MAXIMUM-NORM STABILITY OF THE FINITE ELEMENT METHOD
FOR THE NEUMANN PROBLEM IN NONCONVEX POLYGONS WITH
LOCALLY REFINED MESH

BUYANG LI

AssTrACT. The Galerkin finite element solution uj, of the Possion equation —Awu =
f under the Neumann boundary condition in a possibly nonconvex polygon {2, with
a graded mesh locally refined at the corners of the domain, is shown to satisfy the
following maximum-norm stability:

llunllLe=(2) < Clh|lull (),

where £, = In(2+1/h) for piecewise linear elements and ¢, = 1 for higher-order ele-
ments. As a result of the maximum-norm stability, the following best approximation
result holds:

|lu = un|Loo () < Clillu — Tnul| (0,

where I, denotes the Lagrange interpolation operator onto the finite element space.
For a locally quasi-uniform triangulation sufficiently refined at the corners, the above
best approximation property implies the following optimal-order error bound in the

maximum norm:
CONF22 fllwen(ay if 7> k+1,
llu = unl| (o) < kb1 ,
Cghh Hf”Hk(Q) if r= k,

where r > 1 is the degree of finite elements, k is any nonnegative integer no larger
than r, and p € [2,00) can be arbitrarily large.

1 Introduction

This article concerns the maximum-norm stability of Galerkin finite element approxima-
tions to the Neumann boundary value problem

—Au=f in {2
{8nu:0 on 012, (1.1)

under the condition [, fdz = 0 (for the existence of solution) with the normalization
condition |, oudr = 0 (for the uniqueness of the solution), where {2 is a two-dimensional
polygon. The Galerkin finite element solution of (1.1)) is defined by the weak formulation:

(Vup, Vo) = (f,vn) Yop € S, (1.2)
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with the normalization condition | oundz = 0, where S, is the Lagrange finite element
subspace of H'(§2) consisting of all piecewise polynomials of degree » > 1 subject to a
locally quasi-uniform triangulation.

It is well known that the finite element approximation to is stable in the H! norm
on a general polygon with general triangulation, i.e.,

[unll i 2) < Cllullm o), (1.3)

where the constant C' is independent of the solution u and the mesh size h. The result can
be interpreted as the H! stability of the Ritz projection. Since the Ritz projection of u—Iyu
is up, — Ipu, where I, denotes the Lagrange interpolation operator onto the finite element
space, replacing u by v — Ipu in yields the following best approximation property in
the H' norm:

v —upl| g0y < Cllu — Inul gro)- (1.4)

The objective of this article is to establish the following analogous stability result in the
L™ norm on a general polygon (possibly nonconvex) with locally refined triangulation at
the corners:

lunllpoe(2) < Clhllull oo (), (1.5)
where
_f In(241/h) if r=1,
bn = { 1 if r>2. (1.6)

Such maximum-norm stability results have important applications in resolvent estimates of
discretized elliptic operators [6,128], discrete maximal LP regularity of parabolic equations
[13,/14,23}24], and pointwise error estimates of finite element solutions for elliptic, parabolic
and optimal control problems [19,21,22,33]. In particular, the maximum-norm stability
result in would completely reduce pointwise error estimation to interpolation errors,
ie.,

lu = unl| Lo (2) < Clpllu — Inul| oo () (1.7)

The maximum-norm stability result in has been established for convex polygons
and polyhedra with globally quasi-uniform mesh in [20], and for smooth domains in [18}31].
It is known that the logarithmic factor In(2+ 1/h) in the piecewise linear case r = 1 cannot
be removed in general; see [11]. For the Dirichlet boundary condition, the maximum-norm
stability has been established in [29] for nonconvex polygons by utilizing a weak maximum
principle of finite element methods under globally quasi-uniform mesh. However, the argu-
ment using weak maximum principle of finite element methods cannot be extended to the
Neumann problem in nonconvex polygons, or Dirichlet/Neumann problems in nonconvex
polyhedra, or locally refined mesh. Whether the maximum-norm stability can hold,
under either globally quasi-uniform mesh or locally refined mesh, is still an open question
for the Neumann problem in nonconvex polygons/polyhedra and the Dirichlet problem in
nonconvex polyhedra (except for the special case of piecewise linear finite elements with
non-obtuse quasi-uniform tetrahedral mesh [12]).

In contrast to the maximum-norm stability result in , the almost optimal-order error
estimate

lu — up|lpeo(2) < Ch™™17¢ (e > 0 is any fixed number) (1.8)
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was shown in [30] for sufficiently smooth f and general polygons, with triangulations locally
refined at the corners, i.e.,

h(z) ~ min |z — z;|* %k (1.9)
J

where h(x) denotes the mesh size at point x, and z; denotes the jth corner of the polygon
(2. Tt is assumed that the local refinement parameter v; € (0, 1] corresponding to the corner
z;j satisfies the condition v; < f;/r, where 3; = m/6; and 6; is the interior angle at the
corner zj. The convergence order for piecewise linear finite elements was improved in [2]
for the Dirichlet problem with explicit dependence on a Hélder norm of f, i.e.,

Ju = wlle(o) < O (2 + 1Mo (1.10)
under the condition v; < §;/2 and o > 0. More recently, an optimal-order error estimate
o= gy < CH2In2 + 1/) ]y (L.11)

was shown in [1] under the condition v; < /2, for the Neumann problem with piecewise
linear finite elements, with explicit dependence on some weighted W2 norm of the solution
U.

The W stability of finite element approximations was shown for convex polygons and
polyhedra under mildly graded meshes in [10], i.e.,

[unllw.eo 2y < Cllullwreo()- (1.12)
The WP stability
unllwieo) < