathbf{n}_{j}} v\right\|_{H^{-1 / 2}\left(\Gamma_{j}\right)}\right) \\
& \lesssim C_{p}(k)\left(\|v\|_{H^{1}\left(\Omega_{j}\right)}+\|\Delta v\|_{L^{2}\left(\Omega_{j}\right)}\right) \\
& \lesssim C_{p}(k)\left(\|v\|_{H^{1}\left(\Omega_{j}\right)}+\left\|k^{2} v\right\|_{L^{2}\left(\Omega_{j}\right)}+\|f\|_{L^{2}\left(\Omega_{j}\right)}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\|u-v\|_{\Omega} & \leq C_{p}\left(k, \sigma_{0}, d\right) e^{-\gamma k \sigma_{0} d}\left(\|v\|_{H^{1}(\Omega)}+\|f\|_{L^{2}(\Omega)}\right) \\
& \leq C_{p}\left(k, \sigma_{0}, d\right) e^{-\gamma k \sigma_{0} d}\left(\|u-v\|_{H^{1}(\Omega)}+\|u\|_{H^{1}(\Omega)}+\|f\|_{L^{2}(\Omega)}\right) \\
& \leq C_{p}\left(k, \sigma_{0}, d\right) e^{-\gamma k \sigma_{0} d}\left(\|u-v\|_{\Omega}+\left(1+C_{\text {stab }}\right)\|f\|_{L^{2}(\Omega)}\right)
\end{aligned}
$$

where we used the stability estimate (2.4) in the last inequality. Then (3.18) follows by the assertion $C_{p}\left(k, \sigma_{0}, d\right) e^{-\gamma k \sigma_{0} d} \leq 1 / 2$ if $\gamma k \sigma_{0} d$ is large enough.

Furthermore, we can obtain the well-posedness of the PML solution v.
Corollary 3.5. Under the conditions of Theorem 3.4, there holds

$$
\begin{equation*}
\|v\|_{H^{1}(\Omega)} \lesssim\left(1+C_{\text {stab }}\right)\|f\|_{L^{2}(\Omega)} \tag{3.19}
\end{equation*}
$$

and hence the PML system of equations (2.39) is well-posed.
Proof. The stability estimate (3.19) is a direct consequence of (3.18) and the stability estimate (2.4). The uniquenesses of the solutions v and v_{j} to the PML system (2.39) follow from the stability estimates (3.19) and (2.40). It suffices to prove the existence of solutions.

First, for any given $v \in H^{1}(\Omega)$, the solution v_{j} to (2.39a)-(2.39c), denoted by $v_{j}(v)$, exists uniquely according to Lemma 2.5.

Second, similar to the derivations of (3.4), (3.9) and (3.10), by defining $\widetilde{v}_{j}=E_{j} v_{j}^{+}$in $\mathbb{R}^{n} \backslash \overline{\Omega_{j}}$ and letting

$$
\chi=v_{j}+\sum_{i \neq j} \widetilde{v}_{i} \quad \text { in } \Omega_{j} \quad \text { and } \quad \widetilde{\chi}=\sum_{j=1}^{m} \widetilde{v}_{j} \quad \text { in } \mathbb{R}^{n} \backslash \bar{\Omega},
$$

and extending v by $\widetilde{v}=\widetilde{\chi}$, we arrive at

$$
b_{\Omega}(\chi, \varphi)=-\sum_{j=1}^{m}\left\langle\partial_{\mathbf{n}_{j}} \xi_{j}, \varphi\right\rangle_{\Gamma_{j}}+\sum_{j=1}^{m}\left\langle\left(\partial_{\mathbf{n}}-\mathbf{i} k\right) \zeta_{j}, \varphi\right\rangle_{\Gamma} \quad \forall \varphi \in H^{1}(\Omega)
$$

4.1. Variational formulation. Recalling the decomposition $B_{j}=\Omega_{j} \cup \Gamma_{j} \cup \widehat{\Omega}_{j}$, we define the piecewise H^{1} spaces

$$
V_{j}:=\left\{v \in L^{2}\left(B_{j}\right):\left.v\right|_{\Omega_{j}} \in H^{1}\left(\Omega_{j}\right),\left.v\right|_{\widehat{\Omega}_{j}} \in H^{1}\left(\widehat{\Omega}_{j}\right),\left.v\right|_{\widehat{\Gamma}_{j}}=0\right\}, \quad j=1, \ldots, m
$$

Denote the average of $\varphi \in V_{j}$ on Γ_{j} by $\{\varphi\}=\frac{1}{2}\left(\varphi^{+}+\varphi^{-}\right)$. For any $\varphi_{j} \in V_{j}$ and $\varphi \in H^{1}(\Omega)$, applying integration by parts, we find that the solutions v_{j} and v to (2.39) satisfy the following equations:

$$
\begin{align*}
0 & =\left(A_{j} \nabla v_{j}, \nabla \varphi_{j}\right)_{\Omega_{j} \cup \widehat{\Omega}_{j}}-k^{2}\left(J_{j} v_{j}, \varphi_{j}\right)_{B_{j}}-\int_{\Gamma_{j}}\left[\left(\partial_{\mathbf{n}_{j}} v_{j}\right) \bar{\varphi}_{j}\right] \tag{4.1}\\
& =\left(A_{j} \nabla v_{j}, \nabla \varphi_{j}\right)_{\Omega_{j} \cup \widehat{\Omega}_{j}}-k^{2}\left(J_{j} v_{j}, \varphi_{j}\right)_{B_{j}}+\left\langle\partial_{\mathbf{n}_{j}} v,\left\{\varphi_{j}\right\}\right\rangle_{\Gamma_{j}}-\left\langle\left\{\partial_{\mathbf{n}_{j}} v_{j}\right\},\left[\varphi_{j}\right]\right\rangle_{\Gamma_{j}},
\end{align*}
$$

and

$$
\begin{equation*}
(\nabla v, \nabla \varphi)_{\Omega}-k^{2}(v, \varphi)_{\Omega}-\mathbf{i} k\langle v, \varphi\rangle_{\Gamma}-\sum_{j=1}^{m}\left\langle\left(\partial_{\mathbf{n}}-\mathbf{i} k\right) \widehat{E}_{j} v_{j}^{+}, \varphi\right\rangle_{\Gamma}=-(f, \varphi)_{\Omega} \tag{4.2}
\end{equation*}
$$

Similar to the proof of Corollary 3.5, the above two equations together with the interface condition $\left[v_{j}\right]+v=0$ on Γ_{j} yield a weakly coercive formulation, that is, by decoupling the solutions v with v_{j}, there exists a sesquilinear form $\tilde{a}: H^{1}(\Omega) \times H^{1}(\Omega) \rightarrow \mathbb{C}$ such that

$$
\tilde{a}(v, \varphi)=-(f, \varphi)_{\Omega} \quad \forall \varphi \in H^{1}(\Omega),
$$

where $\tilde{a}(v, \varphi):=\left(P_{2} v-P_{2} M v, \varphi\right)$. Since M is an exponentially small perturbation operator and P_{2} is weakly coercive, \tilde{a} satisfies the weakly coercivity

$$
\tilde{a}(\varphi, \varphi) \geq \alpha_{0}\|\varphi\|_{H^{1}(\Omega)}^{2}-\alpha_{1}\|\varphi\|_{L^{2}(\Omega)}^{2}, \quad \text { with constants } \alpha_{0}>0 \text { and } \alpha_{1}>0
$$

which is useful in the convergence analysis of finite element discretization (cf. [36]).
Let \mathcal{T}_{h} be a triangulation of $\bar{D}=\cup_{j=1}^{m} \overline{B_{j}}$. For simplicity, we assume that the triangulation \mathcal{T}_{h} fits all the interfaces and boundaries. For any $K \in \mathcal{T}_{h}$, we define $h_{K}:=\operatorname{diam}(K)$ and $h_{e}:=\operatorname{diam}(e)$ for any edge $e \subset \partial K$. Denote $h=\max _{K \in \mathcal{T}_{h}} h_{K}$. Analogous to (4.1), we define the sesquilinear form for the interface problem (2.39a)-(2.39c) as follows

$$
\begin{aligned}
a_{j}(\psi, \varphi):= & \left(A_{j} \nabla \psi, \nabla \varphi\right)_{\Omega_{j} \cup \widehat{\Omega}_{j}}-k^{2}\left(J_{j} \psi, \varphi\right)_{B_{j}}-\left(\left\langle\left\{\partial_{\mathbf{n}_{j}} \psi\right\},[\varphi]\right\rangle_{\Gamma_{j}}+\beta_{j}\left\langle[\psi],\left\{\partial_{\mathbf{n}_{j}} \varphi\right\}\right\rangle_{\Gamma_{j}}\right) \\
& +\sum_{e \subset \Gamma_{j}} \gamma_{j} h_{e}^{-1}\langle[\psi],[\varphi]\rangle_{e}
\end{aligned}
$$

where β_{j} and γ_{j} are the interface penalty parameters. Furthermore, we define the sesquilinear form for the Helmholtz problem with impedance boundary condtion (2.39d)-(2.39e) as follows:

$$
a(\psi, \varphi):=(\nabla \psi, \nabla \varphi)_{\Omega}-k^{2}(\psi, \varphi)_{\Omega}-\mathbf{i} k\langle\psi, \varphi\rangle_{\Gamma}
$$

Since $\left[v_{j}\right]=-v$ and $\left[\partial_{\mathbf{n}_{j}} v_{j}\right]=-\partial_{\mathbf{n}_{j}} v$ on Γ_{j}, combining (4.1)-(4.2), the variational formulation with interface penalty for (2.39) reads: find $v_{j} \in V_{j}$ and $v \in H^{1}(\Omega)$ such that

$$
\left\{\begin{array}{lr}
a_{j}\left(v_{j}, \varphi_{j}\right)=F_{j}\left(v, \varphi_{j}\right) & \forall \varphi_{j} \in V_{j} \tag{4.3}\\
a(v, \varphi)=F\left(v_{1}, \cdots, v_{m}, \varphi\right) & \forall \varphi \in H^{1}(\Omega)
\end{array}\right.
$$

where the right hand sides are given by

$$
\begin{align*}
& F_{j}(v, \varphi)=-\left\langle\partial_{\mathbf{n}_{j}} v,\{\varphi\}\right\rangle_{\Gamma_{j}}+\beta_{j}\left\langle v,\left\{\partial_{\mathbf{n}_{j}} \varphi\right\}\right\rangle_{\Gamma_{j}}-\sum_{e \subset \Gamma_{j}} \gamma_{j} h_{e}^{-1}\langle v,[\varphi]\rangle_{e}, \tag{4.4}\\
& F\left(v_{1}, \cdots, v_{m}, \varphi\right)=-(f, \varphi)_{\Omega}+\sum_{j=1}^{m}\left\langle\left(\partial_{\mathbf{n}}-\mathbf{i} k\right) \widehat{E}_{j} v_{j}^{+}, \varphi\right\rangle_{\Gamma}, \tag{4.5}
\end{align*}
$$

Remark 4.1. Some comments for the variational problem (4.3) are as follows.
(i) The term $\beta_{j}\left\langle[\psi],\left\{\partial_{\mathbf{n}_{j}} \varphi\right\}\right\rangle_{\Gamma_{j}}$ is the symmetrizing term. In general, β_{j} can be chosen as $0, \pm 1$.
(ii) The penalty term $\gamma_{j} h_{e}^{-1}\langle[\psi],[\varphi]\rangle_{e}$ on the interface Γ_{j} is also called a stabilization term, and the penalty parameter γ_{j} satisfies $\gamma_{j} \gtrsim 1$. The idea of using an interface penalty is inspired by the discontinuous Galerkin method. (see, e.g., [2, 53]).
(iii) In view of the definition of $\widehat{E}_{j} v_{j}^{+}(x)$ in Remark 2.4 (iv), the right-hand side of (4.5) actually contains two integrals which contain singularity when x is on Γ_{j} and are regular when x is away from Γ_{j}. To avoid evaluating singular integrals, we can consider the equation satisfied by $w_{j}=\widehat{E}_{j} v_{j}^{+}$:

$$
\begin{align*}
\Delta w_{j}+k^{2} w_{j} & =0 & & \text { in } B_{j} \backslash \Gamma_{j}, \\
{\left[w_{j}\right]=-v_{j}^{+}, \quad\left[\partial_{\mathbf{n}_{j}} w_{j}\right] } & =-\partial_{\mathbf{n}_{j}} v_{j}^{+} & & \text {on } \Gamma_{j} \tag{4.6}\\
\left(\partial_{\mathbf{n}}-\mathbf{i} k\right) w_{j} & =\left(\partial_{\mathbf{n}}-\mathbf{i} k\right) \widehat{E}_{j} v_{j}^{+} & & \text {on } \widehat{\Gamma}_{j} .
\end{align*}
$$

$\widehat{E}_{j} v_{j}^{+}(x)$ can be obtained by solving (4.6) when $x \in B_{j} \supset \Gamma_{j}$, and by evaluating the two integrals when $x \in \Gamma \backslash B_{j}$ (in this case there is no singularity). In fact, the domain B_{j} in (4.6) can be replaced by any neighborhood of Γ_{j}.
4.2. The iterative FEM. The linear finite element spaces are defined as follows:

$$
\begin{aligned}
V_{j, h} & :=\left\{v_{h} \in V_{j}:\left.v_{h}\right|_{K} \in \mathcal{P}_{1}(K) \quad \forall K \in \mathcal{T}_{h}, K \subset B_{j}\right\} \\
V_{h} & :=\left\{v_{h} \in H^{1}(\Omega):\left.v_{h}\right|_{K} \in \mathcal{P}_{1}(K) \quad \forall K \in \mathcal{T}_{h}, K \subset \Omega\right\}
\end{aligned}
$$

where $\mathcal{P}_{1}(K)$ denotes the set of all first order polynomials on K. Then the FEM for the problem (4.3) reads: find $v_{j, h} \in V_{j, h}$ and $v_{h} \in V_{h}$ such that

$$
\begin{cases}a_{j}\left(v_{j, h}, \varphi_{j, h}\right)=F_{j}\left(v_{h}, \varphi_{j, h}\right) & \forall \varphi_{j, h} \in V_{j, h}, \tag{4.7}\\ a\left(v_{h}, \varphi_{h}\right)=F_{h}\left(v_{1, h}, \cdots, v_{m, h}, \varphi_{h}\right) & \forall \varphi_{h} \in V_{h},\end{cases}
$$

where

$$
\begin{equation*}
F_{h}\left(v_{1, h}, \cdots, v_{m, h}, \varphi_{h}\right)=-\left(f, \varphi_{h}\right)+\sum_{j=1}^{m}\left\langle\left(\partial_{\mathbf{n}}-\mathbf{i} k\right) w_{j, h}, \varphi\right\rangle_{\Gamma} \tag{4.8}
\end{equation*}
$$

Here $w_{j, h}=\widehat{E}_{j} v_{j, h}^{+}$on $\Gamma \backslash B_{j}$ and $\left.w_{j, h}\right|_{B_{j}}$ is the FE approximation of (4.6) in B_{j}.
In practice, the coupled system (4.7) can be solved by iterative methods. For example, given an initial value $v_{h}^{0} \in V_{h}$, find $v_{j, h}^{l} \in V_{j, h}$ and $v_{h}^{l} \in V_{h}$ for $l=1,2, \cdots$, such that

$$
\begin{cases}a_{j}\left(v_{j, h}^{l}, \varphi_{j, h}\right)=F_{j}\left(v_{h}^{l-1}, \varphi_{j, h}\right) & \forall \varphi_{j, h} \in V_{j, h} \tag{4.9}\\ a\left(v_{h}^{l}, \varphi_{h}\right)=F_{h}\left(v_{1, h}^{l}, \cdots, v_{j, h}^{l}, \varphi_{h}\right) & \forall \varphi_{h} \in V_{h}\end{cases}
$$

The rigorous proof of the convergence of (4.7) and (4.9) remains open and deserves further investigation in future work. The numerical experiments in the next section show that the iterative algorithm (4.9) converges well.
4.3. The CIP-FEM. It is known that the standard FEM will generate pollution errors in solving the Helmholtz equation with large wave number k, see [3, 56, etc.]. Reducing pollution errors requires the mesh size in the standard FEM to satisfy $k^{3} h^{2} \lesssim 1$ in practical computations, which significantly increases the computational costs when k is large. To reduce the pollution error, we introduce a CIP-FEM for solving the coupled PML system. The CIP-FEM was first proposed by Douglas and Dupont in [23] for second order elliptic and parabolic PDEs, and it was applied to the the Helmholtz problem by Wu et al. in $[65,66,25,51,52]$. The CIP-FEM has shown great potential in solving the Helmholtz problem with large wave number, since it only requires probably the mesh size to satisfy $k h \lesssim 1$ in practical computation.

Let \mathcal{E}_{h}^{I} denote the set of all interior edges (or faces in 3D) of the triangulation \mathcal{T}_{h} in D. The sesquilinear forms of the CIP-FEM are given by

$$
\begin{aligned}
a_{j, h}(\psi, \varphi) & :=a_{j}(\psi, \varphi)+\sum_{e \in \mathcal{E}_{h}^{I}, e \not \subset \Gamma_{j}} \gamma_{e} h_{e}\left\langle\left[\partial_{\mathbf{n}} \psi\right],\left[\partial_{\mathbf{n}} \varphi\right]\right\rangle_{e}, \\
a_{h}(\psi, \varphi) & :=a(\psi, \varphi)+\sum_{e \in \mathcal{E}_{h}^{I}, e \subset \Omega} \gamma_{e} h_{e}\left\langle\left[\partial_{\mathbf{n}} \psi\right],\left[\partial_{\mathbf{n}} \varphi\right]\right\rangle_{e},
\end{aligned}
$$

where the penalty parameters γ_{e} are numbers with nonpositive imaginary parts and the jumps on every $e \subset \partial K_{1} \cap \partial K_{2} \in \mathcal{E}_{h}^{I}$ are defined as

$$
\left.\left[\partial_{\mathbf{n}} \psi\right]\right|_{e}=\left.\nabla \psi\right|_{K_{1}} \cdot \mathbf{n}_{K_{1}}+\left.\nabla \psi\right|_{K_{2}} \cdot \mathbf{n}_{K_{2}}
$$

The CIP-FEM for the problem (4.3) can be written as: find $v_{j, h} \in V_{j, h}$ and $v_{h} \in V_{h}$ such that

$$
\begin{cases}a_{j, h}\left(v_{j, h}, \varphi_{j, h}\right)=F_{j}\left(v_{h}, \varphi_{j, h}\right) & \forall \varphi_{j, h} \in V_{j, h}, \tag{4.10}\\ a_{h}\left(v_{h}, \varphi_{h}\right)=F_{h}\left(v_{1, h}, \cdots, v_{m, h}, \varphi_{h}\right) & \forall \varphi_{h} \in V_{h} .\end{cases}
$$

Remark 4.2.
(i) If $\gamma_{e} \equiv 0$, the CIP-FEM becomes standard FEM. If we consider the scattering problem
with time dependence $e^{\mathbf{i} \omega t}$, that is, the sign before \mathbf{i} in (1.2) is positive, then the penalty parameters γ_{e} should be complex numbers with nonnegative imaginary parts.
(ii) If v_{j} and v are the exact solutions to (2.39), then $\left[\partial_{\mathbf{n}} v_{j}\right]=0$ on $e \not \subset \Gamma_{j}$ and $\left[\partial_{\mathbf{n}} v\right]=0$ on $e \subset \Omega$. In this case $a_{j, h}\left(v_{j}, \varphi_{j, h}\right)=a_{j}\left(v_{j}, \varphi_{j, h}\right)$ and $a_{h}\left(v, \varphi_{h}\right)=a\left(v, \varphi_{h}\right)$, and therefore, the CIP-FEM in (4.7) is consistent with the variational formulation in (4.3).
(iii) Similarly as (4.9), we can also solve (4.10) by an iterative method.
(iv) In the extreme case that $\Omega \subset \mathbb{R}^{2}$ is a slender L-shape domain with large length L and small width W, we can choose $\sigma_{0}=O(L / k)$ and $d \approx W=O(1)$ so that condition (2.23) is satisfied. Then the degrees of freedom for the coupled PML method is about $O\left(L W h^{-2}\right)$, while the degrees of freedom for the standard PML method is about $O\left(L^{2} h^{-2}\right)$.
5. Numerical experiments. In this section, we present some numerical experiments to demonstrate the convergence and performance of the proposed coupled PML method for the Helmholtz problem (1.1)-(1.2) in an L-shape domain. All the computations are performed by MATLAB.

We first construct an analytical solution to the Helmholtz problem (1.1)-(1.2) in the whole space. As shown in Figure 5.1 (left), Ω_{0} is the domain consisting of three disjoint circles of radius $R=0.25$, and Ω is an L-shape domain containing Ω_{0}. The source term is defined by $f=-1$ in Ω_{0} and $f=0$ in $\mathbb{R}^{2} \backslash \Omega_{0}$. The corresponding exact solution (see [51]) of the Helmholtz problem (1.1)-(1.2) is given by

$$
u(x)=\sum_{l=1}^{3} u_{l}(x) \text { with } u_{l}(x)= \begin{cases}\frac{\mathbf{i} \pi R}{2 k} H_{1}^{(1)}(k R) J_{0}\left(k\left|x-x_{l}\right|\right)-\frac{1}{k^{2}} & \text { if }\left|x-x_{l}\right| \leq R \tag{5.1}\\ \frac{\mathbf{i} \pi R}{2 k} J_{1}(k R) H_{0}^{(1)}\left(k\left|x-x_{l}\right|\right) & \text { otherwise }\end{cases}
$$

where $x_{l}(l=1,2,3)$ denote the centres of the three circles of Ω_{0}, respectively.
Example 5.1. In the first example, we compare the numerical solutions given by the proposed coupled PML method and classical rectangular PML method by using the iterative FEM (4.9) described in Section 4.2 and the standard FEM, respectively. An L-shape domain Ω is considered, which is very thin in one direction, with length $L=30$ and width $W=1$.

The wave number is $k=10$. The PML thickness and PML parameter are chosen to be $d=1$ and $\sigma_{0}=8$, respectively. Clearly, the PML thickness is much smaller than the diameter of Ω, and therefore each subsystem of the coupled PML system contains much smaller degrees of freedom than the classical rectangular PML. The interface penalty parameters in the FEM are chosen to be $\beta_{j}=1$ and $\gamma_{j}=10$.

By comparing the numerical solutions with the exact solution in (5.1), we present the relative H^{1}-errors of the finite element solutions given by the coupled PML method and rectangular PML method in Figure 5.2 (left), where the horizontal axis represents the degrees of freedom (DOF), and for the coupled PML method refers to the maximum of all the DOFs for all the linear subsystems produced by (4.9). Since each subsystem is solved independently of the others, the maximum of DOFs actually measures the peak memory cost in the entire computation, if parallel method is not considered. The numerical results in Figure 5.2 show that, compared to the classical rectangular PML method, the coupled PML method can achieve the same accuracy with much fewer DOF. In particular, the peak of the memory cost for the coupled PML method is only about 15% of the classical rectangular PML method in order to achieve the accuracy with 10% relative error. In this way, the elapsed time for solving the finite element solutions with the coupled PML and the rectangular PML are almost the same.

Example 5.2. In the second example, we demonstrate the effectiveness of the proposed CIP-FEM compared with the standard FEM, and the convergence of the iterative method (4.9). An L-shape domain Ω with length $L=6$ and width $W=1$ is considered.

Fig. 5.1. Left figure: The construction of PML. Right figure: The triangulation.

FIG. 5.2. Relative H^{1} errors and elapsed time of the numerical solutions given by the coupled PML method and classical rectangular PML method.

The PML thickness and PML parameter are chosen to be $d=1$ and $\sigma_{0}=2$, respectively. The interface penalty parameters are $\beta_{j}=1$ and $\gamma_{j}=10$, and the interior penalty parameters are given by

$$
\begin{equation*}
\gamma_{e}=\gamma_{r}+\gamma_{i} \mathbf{i} \quad \text { with } \quad \gamma_{r}=-\frac{\sqrt{3}}{24}-\frac{\sqrt{3}}{1728}(k h)^{2} \quad \text { and } \quad \gamma_{i}=-0.01 \tag{5.2}
\end{equation*}
$$

where γ_{r} is obtained by a dispersion analysis for 2 D problem on equilateral triangulations [37]. The triangulation is produced by an algorithm in which most elements are approximate equilateral triangles. This can help to increase the effectiveness of the penalty parameters in reducing the pollution error. The imaginary part γ_{i} of the penalty parameter is used to enhance the stability of CIP-FEM, see [65, 66].

By comparing the numerical solutions with the exact solution in (5.1), we present the relative H^{1}-norm errors of the numerical solutions and Lagrange interpolations in Figure 5.3 for different wave numbers and mesh sizes. We let the relative error be " 1 " when the iteration is divengence. It is shown that for small k, the errors of the CIP-FEM, as well as the FEM, are about $O(h)$ and fit the interpolation errors well as h decreases. This indicates that the coupled PML with either CIP-FEM or FEM is effective in approximating the exact solution for small k. For large k, the errors of the FEM decay more slowly than those of Lagrange interpolation. This behaviour shows clearly the effect of pollution errors of FEM. The CIP-FEM behaves similarly but the pollution range is much smaller than that of FEM, which implies that CIP-FEM has greatly reduced the pollution error.

Fig. 5.3. Relative H^{1}-errors of the FE solution (left figure) and the CIP-FE solution (right figure), compared with the relative H^{1}-errors of the Lagrange interpolation (dotted) for $k=15,30$, and 60 .

Fig. 5.4. Number of iterations of FEM and CIP-FEM, where -1 represents the failure of iteration.

For a given tolerance error 10^{-3}, the number of iterations given by (4.9) is presented in Figure 5.4 for both FEM and CIP-FEM. It is shown that when the mesh size h is small enough the iterative solutions $v^{l}, l \geq 1$, converge to a stable solution within a few steps.

Example 5.3. In this example, we consider a multiple scattering problem with three sources occupying the domain containing three mutually disjoint subdomains, the concerned domain Ω is three disjoint squares surrounding these sources, as illustrated in Figure 5.5 (left). The sources and exact solution are defined in (5.1). The wave number is $k=10$. All the PML parameters and the interface penalty parameters are the same as those in Example 5.1. The CIP parameters are defined in (5.2). The Figure 5.5 (right) plots the real part of the CIP-FE solution, which shows the three sources clearly. Figure 5.6 gives the relative H^{1}-errors of CIP-FEM for the coupled PML method and the rectangular PML method, where the horizontal axis represents the DOFs and the elapsed time, respectively. It is shown that the new proposed PML method works well for this multiple sources problem. Moreover, to achieve the same accuracy when the subdomains are well-separated, both the DOFs (which measures the memory cost) and the elapsed time of the proposed coupled PML method are much less than those of the classical rectangular PML method.
6. Conclusion. We have proposed a coupled PML method for solving the Helmholtz equation in a nonconvex computational domain. Rigorous analyses are presented for the well-posedness and the exponential convergence of the coupled PML. An iterative CIPFEM is proposed for solving the coupled PML system. Compared with the standard PML method (i.e., using one large convex domain to enclose the entire scattering region), the proposed PML method can achieve the same accuracy with much less memory cost by

Fig. 5.5. Multiple scattering problem

Fig. 5.6. Relative H^{1}-errors and elapsed time of the CIP-FEM for the coupled PML method and rectangular PML method.
using several PMLs to enclose a nonconvex neighborhood of the scattering region. The numerical experiments show that, for the problem with multiple sources, the new PML method requires much less memory cost and CPU time to achieve the same accuracy. For the problem with nonconvex inhomogeneities, the new PML method requires much less memory cost to achieve the same accuracy with the same CPU time.

Acknowledgments. The research of Yonglin Li is partially supported by the CAS AMSS-PolyU Joint Laboratory of Applied Mathematics. The research of Weiying Zheng is supported in part by National Key R\&D Program of China 2019YFA0709600 and 2019YFA0709602, by China NSF grant 11831016, and by the National Science Fund for Distinguished Young Scholars 11725106.

REFERENCES

[1] M. Ainsworth, P. Monk, and W. Muniz, Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation, J. Sci. Comput., 27 (2006), pp. 5-40.
[2] D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19 (1982), pp. 742-760.
[3] I. Babuška and S. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers?, SIAM Rev., 42 (2000), pp. 451-484.
[4] G. BaO and H. Wu, Convergence analysis of the perfectly matched layer problems for time-harmonic Maxwell's equations, SIAM J. Numer. Anal., 43 (2005), pp. 2121-2143.
[5] J. P. BÉrenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114 (1994), pp. 185-200.
[6] J. Bramble and J. Pasciak, Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems, Math. Comp., 76 (2006), pp. 597-614.
[7] J. Bramble and J. Pasciak, Analysis of a Cartesian PML approximation to acoustic scattering problems in \mathbb{R}^{2} and \mathbb{R}^{3}, J. Comput. Appl. Math., 247 (2013), pp. 209-230.
[8] D. L. Brown, D. Gallistl, and D. Peterseim, Multiscale Petrov-Galerkin method for highfrequency heterogeneous Helmholtz equations, in Meshfree Methods for Partial Differential Equations VIII, Springer, 2017, pp. 85-115.
[9] S. N. Chandler-Wilde and P. Monk, Wave-number-explicit bounds in time-harmonic scattering SIAM J. Math. Anal., 39 (2008), pp. 1428-1455.
[10] T. Chaumont-Frelet, D. Gallistl, S. Nicaise, and J. Tomezyk, Wavenumber-explicit convergence analysis for finite element discretizations of time-harmonic wave propagation problems with perfectly matched layers, Commun. Math. Sci., 20 (2022), pp. 1-52.
[11] T. Chaumont-Frelet and S. Nicaise, High-frequency behaviour of corner singularities in Helmholtz problems, ESAIM: M2NA, 52 (2018), pp. 1803-1845.
[12] Z. Chen and X. Liu, An adaptive perfectly matched layer technique for time-harmonic scattering problems, SIAM J. Numer. Anal., 43 (2005), pp. 645-671.
[13] Z. Chen and X. Wu, An adaptive uniaxial perfectly matched layer method for time-harmonic scattering problems, Numer. Math. Theor. Meth. Appl., 1 (2008), pp. 113-137.
[14] Z. Chen and X. Xiang, A source transfer domain decomposition method for Helmholtz equations in unbounded domain, SIAM J. Numer. Anal., 51 (2013), pp. 2331-2356.
[15] Z. Chen and W. Zheng, Convergence of the uniaxial perfectly matched layer method for timeharmonic scattering problems in two-layered media, SIAM J. Numer. Anal., 48 (2010), pp. 2158 2185.
[16] W. C. Chew, J. Jin, and E. Michielssen, Complex coordinate stretching as a generalized absorbing boundary condition, Microw. Opt. Technol. Lett., 15 (1997), pp. 363-369.
[17] F. Collino and P. Monk, Optimizing the perfectly matched layer, Comput. Methods Appl. Mech. Engrg., 164 (1998), pp. 157-171.
[18] F. Collino and P. Monk, The perfectly matched layer in curvilinear coordinates, SIAM J. Sci. Comput., 19 (1998), pp. 2061-2090.
[19] D. Colton and R. Kress, Integral equation methods in scattering theory., John Willey \& Sons, Inc., New York, 1983.
[20] D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, vol. 93 of Applied Mathematical Sciences, Springer, 4th ed., 2019.
[21] P. Cummings and X. Feng, Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations, M3AS, 16 (2006), pp. 139-160.
[22] A. Deraemaeker, I. Babuška, and P. Bouillard, Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions, Int. J. Numer. Meth. Engng., 46 (1999), pp. 471-499.
[23] J. Douglas and T. Dupont, Interior penalty procedures for elliptic and parabolic galerkin methods, Lect. Notes Phys., 58 (1976), pp. 207-216.
[24] V. Druskin, S. Güttel, and L. Knizhnerman, Near-optimal perfectly matched layers for indefinite Helmholtz problems, SIAM Rev., 58 (2016), pp. 90-116.
[25] Y. Du and H. Wu, Preasymptotic error analysis of higher order FEM and CIP-FEM for Helmholtz equation with high wave number, SIAM J. Numer. Anal., 53 (2015), pp. 782-804.
[26] S. Esterhazy and J. M. Melenk, On stability of discretizations of the Helmholtz equation, in Numerical Analysis of Multiscale Problems, Springer, 2012, pp. 285-324.
[27] X. Feng and H. Wu, hp-discontinuous Galerkin methods for the Helmholtz equation with large wave number, Math. Comput., 80 (2011), pp. 1997-2024.
[28] J. Galkowski, D. Lafontaine, and E. A. Spence, Perfectly-matched-layer truncation is exponentially accurate at high frequency, arXiv, https://doi.org/10.48550/arXiv.2105.07737, (2021).
[29] J. Galkowski, E. A. Spence, and J. Wunsch, Optimal constants in nontrapping resolvent estimates, Pure and Applied Analysis, 2 (2020), pp. 157-202.
[30] C. J. Gittelson, R. Hiptmair, and I. Perugia, Plane wave discontinuous Galerkin methods: analysis of the h-version, ESAIM: M2AN, 43 (2009), pp. 297-331.
[31] I. Graham, O. Pembery, and E. A. Spence, The Helmholtz equation in heterogeneous media: a priori bounds, well-posedness, and resonances, J. Differ. Equ., 266 (2019), pp. 2869-2923.
[32] I. Graham and S. Sauter, Stability and finite element error analysis for the Helmholtz equation with variable coefficients, Math. Comp., 89 (2020), pp. 105-138.
[33] R. Griesmaier and P. Monk, Error analysis for a hybridizable discontinuous Galerkin method for the Helmholtz equation, J. Sci. Comput., 49 (2011), pp. 291-310.
[34] M. J. Grote and C. Kirsch, Dirichlet-to-Neumann boundary conditions for multiple scattering problems, J. Comput. Phys., 201 (2004), pp. 630-650.
[35] M. Halla, Convergence of Hardy space infinite elements for Helmholtz scattering and resonance problems, SIAM J. Numer. Anal., 54 (2016), pp. 1385-1400.
[36] M. Halla, Analysis of radial complex scaling methods: Scalar resonance problems, SIAM J. Numer. Anal., 59 (2021), pp. 2054-2074.
