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Abstract. A new coupled perfectly matched layer (PML) method is proposed for the Helmholtz4
equation in the whole space with inhomogeneity concentrated on a nonconvex domain. Rigorous analysis5
is presented for the stability and convergence of the proposed coupled PML method, which shows that6
the PML solution converges to the solution of the original Helmholtz problem exponentially with respect7
to the product of the wave number and the width of the layer. An iterative algorithm and a continuous8
interior penalty finite element method (CIP-FEM) are also proposed for solving the system of equations9
associated to the coupled PML. Numerical experiments are presented to illustrate the convergence and10
performance of the proposed coupled PML method as well as the iterative algorithm and the CIP-FEM.11
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1. Introduction. We consider the acoustic scattering problem in Rn, n ∈ {2, 3},15

described by the Helmholtz equation under the radiation boundary condition, i.e.,16

∆u+ k2u = f in Rn,(1.1)17 ∣∣∣∣∂u∂r − iku

∣∣∣∣ = o
(
r

1−n
2

)
as r = |x| → ∞,(1.2)18

19

where k is the wave number and f is a given function. Moreover, k = k0 and f = 0 outside20

a bounded, Lipschitz and nontrapping domain Ω, where k0 is a positive constant. The21

unique solvability and various stability estimates for the Helmholtz problem (1.1)–(1.2)22

have been studied in the literatures [21, 9, 56, 57, 26, 11, 62, 31, 58, 32, etc.].23

The Helmholtz problem (1.1)–(1.2) is often solved approximately by using the perfectly24

matched layer (PML) method, which was originally proposed in [5] and then developed in25

[16, 18, 48, 49, 13, 7, 6, 17, 15, 42, 64, 24, 10, 28, etc.]. In the existing PML methods,26

one can choose a rectangular or circular domain to cover the region Ω and construct an27

absorbing layer outside the rectangular or circular domain, denoted by Ωd, as shown in28

Figure 1.1 (left). The fundamental analysis indicates that the rectangular or circular PML29

converges exponentially to the radiation solution when the width of the layer Ωd or the PML30

parameter tends to infinity, see, e.g., [4, 12, 13, 42, 51, 6, 7, 14, 15]. Then one can solve the31

original problem approximately in a bounded domain, with zero boundary condition at the32

exterior boundary of Ωd. This approach generally works well in approximating the solution33

to the Helmholtz equation in the bounded domain Ω. Especially, the wave-number-explicit34

convergence analyses for PML are obtained in [14, 51, 10, 28] recently.35

However, in some special cases, for example when Ω is a nonconvex slender region36

(such as an L-shape domain), using a convex rectangular or circular PML would require37

much more computational cost than solving the equation in a small neighborhood of Ω,38

as shown in Figure 1.1 (right). To resolve this issue, Laurens [50] proposed a new PML39

method through a diffeomorphism defined on an absorbing pseudo-Riemannian manifold.40

Such PML techniques only require one to solve equations in a small neighborhood of the41

nonconvex domain Ω. The convergence of the approximate solutions given by such PML42

for a nonconvex domain Ω, as well as the dependence on the wave number k and the43
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Fig. 1.1. Left: PML in convex domain. Right: PML in nonconvex domain.

width d of the PML, is not known so far. Recently, many authors have considered radial44

complex scalings based on the pole condition for the Helmholtz scattering problem with45

a star-shaped interior domain or scatterer; see [67, 35, 36, 63]. Such a PML approach46

requires a parameterization of the boundary piecewise. In the exterior domain, some new47

finite element approaches such as Hardy space infinite elements [35] are proposed. The48

convergence analyses of the approximations through domain truncation and finite element49

discretization for the resonance problems are reported in [36]. For the scattering problem,50

the similar related results remain open.51

The objective of this article is to construct a new coupled PML method for the52

Helmholtz equation on a nonconvex domain, which admits rigorous analysis for the ex-53

ponential convergence with respect to k, d, and the PML parameter. The key idea is to54

divide the nonconvex domain into several disjoint convex subdomains and to set up a PML55

for each subdomain. Some auxiliary solutions are solved in these subdomains and coupled56

with the original solution u through some interface conditions and an impedance boundary57

condition. Since the subdomains are convex, most of the popular PML methods, such as58

the uniaxial PML, can be applied, and therefore, the usual finite element methods (FEM)59

can be used. Since the standard finite element method for Helmholtz problem with large60

wave number suffers from the pollution effect, see [44, 45, 3, 22], we adopt the CIP-FEM61

[66, 25, 51, 52] to reduce the pollution effect (which arises when k is large) and propose an62

iterative algorithm for solving the coupled PML system. For other methods to reduce the63

pollution error, we refer to [56, 27, 1, 55, 33, 43, 30, 40, 41, 38, 39, 47, 8, 60, etc.]64

The proposed new coupled PML method can also be applied to the multiple scattering65

problems in [54]. Under the well-separated assumption, i.e., the minimal distance among66

the scatterers is much larger than the diameters of the scatterers, two coupled methods67

using the multiple-DtN and PML techniques were proposed in [34] and [46], respectively. In68

[46], the PML solution for each scatterer is solved in the corresponding subdomain and can69

be extended to other subdomains by using the wave propagation operator, which is defined70

as the integrals of the Green’s function over the subdomains, resulting in expensive costs.71

In contrast, the new coupled PML method in this paper does not require the well-separated72

assumption and avoids computing the DtN operator or the integrals of Green’s function73

over the subdomains, but only requires computing some integrals on the boundary. In74

particular, the stability and exponential convergence of the new coupled PML method are75

proved without requiring the well-separated assumption (i.e., there is no restriction on the76

distance among the scatterers). In Section 5 we present some numerical tests to illustrate77

the effectiveness of the new PML method for a multiple scattering problem.78

The outline of this article is as follows. The construction of the PML based on a domain79

decomposition and the derivation of the coupled PML system are presented in Section 2.80

The convergence analysis for the proposed coupled PML method is presented in Section81

3. An iterative algorithm and a CIP-FEM for solving the system of equations associated82

to the coupled PML system are proposed in Section 4. Finally, numerical experiments83

are presented in Section 5 to illustrate the convergence and performance of the proposed84

coupled PML method and iterative CIP-FEM.85
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2. Construction of the coupled PML system.86

2.1. Basic notations. For any domain G ⊂ Rn and part of its boundary Σ ⊂ ∂G, we87

denote by (·, ·)G and 〈·, ·〉Σ the inner products on the complex-valued Hilbert spaces L2(G)88

and L2(Σ), respectively. Moreover, the H
1
2 -norm defined on the boundary Σ is given by89

(2.1) ‖w‖
H

1
2 (Σ)

:=
(
‖w‖2L2(Σ) + |w|2

H
1
2 (Σ)

) 1
2

,90

with91

(2.2) |w|2
H

1
2 (Σ)

:=

∫
Σ

∫
Σ

|w(x)− w(x′)|2

|x− x′|n
ds(x)ds(x′).92

The energy norm on G is defined by93

(2.3) ‖|w|‖G :=
(
‖∇w‖2L2(G) + k2 ‖w‖2L2(G)

) 1
2

.94

For any disjoint domains G1 and G2, the piecewise Sobolev space is defined by95

Hm(G1 ∪G2) := {v : v|G1
∈ Hm(G1), v|G2

∈ Hm(G2)} for m ≥ 1,96

with the norm97

‖·‖Hm(G1∪G2) = ‖·‖Hm(G1) + ‖·‖Hm(G2).98

Throughout the paper, we denote by C a generic positive constant which is independent99

of k, f , the PML parameters σ0 and d. The notation A . B or B & A stands for the100

statement “A ≤ CB for some constant C”; similarly, A h B means “A . B and A & B”.101

Moreover, we let Cp(a, b, · · · ) be a generic positive constant which has at most polynomial102

growth in the variables a, b, and so on. The constants C and Cp may vary with different103

occurrences.104

2.2. Stability estimates for the original Helmholtz problem. It is known that105

the solution to the Helmholtz problem (1.1)–(1.2) satisfies the following stability estimate:106

(2.4) ‖u‖H1(Ω) + ‖ku‖L2(Ω) ≤ Cstab‖f‖L2(Ω).107

In general, the stability constant Cstab depends on the wave number k and the diameter108

of Ω. It is known that for problems with homogeneous medium, or nontrapping medium109

in general, the stability constant Cstab is independent of k, see [9, 56, 57, 65] and [29, 32].110

For more general k(x), the Cstab may grows super-algebraically as k increases, see [62, 58,111

31, 32].112

For the convenience of theoretical analysis of PML, in the rest of this article, we assume113

that k = k0 in Rn and therefore the stability constant Cstab in (2.4) is independent of k.114

The results in this article can be directly extended to the case of general k(x) if the stability115

constant Cstab in (2.4) grows at most polynomially with respect to k.116

2.3. Domain decomposition into convex subdomains. For a given nonconvex117

bounded domain Ω ⊂ Rn, we divide it into several disjoint convex subdomains Ωj , j =118

1, · · · ,m, such that Ω = ∪mj=1Ωj , as illustrated in Figure 2.1. Let Ω̂j be a neighborhood of119

Ωj in Rn \ Ωj with the thickness d > 0, i.e., we denote by x = (x1, · · · , xn)T and define120

Ω̂j =
{
x ∈ Rn \ Ωj : ∃ y ∈ ∂Ωj such that |xi − yi| < d, i = 1, · · · , n.

}
.121

The practical computational domains would be Bj = Ωj ∪ Ω̂j , with PML filled in Ω̂j ,122

j = 1, 2, · · · ,m. The boundaries of these domains are denoted by Γ = ∂Ω, Γj = ∂Ωj and123

Γ̂j = ∂Bj .124

Since f = 0 outside Ω, the solution satisfies the homogeneous Helmholtz equation in125

the exterior domain Rn \ Ω, i.e.,126

(2.5) ∆u+ k2u = 0 in Rn \ Ω.127

It is known that the solution u of the above homogeneous equation has the following128
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Fig. 2.1. A nonconvex domain Ω partitioned into convex subdomains Ωj , j = 1, 2.

boundary integral representation (see, e.g., [61, Theorem 3.1.6]):129

(2.6) u(x) =

∫
Γ

u(y)∂n(y)G(x, y) ds(y)−
∫

Γ

∂nu(y)G(x, y) ds(y) for x ∈ Rn \ Ω,130

where n denotes the unit outward normal on Γ, ∂n(y) denotes the outward normal derivative131

with respect to the variable y, and G(x, y) is the fundamental solution to the Helmholtz132

equation, given by133

(2.7) G(x, y) =


i
4H

(1)
0 (k |x− y|) for R2,

eik|x−y|

4π |x− y|
for R3,

134

which satisfies the following equation:135

∆yG(x, y) + k2G(x, y) = −δ(x− y).136

In view of (2.6), we define some new functions uj , j = 1, . . . ,m, by137

(2.8) uj(x) =

∫
Γj

u(y)∂nj(y)G(x, y) ds(y)−
∫

Γj

∂nj
u(y)G(x, y) ds(y) for x ∈ Rn \ Γj ,138

where nj denotes the unit outward normal on Γj , and ∂nj(y) denotes the outward nor-139

mal derivative with respect to the variable y. Since the integral of u(y)∂nj(y)G(x, y) and140

∂nj
u(y)G(x, y) from two sides of Γj would cancel (the normal vectors from the two sides141

have opposite directions), summing up (2.8) for j = 1, . . . ,m yields142

(2.9) u(x) =

m∑
j=1

uj(x) for x ∈ Rn \ Ω.143

For a function ϕ, define144

ϕ±(x) = lim
h→0+

ϕ(x± hnj(x)) and ∂njϕ
±(x) = (∂njϕ)±(x), x ∈ Γj .145

Let [ϕ] := ϕ− − ϕ+ denote the jump of ϕ on Γj . According to [59, Theorem 3.1.1],146

the boundary integral representation (2.8) implies that uj is the solution to the following147

interface problem:148

∆uj + k2uj = 0 in Rn \ Γj ,149

[uj ] = −u, [∂njuj ] = −∂nju on Γj ,150

|∂nuj − ikuj | = o
(
|x|

1−n
2

)
as |x| → ∞.151152

Moreover, taking normal derivative of (2.9) yields ∂nu − iku =
∑m
j=1(∂n − ik)uj |Rn\Ωj

153

on Γ. Therefore, the original Helmholtz problem (1.1)–(1.2) is equivalent to the following154

system:155

∆uj + k2uj = 0 in Rn \ Γj ,(2.10a)156

[uj ] = −u, [∂nj
uj ] = −∂nj

u on Γj ,(2.10b)157

|∂nuj − ikuj | = o
(
|x|

1−n
2

)
as |x| → ∞,(2.10c)158
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∆u+ k2u = f in Ω,(2.10d)159

∂nu− iku =

m∑
j=1

(∂n − ik)uj |Rn\Ωj
on Γ.(2.10e)160

161

The equivalence between (1.1)–(1.2) and (2.10) can be seen as follows. We have shown162

that if u is the solution to (1.1)–(1.2) then u and the function uj defined by (2.8) satisfy163

the equations in (2.10). Conversely, if u and uj are the solutions to (2.10), the function164

w =
∑m
j=1 uj would satisfy the equations:165

∆w + k2w = 0 in Rn \ Γ,(2.11a)166

[w] = −u, [∂nw] = −∂nu on Γ,(2.11b)167

|∂nw − ikw| = o
(
|x|

1−n
2

)
as |x| → ∞.(2.11c)168169

Combining (2.11b) and (2.10e) implies that [∂nw−ikw] = −(∂nu−iku) = −(∂n−ik)w|Rn\Ω170

on Γ. This means that171

(2.12) (∂n − ik)w|Ω = 0 on Γ.172

Since the Helmholtz equation (2.11a) with impedance boundary condition (2.12) has unique173

solution (see, e.g., [57, 11]), it follows that w|Ω = 0. As a result of this and the interface174

condition (2.11b), we have u = w|Rn\Ω and ∂nu = ∂nw|Rn\Ω on the interior side of Γ. If175

we define u|Rn\Ω := w|Rn\Ω, then [u] = [∂nu] = 0 on Γ and ∆u+ k2u = 0 in Rn \Ω, which176

implies that u is the solution to the original Helmholtz equation (1.1)–(1.2).177

In the equivalent formulation (2.10), the equations of uj are defined in an unbounded178

domain with radiation boundary condition. Since each Ωj is a convex domain, PML can179

be set up in the domain Ω̂j to approximate the solution uj in Ω. This is presented in the180

next several subsections.181

2.4. Uniaxial PML method. For simplicity, in the rest of this paper, we assume182

that all the subdomains Ωj are rectangles or cuboids whose sides are parallel to the main183

coordinate axes. We remark that such an additional assumption is for the convenience184

of the presentation in our theoretical analysis. Indeed, the PML can be set up in a local185

Cartesian coordinate system with the origin at the centre of the subdomain and the axes186

parallel to the sides of the subdomain.187

Let x̃j := Fj(x) = x+ iσj(x) be a transformation with a function σj ∈ C1 : Rn → Rn188

satisfying the following conditions:189

(x− y) · Im x̃j = (x− y) · σj(x) > 0 for x ∈ Ω̂j , y ∈ Γj ,(2.13a)190

σj(x) = 0 for x ∈ Ωj ,(2.13b)191

σ0d ≤ |σj(x)| ≤ βσ0d for x ∈ Γ̂j ,(2.13c)192193

where σ0 > 0 is a given constant and β ≥ 1 is a constant depending only on n. Denote194

the centre of Ωj by Oj = (Oj,1, · · · , Oj,n)T and the diameter of Ωj in the i-th dimension195

by Lj,i. Then according to the definition of PML in Section 2.3, the layer is given by196

Ω̂j =
{
x ∈ Rn \ Ωj : |xi −Oj,i| ≤ d+ Lj,i/2, i = 1, · · · , n.

}
.197

In order to use the results in [14, 7] on the inf-sup conditions and uniquenesses of the PML198

problems, we let σj(x) be defined as follows:199

(2.14) σj(x) = (σj,1(x1), · · · , σj,n(xn))T with σj,i(xi) =

∫ xi

Oj,i

σ̃j,i(t) dt,200

where σ̃j,i(t) ∈ C(R) satisfies σ̃j,i ≥ 0, σ̃j,i(Oj,i + t) = σ̃j,i(Oj,i − t) and201

σ̃j,i(t) = 0 for |t−Oj,i| ≤
Lj,i
2

and σ̃j,i(t) = σ̄j,i for |t−Oj,i| ≥ d̄+
Lj,i
2
,202
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where d̄ ∈ (0, d) is a constant and σ̄j,i > 0 is given by σ0. More precisely, σ̄j,i satisfies203 ∫ Oj,i+
Lj,i
2 +d̄

Oj,i+
Lj,i
2

σ̃j,i(t) dt+ σ̄j,i(d− d̄) =

∫ Oj,i+
Lj,i
2 +d

Oj,i

σ̃j,i(t) dt = σ0d.204

Let β =
√
n. It’s easy to verify that σj(x) defined by (2.14) satisfies all the conditions in205

(2.13). Notice that σj,i(xi) depends only on xi, such a construction of PML is called the206

uniaxial PML method (see, e.g., [13, 14, 7]).207

Condition (2.13a) guarantees208

(2.15)
(x̃j1 − y1)2 + (x̃j2 − y2)2 + (x̃j3 − y3)2 = |x− y|2 − |σj(x)|2 + 2(x− y) · σj(x)i

∈ C \ (−∞, 0] for x ∈ Ω̂j .
209

Since the square root function
√
· : C\(−∞, 0]→ {z ∈ C : Re z > 0} is analytic, it follows210

that the complex distance function211

ρ(z, y) =
√

(z1 − y1)2 + (z2 − y2)2 + (z3 − y3)2212

is well defined and analytic for z in some neighborhood of x̃j . This implies that the function213

(2.16) uj(x̃
j) :=

∫
Γj

u(y)∂nj(y)G̃j(x, y) ds(y)−
∫

Γj

∂nj
u(y)G̃j(x, y) ds(y),214

where215

(2.17) G̃j(x, y) :=


i
4H

(1)
0 (kρ(x̃j , y)) for R2,

eikρ(x̃
j ,y)

4πρ(x̃j , y)
for R3,

216

is analytic in a small neighborhood of x̃j and then satisfies the Helmholtz equation, i.e.217

∆x̃juj(x̃
j) + k2uj(x̃

j) = 0.218

By using the chain rule (cf. [49, Theorem 2.5]), we find that the function ũj(x) := uj(x̃
j)219

satisfies the following PML equation220

(2.18) div (Aj∇ũj) + k2Jj ũj = 0,221

where222

(2.19) Aj = JjH
T
j Hj , Hj =

(
I + i(Dσj)

T
)−1

= (DFj)
−T

and Jj = det (DFj) .223

In particular, AT
j = Aj is symmetric; condition (2.13b) implies that Aj = I, Jj = 1 in Ωj ,224

and225

(2.20) ũj = uj in Ωj .226

Since Ωj is convex, by using [49, Corollary 3.2 and Lemma 4.2], Aj is elliptic and Jj227

is bounded. More precisely, the following coercivity and continuity hold for any domain228

G ⊂ Rn and ϕ,ψ ∈ H1(G):229

Re(Aj∇ϕ,∇ϕ)G ≥ Cp(σ0)−1 ‖∇ϕ‖2L2(G) ,(2.21)230 ∣∣(Aj∇ϕ,∇ψ)G − k2(Jjϕ,ψ)G
∣∣ ≤ Cp(σ0) ‖|ϕ|‖G ‖|ψ|‖G .(2.22)231232

In the next subsection we show that ũj decays exponentially with respect to kσ0d and233

therefore close to zero on Γ̂j . As a result, we can approximate ũj by solving (2.18) with234

zero boundary condition.235

2.5. Exponential decay in the PML. We denote236

γ := min
1≤j≤m

d√∑n
i=1(Lj,i + d)2

and237

λ := max
1≤i≤n
1≤j≤m

‖∂xi
x̃ji‖L∞(Γ̂j) h 1 + max

1≤i≤n
1≤j≤m

‖σ̃j,i‖L∞(Γ̂j).238

239

The following estimates for the modified Green function G̃j(x, y) hold:240

6
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Lemma 2.1. Let (2.13a)–(2.13c) be satisfied and241

(2.23) γkσ0d ≥ 1.242

Then there exists a positive constant C depending only on the constant β in (2.13c) such243

that for any x ∈ Γ̂j, y ∈ Ωj and 1 ≤ i, l ≤ n, there hold:244 ∣∣∣G̃j(x, y)
∣∣∣ ≤ C(γσ0d)−1e−γkσ0d,(2.24)245 ∣∣∣∂yiG̃j(x, y)
∣∣∣ ≤ Ckγ−1(γσ0d)−1e−γkσ0d,(2.25)246 ∣∣∣∂xl

G̃j(x, y)
∣∣∣ ≤ Cλkγ−1(γσ0d)−1e−γkσ0d,(2.26)247 ∣∣∣∂xl

∂yiG̃j(x, y)
∣∣∣ ≤ Cλk2γ−2(γσ0d)−1e−γkσ0d.(2.27)248

249

Proof. We consider only the case of n = 3 and refer to [13, Lemma 3.3] (which con-250

sidered a rectangular PML) for n = 2. By using (2.15) and (2.13a), it is easy to verify251

that252

Im ρ(x̃j , y) ≥ (x− y) · Im x̃j

|x− y|
=

(x− y) · σj(x)

|x− y|
.253

(i) Since x ∈ Γ̂j and y ∈ Ωj , from (2.13a) and (2.13c) we derive the following inequality:254

(x− y) · σj(x) = |σj(x)| |x− y| cos 〈x− y, σj(x)〉 ≥ σ0d · dist(x,Γj) ≥ σ0d
2,255

which implies that256 ∣∣ρ(x̃j , y)
∣∣ ≥ Im ρ(x̃j , y) ≥ σ0d

2√∑n
i=1(Lj,i + d)2

≥ γσ0d.257

Substituting this into (2.17) yields (2.24).258

(ii) Some straightforward calculations yield259

∂yiG̃j(x, y) =
(
ik − ρ−1

)
G̃j(x, y)∂yiρ(x̃j , y) and ∂yiρ =

yi − x̃ji
ρ

.260

If |x− y| ≥ 2 |σj(x)|, then from (2.15) we derive that261

|ρ| ≥
∣∣Re ρ2

∣∣1/2 =
(
|x− y|2 − |σj(x)|2

)1/2 ≥ √3

2
|x− y| ,262

and therefore263

|∂yiρ| =
∣∣∣∣ x̃ji − yiρ

∣∣∣∣ ≤ 2
(
|x− y|2 + |σj(x)|2

)1/2
√

3 |x− y|
≤
√

5

3
.264

Else if |x− y| < 2 |σj(x)|, then by using |ρ| ≥ Im ρ ≥ γσ0d and (2.13c), we have265

|∂yiρ| =
∣∣∣∣ x̃ji − yiρ

∣∣∣∣ ≤
(
|x− y|2 + |σj(x)|2

)1/2
γσ0d

≤
√

5 |σj(x)|
γσ0d

≤
√

5βγ−1.266

In this case, from (2.23) and γ−1 ≥ 1 we obtain267 ∣∣∣∂yiG̃j(x, y)
∣∣∣ . (k + (γσ0d)−1

)
γ−1(γσ0d)−1e−γkσ0d . kγ−1(γσ0d)−1e−γkσ0d,268

where in the second inequality we have used (γσ0d)−1 ≤ k.269

(iii) Similarly to (ii), by noting ∂xl
x̃ji = (1 + iσ̃j,i)δl,i, where δl,i is the Kronecker delta270

function, and using271

∂xl
ρ =

(x̃jl − yl)(1 + iσ̃j,l)

ρ
and ∂xl

G̃j(x, y) =
(
ik − ρ−1

)
G̃j(x, y)∂xl

ρ(x̃j , y),272

we can prove |∂xl
ρ| . λβγ−1 and then obtain (2.26).273

(iv) Note that274

∂xl
∂yiG̃j(x, y) = (ik − ρ−1)2G̃j∂yiρ∂xl

ρ+ G̃j
(
ρ−2∂xl

ρ∂yiρ+ (ik − ρ−1)∂xl
∂yiρ

)
275
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and276

|∂xl
∂yiρ| =

∣∣∣ρ−1∂xl
x̃ji − ρ

−1∂yiρ∂xl
ρ
∣∣∣ . (γσ0d)−1

(
λ+ λγ−2

)
. λ(γ3σ0d)−1,277

which imply that278 ∣∣∣∂xl
∂yiG̃j(x, y)

∣∣∣ . (λk2γ−2 + λ(γσ0d)−2γ−2 + λk(γ3σ0d)−1
) ∣∣∣G̃j∣∣∣279

. λk2γ−2(γσ0d)−1e−γkσ0d.280281

The proof of this lemma is completed.282

Next we present the exponential decaying estimate of ũj(x) defined in (2.16).283

Lemma 2.2. Let (2.13a)–(2.13c) and (2.23) be satisfied. Then there exists a positive284

constant C depending only on β and Ω such that285

(2.28) |ũj(x)| ≤ CCstabk
2γ−1(γσ0d)−1e−γkσ0d‖f‖L2(Ω), x ∈ Γ̂j ,286

where Cstab is from the stability estimate (2.4).287

Proof. From (2.16) we see that288

|ũj(x)| ≤ ‖u‖L2(Γj)

∥∥∂nj
G̃j(x, ·)

∥∥
L2(Γj)

+
∥∥∂nj

u
∥∥
H−1/2(Γj)

∥∥G̃j(x, ·)∥∥H1/2(Γj)
.289

Since290 ∣∣G̃j(x, y)− G̃j(x, y′)
∣∣ ≤ ∥∥∇yG̃j(x, y)

∥∥
L∞(Γj)

|y − y′|291

the following inequalities hold in view of the notation in (2.1)–(2.2):292 ∫
Γj

∫
Γj

1

|y − y′|n−2 ds(y) ds(y′) ≤ C(Ω)2
293

and therefore294 ∣∣G̃j(x, ·)∣∣H1/2(Γj)
≤ C(Ω)

∥∥∇yG̃j(x, y)
∥∥
L∞(Γj)

,295

where C(Ω) > 0 denotes some constant depending only on Ω. By using (2.24)–(2.25) and296

(2.23) we obtain297

|ũj(x)| . max
x∈Γ̂j ,y∈Γj

{∣∣∇yG̃j(x, y)
∣∣, ∣∣G̃j(x, y)

∣∣} (‖u‖H1(Ωj) + ‖∆u‖L2(Ωj)

)
298

. kγ−1(γσ0d)−1e−γkσ0d
(
‖u‖H1(Ωj) +

∥∥f − k2u
∥∥
L2(Ωj)

)
299

. Cstabk
2γ−1(γσ0d)−1e−γkσ0d‖f‖L2(Ω),300

301

where we have used the stability estimate (2.4) in the last inequality. The proof is com-302

pleted.303

Remark 2.3. For example, we consider a two-dimensional narrow nonconvex domain304

whose subdomains are all rectangles with length L and width W satisfying L � W .305

We choose the PML width d such that d . L, then γ h dL−1 and the PML condition306

(2.23) requires kσ0d
2 & L. One possible choice for the PML parameters is σ0 h 1 and307

d h (L/k)1/2. Since the degrees of freedom in the discrete system is N ≈ L(d + W )/h2,308

where h denotes the mesh size, which is generally chosen to be about 1/k, it follows that309

N ≈ (Lk)3/2 + (LW )k2 for the coupled PML. However, for the standard PML method,310

there holds N ≈ (L/h)2 ≈ (Lk)2. Therefore, the proposed PML method has less degrees311

of freedom when Lk is large and L�W .312

In the rest of this paper, for simplicity, we denote by313

(2.29) L := max
1≤i≤n, 1≤j≤m

Lj,i.314

It is easy to see that d√
n(L+d)

≤ γ ≤ d
L+d .315

2.6. A system of equations for coupled PML. Before presenting the coupled316

PML system, we define some linear operators to be used in the subsequent analysis.317
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First, we define the single and double layer potentials (see, e.g., [59, 61]) as318

Sjϕ(x) =

∫
Γj

ϕ(y)G(x, y) ds(y) and Djψ(x) =

∫
Γj

ψ(y)∂nj(y)G(x, y) ds(y).319

320

Let Tj : H1/2(Γj)→ H−1/2(Γj) be the DtN operator for Helmholtz problem [19], namely,321

for any ϕ ∈ H1/2(Γj), let Tjϕ = ∂nj
w on Γj , where w ∈ H1

loc(Rn \ Ωj) solves322

(2.30)

∆w + k2w = 0 in Rn \ Ωj ,

w = ϕ on Γj ,∣∣∣∣∂w∂r − ikw

∣∣∣∣ = o
(
r

1−n
2

)
as r = |x| → ∞.

323

By the Green’s formula (see, e.g., [20, Theorem 2.5]), we have324

(2.31) w = Djw − Sj∂njw = (Dj − SjTj)ϕ in Rn \ Ωj .325

Define the extension operator as326

(2.32) Ej := (Dj − SjTj) : H1/2(Γj)→ H1
loc(Rn \ Ωj).327

From (2.31), there hold328

(2.33) ∂nj
Ejϕ = Tjϕ and Ejϕ = ϕ on Γj .329

Moreover, noting from (2.10a) and (2.10c), we get Tju
+
j = ∂nju

+
j and uj |Rn\Ωj

= Eju
+
j .330

Next, we define331

(2.34) Ẽjϕ(x) :=

∫
Γj

ϕ(y)∂nj(y)G̃j(x, y) ds(y)−
∫

Γj

Tjϕ(y)G̃j(x, y) ds(y), x ∈ Rn \ Ωj .332

Obviously, for any ϕ ∈ H1/2(Γj), we have333

(2.35) Ẽjϕ = Ejϕ, ∂nj Ẽjϕ = ∂njEjϕ on Γj ; and ũj = Ẽju
+
j in Rn \ Ωj .334

Let T̂j : H1/2(Γj) → H−1/2(Γj) be the DtN operator for the PML problem [13],335

namely, for any ϕ ∈ H1/2(Γj), let T̂jϕ = ∂nj
w on Γj , where w solves the PML problem in336

the layer:337

(2.36)

div (Aj∇w) + k2Jjw = 0 in Ω̂j ,

w = ϕ on Γj ,

w = 0 on Γ̂j .

338

Define the extension operator with respect to T̂j as339

(2.37) Êj := (Dj − Sj T̂j) : H1/2(Γj)→ H1
loc(Rn \ Ωj).340

Now we give the coupled PML system by using these extension operators. From (2.10),341

(2.18), (2.28), and noting u+
j = ũ+

j on Γj , we see that the solution u to Helmholtz equation342

(1.1)–(1.2) and the PML functions ũj defined in (2.16) satisfy the following coupled system343

of four equations and an inequality:344

div (Aj∇ũj) + k2Jj ũj = 0 in Rn \ Γj ,(2.38a)345

[ũj ] = −u,
[
∂nj

ũj
]

= −∂nj
u on Γj ,(2.38b)346

ũj is bounded as |x| → ∞,(2.38c)347

∆u+ k2u = f in Ω,(2.38d)348

∂nu− iku =

m∑
j=1

(∂n − ik)Ej ũ
+
j on Γ.(2.38e)349

350

The motivation of (2.38) is as follows: First, (2.38a)–(2.38c) follow directly from (2.10),351

(2.18) and (2.28). From (2.38a)–(2.38c) we see that ũj is uniquely determined by the352

values u and ∂nj
u on Γj . Therefore, it suffices to couple ũj with the equation of u to have353
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a closed system. An impedance type of boundary conditions such as (2.38e) would lead to354

good stability estimates. In particular, the boundary condition in (2.38e) is due to the fact355

that u =
∑m
j=1 uj in Rn\Ω and uj = Eju

+
j = Ej ũ

+
j (see the text below (2.33) and note356

that u+
j = ũ+

j on Γj), which implies that u =
∑m
j=1Ej ũ

+
j outside Ω. Therefore, applying357

operator ∂n − ik to the relation u =
∑m
j=1Ej ũ

+
j yields (2.38e). In addition, it should be358

mentioned that, we cannot use ũj instead of Ej ũ
+
j in the right-hand side of (2.38e) since359

ũj |Γ\Γj
6= uj |Γ\Γj

.360

In view of Lemma 2.2, the solution ũj is close to zero on the outer boundary Γ̂j of the361

PML region. Therefore, we can truncate the exterior domain to a bounded one and set362

homogeneous Dirichlet boundary condition on the truncation boundary Γ̂j . This leads to363

the following system of equations for the coupled PML:364

div (Aj∇vj) + k2Jjvj = 0 in Bj \ Γj ,(2.39a)365

[vj ] = −v,
[
∂nj

vj
]

= −∂nj
v on Γj ,(2.39b)366

vj = 0 on Γ̂j ,(2.39c)367

∆v + k2v = f in Ω,(2.39d)368

∂nv − ikv =

m∑
j=1

(∂n − ik) Êjv
+
j on Γ,(2.39e)369

370

where we have replaced (2.38c) by (2.39c) and Ej in (2.38e) by Êj in (2.39e).371

Remark 2.4. Some important explanations for the coupled systems are as follows.372

(i) From (2.39a)–(2.39c) we see that vj solves an elliptic interface problem and is uniquely373

determined by the values v and ∂nj
v on Γj . Moreover, vj is the PML approximation374

of ũj |Bj\Γj
if v is an approximation of u.375

(ii) The PML approximation of u in Ω is v, which is coupled with vj through the interface376

conditions (2.39b) and boundary condition (2.39e). Let D = ∪mj=1Bj . If we define377

û =

{
v in Ω,∑m
j=1 vj in D \ Ω,

378

where vj is extended by zero in D \Bj , then û is the PML approximation of u with379

Dirichlet boundary condition û = 0 on ∂D. In view of this, the PML in the global380

domain is actually with nonconvex shape.381

(iii) The motivation of (2.39e) is as follows: First, we cannot use vj in the right-hand side382

of (2.39e) as vj |Γ\Γj
is not an approximation of uj |Γ\Γj

= Ej ũ
+
j |Γ\Γj

. Second, since383

the error between operators Tj and T̂j is exponentially small (see [13]), Êjv
+
j is an384

approximation of Ejv
+
j , and also an approximation of uj |Rn\Ωj

= Ej ũ
+
j if vj is the385

PML approximation of ũj in Bj \ Ωj . Third, in practice, Êj is easier to implement386

than Ej , because the latter requires computing the DtN operator Tj .387

(iv) Noting that vj |Ω̂j
satisfies (2.36) with ϕ = v+

j , we have388

∂njv
+
j = T̂jv

+
j on Γj , hence, Êjv

+
j = (Dj − Sj T̂j)v+

j = (Dj − Sj∂nj )v+
j ,389

which means that (2.39e) can be simply obtained by evaluating two integrals on the390

boundary Γj . The coupled PML system (2.39) can be solved by an interface penalty391

FEM presented in Section 4.392

To end this section, we give a stability estimate for vj when v ∈ H1(Ω) is given.393

Lemma 2.5. For given v ∈ H1(Ω), the problem (2.39a)–(2.39c) is well-defined and394

(2.40) ‖|vj |‖Ωj∪Ω̂j
≤ Cp(σ0)k3/2

(
‖v‖H1/2(Γj) +

∥∥∂njv
∥∥
H−1/2(Γj)

)
,395

where ‖|·|‖2Ωj∪Ω̂j
:= ‖|·|‖2Ωj

+ ‖|·|‖2Ω̂j
.396
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Proof. Let Φ1 ∈ H1(Ωj ∪ Ω̂j) solve the elliptic interface problem397

(2.41)

−div (Aj∇Φ1) + Φ1 = 0 in Bj \ Γj ,

[Φ1] = −v,
[
∂njΦ1

]
= −∂njv on Γj ,

Φ1 = 0 on Γ̂j ,

398

and let Φ2 ∈ H1(Bj) solve the PML problem399

(2.42)
−div (Aj∇Φ2)− k2JjΦ2 = (1 + k2Jj)Φ1 in Bj ,

Φ2 = 0 on Γ̂j ,
400

respectively. It’s easy to see that vj = Φ1 + Φ2 solves (2.39a)–(2.39c). By the proof of401

[53, Theorem 2.1] and utilizing the coercivity in (2.21), we know that problem (2.41) has402

a unique solution and satisfies the following stability estimate:403

(2.43) ‖|Φ1|‖Ωj∪Ω̂j
. Cp(σ0)

(
‖v‖H1/2(Γj) +

∥∥∂nj
v
∥∥
H−1/2(Γj)

)
.404

On the other hand, from [14, §3.1 and eq. (3.4)], and noting that Bj is convex, problem405

(2.42) has a unique solution and satisfies the stability estimate406

‖|Φ2|‖Bj
. Cp(σ0)k1/2

∥∥(1 + k2Jj)Φ1

∥∥
L2(Bj)

. Cp(σ0)k3/2 ‖|Φ1|‖Ωj∪Ω̂j
,407

which together with (2.43) gives (2.40) and concludes the proof of this lemma.408

3. Convergence analysis for the truncated PML problem. In this section, we409

prove the exponential convergence of v to u with respect to k, σ0 and d, where u is the410

solution to problem (2.10) and v is the solution to the truncated PML problem (2.39). The411

well-posedness for the PML system (2.39) is derived as a consequence of the truncation412

error analysis.413

3.1. Exponentially decaying estimates of the PML extension. Firstly, we show414

the continuity of the DtN operator Tj with explicit dependence on k.415

Lemma 3.1. There exists a constant C (which depends only on Γj) such that416

(3.1) ‖Tjϕ‖H−1/2(Γj) ≤ Ck‖ϕ‖H1/2(Γj) ∀ϕ ∈ H1/2(Γj).417

Proof. Since Tjϕ = ∂nj
w on Γj , where w is the solution to the exterior Helmholtz418

problem with the boundary condition w = ϕ on Γj and Sommerfeld radiation boundary419

condition at infinity, the well-known stability estimate for w (see, e.g., [9]) yields420

‖|w|‖BR\Ωj
≤ C(R) ‖ϕ‖H1/2(Γj) ,421

422

where BR ⊃ Ωj denotes the ball with some radius R. Therefore,423

‖Tjϕ‖H−1/2(Γj) =
∥∥∂nj

w
∥∥
H−1/2(Γj)

. ‖∇w‖L2(BR\Ωj) + ‖∆w‖L2(BR\Ωj) . k ‖|w|‖BR\Ωj
,424

which implies (3.1) and concludes the proof of this lemma.425

Then, the following estimate for Ẽj defined in (2.34) holds:426

Lemma 3.2. Let (2.13a)–(2.13c) and (2.23) be satisfied. For any ϕ ∈ H1/2(Γj), there427

exists a positive constant C independent of k, σ0 and d, but depends on Ω, such that428 ∥∥Ẽjϕ∥∥H1/2(Γ̂j)
≤ Cλk3γ−2(γσ0d)−1(1 + dγ−1)n−1e−γkσ0d‖ϕ‖H1/2(Γj).429

Proof. Similarly to the proof of Lemma 2.2, from (2.24)–(2.25) and (3.1), when x ∈ Γ̂j ,430

we have431 ∣∣Ẽjϕ(x)
∣∣ ≤ ‖ϕ‖L2(Γj)

∥∥∂nj G̃j(x, ·)
∥∥
L2(Γj)

+ ‖Tjϕ‖H−1/2(Γj)

∥∥G̃j(x, ·)∥∥H1/2(Γj)
432

. max
x∈Γ̂j ,y∈Γj

{∣∣∇yG̃j(x, y)
∣∣, ∣∣G̃j(x, y)

∣∣} k‖ϕ‖H1/2(Γj)433

. k2γ−1(γσ0d)−1e−γkσ0d‖ϕ‖H1/2(Γj).434
435
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Then we get436 ∥∥Ẽjϕ∥∥L2(Γ̂j)
. |Γ̂j |

1
2

∥∥Ẽjϕ∥∥L∞(Γ̂j)
. k2γ−1(γσ0d)−1(L+ d)

n−1
2 e−γkσ0d‖ϕ‖H1/2(Γj).437

To estimate
∣∣Ẽjϕ∣∣H1/2(Γ̂j)

, we start by noting438 ∣∣Ẽjϕ(x)− Ẽjϕ(x′)
∣∣ ≤ ∥∥∇Ẽjϕ∥∥L∞(Γ̂j)

|x− x′| .439

Similarly, from (2.26)–(2.27) and (3.1), when x ∈ Γ̂j , we get440 ∣∣∇Ẽjϕ(x)
∣∣441

. ‖ϕ‖L2(Γj) max
x∈Γ̂j ,y∈Γj

∣∣∇x∇yG̃j(x, y)
∣∣+
∥∥Tjϕ∥∥H−1/2(Γj)

max
x∈Γ̂j

∥∥∇xG̃j(x, ·)∥∥H1/2(Γj)
442

. max
x∈Γ̂j ,y∈Γj

{∣∣∇x∇yG̃j(x, y)
∣∣, ∣∣∇xG̃j(x, y)

∣∣} k‖ϕ‖H1/2(Γj)443

. λk3γ−2(γσ0d)−1e−γkσ0d‖ϕ‖H1/2(Γj),444
445

which implies that446 ∣∣Ẽjϕ∣∣H1/2(Γ̂j)
. |Γ̂j |

∥∥∇Ẽjϕ∥∥L∞(Γ̂j)
. λk3γ−2(γσ0d)−1(L+ d)n−1e−γkσ0d‖ϕ‖H1/2(Γj).447

This completes the proof of the lemma by noting (2.1) and L+ d h dγ−1.448

3.2. Stability estimates for the PML equation in the layer. In this subsection,449

we consider the following Dirichlet PML equation in the layer Ω̂j :450

(3.2)

div (Aj∇w) + k2Jjw = 0 in Ω̂j ,

w = 0 on Γj ,

w = g on Γ̂j .

451

From [14, §3.1], the inf-sup condition in H1
0 (Ω̂j) holds452

sup
ϕ∈H1

0 (Ω̂j)

∣∣(Aj∇ψ,∇ϕ)Ω̂j
− k2(Jjψ,ϕ)Ω̂j

∣∣
‖|ϕ|‖Ω̂j

≥ µ ‖|ψ|‖Ω̂j
∀ψ ∈ H1

0 (Ω̂j).453

where µ−1 ≤ Cp(σ0, γ
−1)k3/2. Moreover, by following the proof in [7, Theorem 5.7], the454

PML problem (3.2) in the layer has a unique solution and satisfies the stability estimates.455

Since the proof is quite similar, we omit it.456

Lemma 3.3. Let g ∈ H1/2(Γ̂j) and w be the solution to (3.2), for sufficiently large σ0d,457

there holds458

‖|w|‖Ω̂j
+ k−1

∥∥∂nj
w
∥∥
H−1/2(Γj)

≤ Cp(k, σ0, γ
−1)‖g‖H1/2(Γ̂j).(3.3)459

460

3.3. Convergence of the PML problem. In this subsection, we give the conver-461

gence analysis for the PML problem (2.39). First, we derive the PML truncation error462

equation and divide it into two subproblems. Then, the stability estimates of these sub-463

problems are obtained.464

3.3.1. PML truncation error. Let η = u − v in Ω, ηj = uj − vj in Ωj , and η̃j =465

Ej(u
+
j −v

+
j ) in Rn\Ωj . By combining (2.10) and (2.39), and noting that uj |Rn\Ωj

= Eju
+
j ,466

we obtain the following system of equations for ηj and η:467

∆ηj + k2ηj = 0 in Ωj ,(3.4a)468

∆η̃j + k2η̃j = 0 in Rn \ Ωj ,(3.4b)469

ηj − η̃j = −η, ∂nj
ηj − ∂nj

η̃j = −∂nj
η + ∂nj

ξj on Γj ,(3.4c)470

|∂nη̃j − ikη̃j | = o
(
|x|

1−n
2

)
for |x| → ∞,(3.4d)471

∆η + k2η = 0 in Ω,(3.4e)472
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∂nη − ikη =

m∑
j=1

(∂n − ik)(η̃j + ζj) on Γ,(3.4f)473

474

where ξj = (Ẽjv
+
j − vj)|Ω̂j

and ζj = (Ej − Êj)v+
j . Obviously, ξj = 0 on Γj and ξj = Ẽjv

+
j475

on Γ̂j . Therefore, ξj is the solution to the PML equation (3.2) in the layer with g = Ẽjv
+
j .476

From Lemma 3.3 and Lemma 3.2, and noting γ−1 ≤ kσ0d, we know that477

‖|ξj |‖Ω̂j
+
∥∥∂njξj

∥∥
H−1/2(Γj)

. Cp(k, σ0, d)e−γkσ0d
∥∥v+
j

∥∥
H1/2(Γj)

.(3.5)478
479

On the other hand, from (2.32) and (2.37) we see that ζj = (Ej−Êj)v+
j = −Sj(Tj− T̂j)v+

j .480

From (2.33), (2.35) and Remark 2.4 (iv), we get481

(Tj − T̂j)v+
j = ∂nj

Ejv
+
j − ∂nj

(vj |Ω̂j
) = ∂nj

ξj and ζj = −Sj∂nj
ξj .482

By using the trace theorem and (3.5), and the fact that ∆ζj + k2ζj = 0 in Rn \ Ωj and483

the operator Sj : H−1/2(Γj) → H1
loc(Rn \ Ωj) is continuous (see [61, Theorem 3.1.16]), it484

follows that485

(3.6)
‖∂nζj‖H−1/2(Γ) + ‖ζj‖H1/2(Γ) . k2‖ζj‖H1(B\Ω) . Cp(k)

∥∥∂nj
ξj
∥∥
H−1/2(Γj)

. Cp(k, σ0, d)e−γkσ0d
∥∥v+
j

∥∥
H1/2(Γj)

,
486

where B denotes a sufficiently large ball which contains Ω.487

To estimate η, we divide (3.4) into two subproblems. First, we denote488

w = ηj +
∑
i6=j

η̃i in Ωj and w̃ =

m∑
j=1

η̃j in Rn \ Ω.489

From (3.4c), we have490

[w] = 0 and
[
∂njw

]
= ∂njξj + ∂nj′ ξj′ on Γj ∩ Γj′ ,(3.7)491

w − w̃ = −η and ∂njw − ∂nj w̃ = −∂nη + ∂nξj on Γj ∩ Γ.(3.8)492493

Hence, from (3.8) and (3.4f), we get494

(∂nw − ikw)− (∂nw̃ − ikw̃) = −(∂n − ik)η + ∂nξj495

= −(∂n − ik)w̃ −
m∑
i=1

(∂n − ik)ζi + ∂nξj on Γj ∩ Γ,496

497

which yields498

∂nw − ikw = ∂nξj −
m∑
i=1

(∂n − ik)ζi on Γj ∩ Γ.499

Therefore, by using (3.7), w is the solution to the interior Helmholtz problem:500

(3.9)

∆w + k2w = 0 in Ωj , j = 1, · · · ,m,
[w] = 0,

[
∂nj

w
]

= ∂nj
ξj + ∂nj′ ξj′ on Γj ∩ Γj′ ,

∂nw − ikw = ∂nξj −
m∑
i=1

(∂n − ik)ζi on Γj ∩ Γ.

501

Second, we extend η by defining η̃ = w̃, from (3.4e), (3.8) and the definition (2.32), it502

can be shown that η and η̃ are the solutions to the full-space transmission problem:503

(3.10)

∆η + k2η = 0 in Ω,

∆η̃ + k2η̃ = 0 in Rn \ Ω,

η − η̃ = −w, ∂nη − ∂nη̃ = ∂nξj − ∂nw on Γj ∩ Γ,

|∂nη̃ − ikη̃| = o
(
|x|

1−n
2

)
as |x| → ∞.

504
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3.3.2. Estimate for w. Denote the sesquilinear form by505

(3.11) bΩ(ψ,ϕ) := (∇ψ,∇ϕ)Ω − k2(ψ,ϕ)Ω − ik 〈ψ,ϕ〉Γ ∀ψ, ϕ ∈ H1(Ω).506

The weak formulation of (3.9) reads as: find w ∈ H1(Ω) such that507

(3.12) bΩ(w,ϕ) =

m∑
j=1

〈
∂njξj , ϕ

〉
Γj
−

m∑
j=1

〈(∂n − ik)ζj , ϕ〉Γ ∀ϕ ∈ H1(Ω).508

For given ξj and ζj , problem (3.12) has a unique solution and satisfies the inf-sup condition509

(see, e.g., [57, 11])510

(3.13) inf
06=ψ∈H1(Ω)

sup
06=ϕ∈H1(Ω)

|bΩ(ψ,ϕ)|
‖|ψ|‖Ω ‖|ϕ|‖Ω

≥ Cp(k)−1.511

By using the trace theorem, we obtain512

Cp(k)−1 ‖|w|‖Ω ≤ sup
0 6=ϕ∈H1(Ω)

|bΩ(w,ϕ)|
‖|ϕ|‖Ω

513

.
m∑
j=1

∥∥∂nj
ξj
∥∥
H−1/2(Γj)

+

m∑
j=1

‖∂nζj‖H−1/2(Γ) + k

m∑
j=1

‖ζj‖L2(Γ),514

515

which together with (3.5) and (3.6) gives516

(3.14) ‖|w|‖Ω . Cp(k, σ0, d)e−γkσ0d
m∑
j=1

∥∥v+
j

∥∥
H1/2(Γj)

.517

Furthermore, integration by parts results in518 ∥∥∂njw
−∥∥

H−1/2(Γj)
. ‖∆w‖L2(Ωj) + ‖∇w‖L2(Ωj) = k2‖w‖L2(Ωj) + ‖∇w‖L2(Ωj)519

. k ‖|w|‖Ω . Cp(k, σ0, d)e−γkσ0d
m∑
j=1

∥∥v+
j

∥∥
H1/2(Γj)

.(3.15)520

521

3.3.3. Estimate for η. In view of the last three equations of (3.10), η̃ satisfies the522

exterior Helmholtz problem with Dirichlet data η̃ = η + w on Γ, by applying the DtN523

operator T on Γ (see, e.g., [58, 19, 9]), we deduce ∂nη̃ = T (η + w) on Γ. Then combining524

with the first and third equations of (3.10) yields525

∆η + k2η = 0 in Ω,526

∂nη − T (η + w) = ∂nξj − ∂nw on Γj ∩ Γ.527528

Since T is linear, η ∈ H1(Ω) is the weak solution to529

cΩ(η, ϕ) =

m∑
j=1

〈Tw + ∂nξj − ∂nw,ϕ〉Γj∩Γ ∀ϕ ∈ H1(Ω),530

where531

(3.16) cΩ(ψ,ϕ) := (∇ψ,∇ϕ)Ω − k2(ψ,ϕ)Ω − 〈Tψ, ϕ〉Γ .532

Using the interface condition (3.9), we can get533

cΩ(η, ϕ) = 〈Tw,ϕ〉Γ +

m∑
j=1

〈
∂nj

ξj , ϕ
〉

Γj
−

m∑
j=1

〈
∂nj

w−, ϕ
〉

Γj
534

535
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for all ϕ ∈ H1(Ω). By applying the inf-sup condition of cΩ (see, e.g., [9]), the continuity536

of T (see, e.g., [19]) and the trace theorem, the following stability for η holds:537

(3.17)

Cp(k)−1 ‖|η|‖Ω . ‖Tw‖H−1/2(Γ) +

m∑
j=1

∥∥∂nξj − ∂nw−∥∥H−1/2(Γj)

. Cp(k) ‖|w|‖Ω +

m∑
j=1

∥∥∂nj
ξj
∥∥
H−1/2(Γj)

+

m∑
j=1

∥∥∂nj
w−
∥∥
H−1/2(Γj)

.

538

Finally, we have the following convergence theorem.539

Theorem 3.4. Let u and v denote the solutions to (2.38) and (2.39), respectively.540

There exists a positive constant Λ0 such that if γkσ0d ≥ Λ0, then541

(3.18) ‖|u− v|‖Ω ≤ Cp(k, σ0, d)e−γkσ0d‖f‖L2(Ω).542

Proof. By combining (3.5) and (3.14)–(3.17), we get543

‖|u− v|‖Ω . Cp(k, σ0, d)e−γkσ0d
m∑
j=1

∥∥v+
j

∥∥
H1/2(Γj)

.544

Using the trace theorem and Lemma 2.5, we obtain545 ∥∥v+
j

∥∥
H1/2(Γj)

. ‖vj‖H1(Ω̂j) . Cp(k)
(
‖v‖H1/2(Γj) +

∥∥∂njv
∥∥
H−1/2(Γj)

)
546

. Cp(k)
(
‖v‖H1(Ωj) + ‖∆v‖L2(Ωj)

)
547

. Cp(k)
(
‖v‖H1(Ωj) +

∥∥k2v
∥∥
L2(Ωj)

+ ‖f‖L2(Ωj)

)
.548

549

Therefore,550

‖|u− v|‖Ω ≤ Cp(k, σ0, d)e−γkσ0d
(
‖v‖H1(Ω) + ‖f‖L2(Ω)

)
551

≤ Cp(k, σ0, d)e−γkσ0d
(
‖u− v‖H1(Ω) + ‖u‖H1(Ω) + ‖f‖L2(Ω)

)
552

≤ Cp(k, σ0, d)e−γkσ0d
(
‖|u− v|‖Ω + (1 + Cstab)‖f‖L2(Ω)

)
,553

554

where we used the stability estimate (2.4) in the last inequality. Then (3.18) follows by555

the assertion Cp(k, σ0, d)e−γkσ0d ≤ 1/2 if γkσ0d is large enough.556

Furthermore, we can obtain the well-posedness of the PML solution v.557

Corollary 3.5. Under the conditions of Theorem 3.4, there holds558

(3.19) ‖v‖H1(Ω) . (1 + Cstab)‖f‖L2(Ω),559

and hence the PML system of equations (2.39) is well-posed.560

Proof. The stability estimate (3.19) is a direct consequence of (3.18) and the stability561

estimate (2.4). The uniquenesses of the solutions v and vj to the PML system (2.39) follow562

from the stability estimates (3.19) and (2.40). It suffices to prove the existence of solutions.563

First, for any given v ∈ H1(Ω), the solution vj to (2.39a)–(2.39c), denoted by vj(v),564

exists uniquely according to Lemma 2.5.565

Second, similar to the derivations of (3.4), (3.9) and (3.10), by defining ṽj = Ejv
+
j in566

Rn \ Ωj and letting567

χ = vj +
∑
i6=j

ṽi in Ωj and χ̃ =

m∑
j=1

ṽj in Rn \ Ω,568

and extending v by ṽ = χ̃, we arrive at569

bΩ(χ, ϕ) = −
m∑
j=1

〈
∂nj

ξj , ϕ
〉

Γj
+

m∑
j=1

〈(∂n − ik)ζj , ϕ〉Γ ∀ϕ ∈ H1(Ω),570
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and571

cΩ(v, ϕ) = −(f, ϕ)Ω + 〈Tχ, ϕ〉Γ −
m∑
j=1

〈
∂nj

ξj , ϕ
〉

Γj
−

m∑
j=1

〈
∂nj

χ−, ϕ
〉

Γj
∀ϕ ∈ H1(Ω),572

where the sesquilinear forms bΩ and cΩ are defined in (3.11) and (3.16), respectively. The573

functions ξj = (Ẽjv
+
j −vj)|Ω̂j

and ζj = (Ej− Êj)v+
j , denoted by ξj = ξj(v) and ζj = ζj(v),574

are both uniquely determined by the given function v. By the Riesz representation theorem,575

there exist some bounded linear operators such that576

(P1χ, ϕ) = bΩ(χ, ϕ), (P2v, ϕ) = cΩ(v, ϕ), (Kf,ϕ) = −(f, ϕ),577

(E1v, ϕ) = −
m∑
j=1

〈
∂nj

ξj(v), ϕ
〉

Γj
, (E2v, ϕ) =

m∑
j=1

〈(∂n − ik)ζj(v), ϕ〉Γ ,578

(K1χ, ϕ) = 〈Tχ, ϕ〉Γ , (K2χ, ϕ) = −
m∑
j=1

〈
∂njχ

−, ϕ
〉

Γj
,579

580

for any χ, v, ϕ ∈ H1(Ω) and f ∈ L2(Ω). Then the variational problems of χ and v above581

are equivalent to finding v, χ ∈ H1(Ω) such that582

P1χ = (E1 + E2)v and P2v = Kf + (K1 +K2)χ+ E1v.583

Since both the sesquilinear forms bΩ and cΩ satisfy the inf-sup condition, P1 and P2 are584

invertible operators. Therefore, we write585

v = P−1
2 Kf + P−1

2 [(K1 +K2)P−1
1 (E1 + E2) + E1]v.586

By the previous analyses in (3.5) and (3.6) and the stability estimate for vj in Lemma 2.5,587

we see that E1 and E2 are both exponentially small with respect to v. More precisely, by588

denoting M = P−1
2 [(K1 +K2)P−1

1 (E1 + E2) + E1], if γkσ0d is large enough, then589

‖M‖ ≤ Cp(k, σ0, d)e−γkσ0d ≤ ε, with some constant ε < 1,590

where in the first inequality we have used the fact that the upper bounds of the norms of591

P−1
1 , P−1

2 , K1 and K2 are all Cp(k). Then the Neumann series592

∞∑
i=0

M i
593

converges and has the limit (I −M)−1, where I denotes the identity operator. It is easy594

to verify that v = (I −M)−1P−1
2 Kf and vj = vj(v) solve the system (2.39). This proves595

the existence of solutions to (2.39).596

4. FEM for the coupled PML system. In addition to the theoretical analysis of597

the stability and convergence of PML, we also present an iterative algorithm and a con-598

tinuous interior penalty finite element method (CIP-FEM) in this section for the practical599

computation using the newly proposed coupled PML method.600

4.1. Variational formulation. Recalling the decomposition Bj = Ωj ∪ Γj ∪ Ω̂j , we601

define the piecewise H1 spaces602

Vj :=
{
v ∈ L2(Bj) : v|Ωj

∈ H1(Ωj), v|Ω̂j
∈ H1(Ω̂j), v|Γ̂j

= 0
}
, j = 1, . . . ,m.603

Denote the average of ϕ ∈ Vj on Γj by {ϕ} = 1
2 (ϕ+ + ϕ−). For any ϕj ∈ Vj and604

ϕ ∈ H1(Ω), applying integration by parts, we find that the solutions vj and v to (2.39)605

satisfy the following equations:606

(4.1)
0 = (Aj∇vj ,∇ϕj)Ωj∪Ω̂j

− k2(Jjvj , ϕj)Bj
−
∫

Γj

[
(∂nj

vj)ϕj
]

= (Aj∇vj ,∇ϕj)Ωj∪Ω̂j
− k2(Jjvj , ϕj)Bj

+
〈
∂nj

v, {ϕj}
〉

Γj
−
〈{
∂nj

vj
}
, [ϕj ]

〉
Γj
,

607
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and608

(4.2) (∇v,∇ϕ)Ω − k2(v, ϕ)Ω − ik 〈v, ϕ〉Γ −
m∑
j=1

〈
(∂n − ik)Êjv

+
j , ϕ

〉
Γ

= −(f, ϕ)Ω.609

Similar to the proof of Corollary 3.5, the above two equations together with the interface610

condition [vj ] + v = 0 on Γj yield a weakly coercive formulation, that is, by decoupling the611

solutions v with vj , there exists a sesquilinear form ã : H1(Ω)×H1(Ω)→ C such that612

ã(v, ϕ) = −(f, ϕ)Ω ∀ϕ ∈ H1(Ω),613

where ã(v, ϕ) := (P2v−P2Mv,ϕ). Since M is an exponentially small perturbation operator614

and P2 is weakly coercive, ã satisfies the weakly coercivity615

ã(ϕ,ϕ) ≥ α0‖ϕ‖2H1(Ω) − α1‖ϕ‖2L2(Ω), with constants α0 > 0 and α1 > 0,616

which is useful in the convergence analysis of finite element discretization (cf. [36]).617

Let Th be a triangulation of D = ∪mj=1Bj . For simplicity, we assume that the triangu-618

lation Th fits all the interfaces and boundaries. For any K ∈ Th, we define hK := diam(K)619

and he := diam(e) for any edge e ⊂ ∂K. Denote h = max
K∈Th

hK . Analogous to (4.1), we620

define the sesquilinear form for the interface problem (2.39a)–(2.39c) as follows621

aj(ψ,ϕ) := (Aj∇ψ,∇ϕ)Ωj∪Ω̂j
− k2(Jjψ,ϕ)Bj −

(〈{
∂njψ

}
, [ϕ]

〉
Γj

+ βj
〈
[ψ] ,

{
∂njϕ

}〉
Γj

)
622

+
∑
e⊂Γj

γjh
−1
e 〈[ψ] , [ϕ]〉e ,623

624

where βj and γj are the interface penalty parameters. Furthermore, we define the sesquilin-625

ear form for the Helmholtz problem with impedance boundary condtion (2.39d)–(2.39e) as626

follows:627

a(ψ,ϕ) := (∇ψ,∇ϕ)Ω − k2(ψ,ϕ)Ω − ik 〈ψ,ϕ〉Γ .628629

Since [vj ] = −v and [∂njvj ] = −∂njv on Γj , combining (4.1)–(4.2), the variational formu-630

lation with interface penalty for (2.39) reads: find vj ∈ Vj and v ∈ H1(Ω) such that631

(4.3)

{
aj(vj , ϕj) = Fj(v, ϕj) ∀ϕj ∈ Vj ,
a(v, ϕ) = F (v1, · · · , vm, ϕ) ∀ϕ ∈ H1(Ω),

632

where the right hand sides are given by633

Fj(v, ϕ) = −
〈
∂njv, {ϕ}

〉
Γj

+ βj
〈
v,
{
∂njϕ

}〉
Γj
−
∑
e⊂Γj

γjh
−1
e 〈v, [ϕ]〉e ,(4.4)634

F (v1, · · · , vm, ϕ) = −(f, ϕ)Ω +

m∑
j=1

〈
(∂n − ik)Êjv

+
j , ϕ

〉
Γ
,(4.5)635

636

Remark 4.1. Some comments for the variational problem (4.3) are as follows.637

(i) The term βj〈[ψ] , {∂nj
ϕ}〉Γj

is the symmetrizing term. In general, βj can be chosen638

as 0, ±1.639

(ii) The penalty term γjh
−1
e 〈[ψ], [ϕ]〉e on the interface Γj is also called a stabilization640

term, and the penalty parameter γj satisfies γj & 1. The idea of using an interface641

penalty is inspired by the discontinuous Galerkin method. (see, e.g., [2, 53]).642

(iii) In view of the definition of Êjv
+
j (x) in Remark 2.4 (iv), the right-hand side of (4.5)643

actually contains two integrals which contain singularity when x is on Γj and are644

regular when x is away from Γj . To avoid evaluating singular integrals, we can645

consider the equation satisfied by wj = Êjv
+
j :646

(4.6)

∆wj + k2wj = 0 in Bj \ Γj ,

[wj ] = −v+
j , [∂nj

wj ] = −∂nj
v+
j on Γj ,

(∂n − ik)wj = (∂n − ik)Êjv
+
j on Γ̂j .

647
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Êjv
+
j (x) can be obtained by solving (4.6) when x ∈ Bj ⊃ Γj , and by evaluating the648

two integrals when x ∈ Γ\Bj (in this case there is no singularity). In fact, the domain649

Bj in (4.6) can be replaced by any neighborhood of Γj .650

4.2. The iterative FEM. The linear finite element spaces are defined as follows:651

Vj,h := {vh ∈ Vj : vh|K ∈ P1(K) ∀K ∈ Th, K ⊂ Bj} ,652

Vh :=
{
vh ∈ H1(Ω) : vh|K ∈ P1(K) ∀K ∈ Th, K ⊂ Ω

}
,653654

where P1(K) denotes the set of all first order polynomials on K. Then the FEM for the655

problem (4.3) reads: find vj,h ∈ Vj,h and vh ∈ Vh such that656

(4.7)

{
aj(vj,h, ϕj,h) = Fj(vh, ϕj,h) ∀ϕj,h ∈ Vj,h,
a(vh, ϕh) = Fh(v1,h, · · · , vm,h, ϕh) ∀ϕh ∈ Vh,

657

where658

(4.8) Fh(v1,h, · · · , vm,h, ϕh) = −(f, ϕh) +

m∑
j=1

〈
(∂n − ik)wj,h, ϕ

〉
Γ
.659

Here wj,h = Êjv
+
j,h on Γ \Bj and wj,h|Bj

is the FE approximation of (4.6) in Bj .660

In practice, the coupled system (4.7) can be solved by iterative methods. For example,661

given an initial value v0
h ∈ Vh, find vlj,h ∈ Vj,h and vlh ∈ Vh for l = 1, 2, · · · , such that662

(4.9)

{
aj(v

l
j,h, ϕj,h) = Fj(v

l−1
h , ϕj,h) ∀ϕj,h ∈ Vj,h,

a(vlh, ϕh) = Fh(vl1,h, · · · , vlj,h, ϕh) ∀ϕh ∈ Vh.
663

The rigorous proof of the convergence of (4.7) and (4.9) remains open and deserves further664

investigation in future work. The numerical experiments in the next section show that the665

iterative algorithm (4.9) converges well.666

4.3. The CIP-FEM. It is known that the standard FEM will generate pollution667

errors in solving the Helmholtz equation with large wave number k, see [3, 56, etc.]. Re-668

ducing pollution errors requires the mesh size in the standard FEM to satisfy k3h2 . 1669

in practical computations, which significantly increases the computational costs when k is670

large. To reduce the pollution error, we introduce a CIP-FEM for solving the coupled PML671

system. The CIP-FEM was first proposed by Douglas and Dupont in [23] for second order672

elliptic and parabolic PDEs, and it was applied to the the Helmholtz problem by Wu et al.673

in [65, 66, 25, 51, 52]. The CIP-FEM has shown great potential in solving the Helmholtz674

problem with large wave number, since it only requires probably the mesh size to satisfy675

kh . 1 in practical computation.676

Let EIh denote the set of all interior edges (or faces in 3D) of the triangulation Th in677

D. The sesquilinear forms of the CIP-FEM are given by678

aj,h(ψ,ϕ) := aj(ψ,ϕ) +
∑

e∈EIh,e6⊂Γj

γehe 〈[∂nψ] , [∂nϕ]〉e ,679

ah(ψ,ϕ) := a(ψ,ϕ) +
∑

e∈EIh,e⊂Ω

γehe 〈[∂nψ] , [∂nϕ]〉e ,680

681

where the penalty parameters γe are numbers with nonpositive imaginary parts and the682

jumps on every e ⊂ ∂K1 ∩ ∂K2 ∈ EIh are defined as683

[∂nψ] |e = ∇ψ|K1
· nK1

+∇ψ|K2
· nK2

.684

The CIP-FEM for the problem (4.3) can be written as: find vj,h ∈ Vj,h and vh ∈ Vh such685

that686

(4.10)

{
aj,h(vj,h, ϕj,h) = Fj(vh, ϕj,h) ∀ϕj,h ∈ Vj,h,
ah(vh, ϕh) = Fh(v1,h, · · · , vm,h, ϕh) ∀ϕh ∈ Vh.

687

Remark 4.2.688

(i) If γe ≡ 0, the CIP-FEM becomes standard FEM. If we consider the scattering problem689
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with time dependence eiωt, that is, the sign before i in (1.2) is positive, then the690

penalty parameters γe should be complex numbers with nonnegative imaginary parts.691

(ii) If vj and v are the exact solutions to (2.39), then [∂nvj ] = 0 on e 6⊂ Γj and [∂nv] = 0692

on e ⊂ Ω. In this case aj,h(vj , ϕj,h) = aj(vj , ϕj,h) and ah(v, ϕh) = a(v, ϕh), and693

therefore, the CIP-FEM in (4.7) is consistent with the variational formulation in694

(4.3).695

(iii) Similarly as (4.9), we can also solve (4.10) by an iterative method.696

(iv) In the extreme case that Ω ⊂ R2 is a slender L-shape domain with large length L and697

small width W , we can choose σ0 = O(L/k) and d h W = O(1) so that condition698

(2.23) is satisfied. Then the degrees of freedom for the coupled PML method is about699

O(LWh−2), while the degrees of freedom for the standard PML method is about700

O(L2h−2).701

5. Numerical experiments. In this section, we present some numerical experiments702

to demonstrate the convergence and performance of the proposed coupled PML method703

for the Helmholtz problem (1.1)–(1.2) in an L-shape domain. All the computations are704

performed by MATLAB.705

We first construct an analytical solution to the Helmholtz problem (1.1)–(1.2) in the706

whole space. As shown in Figure 5.1 (left), Ω0 is the domain consisting of three disjoint707

circles of radius R = 0.25, and Ω is an L-shape domain containing Ω0. The source term is708

defined by f = −1 in Ω0 and f = 0 in R2\Ω0. The corresponding exact solution (see [51])709

of the Helmholtz problem (1.1)–(1.2) is given by710

(5.1) u(x) =

3∑
l=1

ul(x) with ul(x) =


iπR

2k
H

(1)
1 (kR)J0(k |x− xl|)−

1

k2
if |x− xl| ≤ R,

iπR

2k
J1(kR)H

(1)
0 (k |x− xl|) otherwise,

711

where xl (l = 1, 2, 3) denote the centres of the three circles of Ω0, respectively.712

Example 5.1. In the first example, we compare the numerical solutions given by the713

proposed coupled PML method and classical rectangular PML method by using the itera-714

tive FEM (4.9) described in Section 4.2 and the standard FEM, respectively. An L-shape715

domain Ω is considered, which is very thin in one direction, with length L = 30 and width716

W = 1.717

The wave number is k = 10. The PML thickness and PML parameter are chosen718

to be d = 1 and σ0 = 8, respectively. Clearly, the PML thickness is much smaller than719

the diameter of Ω, and therefore each subsystem of the coupled PML system contains720

much smaller degrees of freedom than the classical rectangular PML. The interface penalty721

parameters in the FEM are chosen to be βj = 1 and γj = 10.722

By comparing the numerical solutions with the exact solution in (5.1), we present the723

relative H1-errors of the finite element solutions given by the coupled PML method and724

rectangular PML method in Figure 5.2 (left), where the horizontal axis represents the725

degrees of freedom (DOF), and for the coupled PML method refers to the maximum of all726

the DOFs for all the linear subsystems produced by (4.9). Since each subsystem is solved727

independently of the others, the maximum of DOFs actually measures the peak memory728

cost in the entire computation, if parallel method is not considered. The numerical results729

in Figure 5.2 show that, compared to the classical rectangular PML method, the coupled730

PML method can achieve the same accuracy with much fewer DOF. In particular, the731

peak of the memory cost for the coupled PML method is only about 15% of the classical732

rectangular PML method in order to achieve the accuracy with 10% relative error. In this733

way, the elapsed time for solving the finite element solutions with the coupled PML and734

the rectangular PML are almost the same.735

Example 5.2. In the second example, we demonstrate the effectiveness of the proposed736

CIP-FEM compared with the standard FEM, and the convergence of the iterative method737

(4.9). An L-shape domain Ω with length L = 6 and width W = 1 is considered.738
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Fig. 5.1. Left figure: The construction of PML. Right figure: The triangulation.
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Fig. 5.2. Relative H1 errors and elapsed time of the numerical solutions given by the coupled PML
method and classical rectangular PML method.

The PML thickness and PML parameter are chosen to be d = 1 and σ0 = 2, respec-739

tively. The interface penalty parameters are βj = 1 and γj = 10, and the interior penalty740

parameters are given by741

(5.2) γe = γr + γii with γr = −
√

3

24
−
√

3

1728
(kh)

2
and γi = −0.01,742

where γr is obtained by a dispersion analysis for 2D problem on equilateral triangula-743

tions [37]. The triangulation is produced by an algorithm in which most elements are744

approximate equilateral triangles. This can help to increase the effectiveness of the pen-745

alty parameters in reducing the pollution error. The imaginary part γi of the penalty746

parameter is used to enhance the stability of CIP-FEM, see [65, 66].747

By comparing the numerical solutions with the exact solution in (5.1), we present the748

relative H1-norm errors of the numerical solutions and Lagrange interpolations in Figure749

5.3 for different wave numbers and mesh sizes. We let the relative error be “1” when750

the iteration is divengence. It is shown that for small k, the errors of the CIP-FEM, as751

well as the FEM, are about O(h) and fit the interpolation errors well as h decreases. This752

indicates that the coupled PML with either CIP-FEM or FEM is effective in approximating753

the exact solution for small k. For large k, the errors of the FEM decay more slowly than754

those of Lagrange interpolation. This behaviour shows clearly the effect of pollution errors755

of FEM. The CIP-FEM behaves similarly but the pollution range is much smaller than756

that of FEM, which implies that CIP-FEM has greatly reduced the pollution error.757
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Fig. 5.4. Number of iterations of FEM and CIP-FEM, where -1 represents the failure of iteration.

For a given tolerance error 10−3, the number of iterations given by (4.9) is presented758

in Figure 5.4 for both FEM and CIP-FEM. It is shown that when the mesh size h is small759

enough the iterative solutions vl, l ≥ 1, converge to a stable solution within a few steps.760

Example 5.3. In this example, we consider a multiple scattering problem with three761

sources occupying the domain containing three mutually disjoint subdomains, the con-762

cerned domain Ω is three disjoint squares surrounding these sources, as illustrated in Figure763

5.5 (left). The sources and exact solution are defined in (5.1). The wave number is k = 10.764

All the PML parameters and the interface penalty parameters are the same as those in765

Example 5.1. The CIP parameters are defined in (5.2). The Figure 5.5 (right) plots the766

real part of the CIP-FE solution, which shows the three sources clearly. Figure 5.6 gives767

the relative H1-errors of CIP-FEM for the coupled PML method and the rectangular PML768

method, where the horizontal axis represents the DOFs and the elapsed time, respectively.769

It is shown that the new proposed PML method works well for this multiple sources prob-770

lem. Moreover, to achieve the same accuracy when the subdomains are well-separated,771

both the DOFs (which measures the memory cost) and the elapsed time of the proposed772

coupled PML method are much less than those of the classical rectangular PML method.773

6. Conclusion. We have proposed a coupled PML method for solving the Helmholtz774

equation in a nonconvex computational domain. Rigorous analyses are presented for the775

well-posedness and the exponential convergence of the coupled PML. An iterative CIP-776

FEM is proposed for solving the coupled PML system. Compared with the standard PML777

method (i.e., using one large convex domain to enclose the entire scattering region), the778

proposed PML method can achieve the same accuracy with much less memory cost by779
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Fig. 5.5. Multiple scattering problem
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Fig. 5.6. Relative H1-errors and elapsed time of the CIP-FEM for the coupled PML method and
rectangular PML method.

using several PMLs to enclose a nonconvex neighborhood of the scattering region. The780

numerical experiments show that, for the problem with multiple sources, the new PML781

method requires much less memory cost and CPU time to achieve the same accuracy. For782

the problem with nonconvex inhomogeneities, the new PML method requires much less783

memory cost to achieve the same accuracy with the same CPU time.784
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[45] F. Ihlenburg and I. Babuška, Finite element solution of the Helmholtz equation with high wave886
number. Part II: The hp version of the FEM, SIAM J. Numer. Anal., 34 (1997), pp. 315–358.887

[46] X. Jiang and W. Zheng, Adaptive perfectly matched layer method for multiple scattering problems,888
Comput. Methods Appl. Mech. Engrg., 201–204 (2012), pp. 42–52.889

[47] S. Kapita and P. Monk, A plane wave discontinuous Galerkin method with a Dirichlet-to-Neumann890
boundary condition for the scattering problem in acoustics, J. Comput. Appl. Math., 327 (2018),891
pp. 208–225.892

[48] M. Lassas and E. Somersalo, On the existence and convergence of the solution of PML equations,893
Computing, 60 (1998), pp. 229–241.894

[49] M. Lassas and E. Somersalo, Analysis of the PML equations in general convex geometry, Proc.895
Roy. Soc. Edinburgh Sect. A., 131 (2001), pp. 1183–1207.896

[50] S. Laurens, A general family of perfectly matched layers for non necessarily convex domains, research897
report, inria-00496406, 2010.898

[51] Y. Li and H. Wu, FEM and CIP-FEM for Helmholtz equation with high wave number and perfectly899
matched layer truncation, SIAM J. Numer. Anal., 57 (2019), pp. 96–126.900

[52] Y. Li, W. Zheng, and X. Zhu, A CIP-FEM for high-frequency scattering problem with the truncated901
DtN boundary condition, CSIAM Trans. Appl. Math., 1 (2020), pp. 530–560.902

[53] H. Liu, L. Zhang, X. Zhang, and W. Zheng, Interface-penalty finite element methods for interface903
problems in H1, H(curl), and H(div), Comput. Methods Appl. Mech. Engrg., 367 (2020),904
p. 113137.905

[54] P. Martin, Multiple scattering: an invitation, in Third International Conference on Mathematical906
and Numerical Aspects of Wave Propagation, SIAM, Philadelphia, 1995, pp. 3–16.907

[55] J. M. Melenk, A. Parsania, and S. Sauter, General DG-methods for highly indefinite Helmholtz908
problems, J. Sci. Comput., 57 (2013), pp. 536–581.909

[56] J. M. Melenk and S. Sauter, Convergence analysis for finite element discretizations of the910
Helmholtz equation with Dirichlet-to-Neumann boundary conditions, Math. Comp., 79 (2010),911
pp. 1871–1914.912

[57] J. M. Melenk and S. Sauter, Wavenumber explicit convergence analysis for Galerkin discretizations913
of the Helmholtz equation, SIAM J. Numer. Anal., 49 (2011), pp. 1210–1243.914

[58] A. Moiola and E. A. Spence, Acoustic transmission problems: Wavenumber-explicit bounds and915
resonance-free regions, M3AS, 29 (2019), pp. 317–354.916
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