[37] C. HAN, Dispersion analysis of the IPFEM for the Helmholtz equation with high wave number on equilateral triangular meshes, master's thesis, Nanjing University, 2012
[38] R. Hiptmair, A. Moiola, and I. Perugia, Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version, SIAM J. Numer. Anal., 49 (2011), pp. 264-284.
39] R. Hiptmair, A. Moiola, and I. Perugia, Trefftz discontinuous Galerkin methods for acoustic scattering on locally refined meshes, Applied Numerical Mathematics, 79 (2014), pp. 79-91.
[40] R. Hiptmair, A. Moiola, and I. Perugia, Plane wave discontinuous Galerkin methods: Exponential convergence of the hp-version, Found. Comput. Math., 16 (2016), pp. 637-675
41] R. Hiptmair, A. Moiola, and I. Perugia, A survey of Trefftz methods for the Helmholtz equation, in Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, Springer, 2016, pp. 237-279
[42] T. Hohage, F. Schmidt, and L. Zschiedrich, Solving time-harmonic scattering problems based on the pole condition II: Convergence of the PML method, SIAM J. Math. Anal., 35 (2003), pp. 547-560.
[43] T. Huttunen and P. Monk, The use of plane waves to approximate wave propagation in anisotropic media, J. Comput. Math., 25 (2007), pp. 350-367.
[44] F. Ihlenburg and I. Babuška, Finite element solution of the Helmholtz equation with high wave number. I. The h-version of the FEM, Comput. Math. Appl., 30 (1995), pp. 9-37.
[45] F. Ihlenburg and I. Babuška, Finite element solution of the Helmholtz equation with high wave number. Part II: The hp version of the FEM, SIAM J. Numer. Anal., 34 (1997), pp. 315-358
[46] X. Jiang and W. Zheng, Adaptive perfectly matched layer method for multiple scattering problems, Comput. Methods Appl. Mech. Engrg., 201-204 (2012), pp. 42-52.
[47] S. Kapita and P. Monk, A plane wave discontinuous Galerkin method with a Dirichlet-to-Neumann boundary condition for the scattering problem in acoustics, J. Comput. Appl. Math., 327 (2018), pp. 208-225.
48] M. Lassas and E. Somersalo, On the existence and convergence of the solution of PML equations Computing, 60 (1998), pp. 229-241.
[49] M. Lassas and E. Somersalo, Analysis of the PML equations in general convex geometry, Proc. Roy. Soc. Edinburgh Sect. A., 131 (2001), pp. 1183-1207.
[50] S. Laurens, A general family of perfectly matched layers for non necessarily convex domains, research report, inria-00496406, 2010
[51] Y. Li and H. Wu, FEM and CIP-FEM for Helmholtz equation with high wave number and perfectly matched layer truncation, SIAM J. Numer. Anal., 57 (2019), pp. 96-126.
[52] Y. Li, W. Zheng, and X. Zhu, A CIP-FEM for high-frequency scattering problem with the truncated DtN boundary condition, CSIAM Trans. Appl. Math., 1 (2020), pp. 530-560.
[53] H. Liu, L. Zhang, X. Zhang, and W. Zheng, Interface-penalty finite element methods for interface problems in $H^{1}, \boldsymbol{H}(\mathbf{c u r l})$, and $\boldsymbol{H}($ div $), ~ C o m p u t . ~ M e t h o d s ~ A p p l . ~ M e c h . ~ E n g r g ., ~ 367 ~(2020), ~$ p. 113137.
[54] P. Martin, Multiple scattering: an invitation, in Third International Conference on Mathematical and Numerical Aspects of Wave Propagation, SIAM, Philadelphia, 1995, pp. 3-16.
[55] J. M. Melenk, A. Parsania, and S. Sauter, General DG-methods for highly indefinite Helmholtz problems, J. Sci. Comput., 57 (2013), pp. 536-581.
[56] J. M. Melenk and S. Sauter, Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions, Math. Comp., 79 (2010), pp. 1871-1914
57] J. M. Melenk and S. Sauter, Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation, SIAM J. Numer. Anal., 49 (2011), pp. 1210-1243.
[58] A. Moiola and E. A. Spence, Acoustic transmission problems: Wavenumber-explicit bounds and resonance-free regions, $\mathrm{M}^{3} \mathrm{AS}, 29$ (2019), pp. 317-354.
[59] J. C. Nédélec, Acoustic and electromagnetic equations, Springer, 2001.
60] D. Peterseim, Eliminating the pollution effect in Helmholtz problems by local subscale correction, Math. Comp., 86 (2016), pp. 1005-1036.
61] S. Sauter and C. Schwab, Boundary Element Methods, In Computational Mathematics, Springer, Berlin, Heidelberg, 2011, https://doi.org/10.1007/978-3-540-68093-2_4.
62] S. SaUter and C. Torres, Stability estimate for the Helmholtz equation with rapidly jumping coefficients, Z. Angew. Math. Phys., 69 (2018), pp. 1-30.
$63]$ D. V. Trenev, Spatial Scaling for the Numerical Approximation of Problems on Unbounded Domains, PhD thesis, Texas A\&M University, 2009.
[64] E. Turkel and A. Yefet, Absorbing PML boundary layers for wave-like equations, Appl. Numer. Math., 27 (1998), pp. 533-557.
[65] H. Wu, Pre-asymptotic error analysis of CIP-FEM and FEM for the Helmholtz equation with high wave number. Part I: linear version, IMA J. Numer. Anal., 34 (2013), pp. 1266-1288.
[66] L. Zhu and H. Wu, Preasymptotic error analysis of CIP-FEM and FEM for Helmholtz equation with high wave number. Part II: hp version, SIAM J. Numer. Anal., 51 (2013), pp. 1828-1852.
[67] L. Zschiedrich, R. Klose, A. Schädle, and F. Schmidt, A new finite element realization of the perfectly matched layer method for Helmholtz scattering problems on polygonal domains in two dimensions, J. Comput. Appl. Math., 188 (2006), pp. 12-32.

[^0]: * Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (buyang.li@polyu.edu.hk).
 ${ }^{\dagger}$ CAS AMSS-PolyU Joint Laboratory of Applied Mathematics. Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China (yonglin.li@polyu.edu.hk).
 \ddagger LSEC, NCMIS, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, School of Mathematical Science, University of Chinese Academy of Sciences, Beijing 100190, China (zwy@lsec.cc.ac.cn).

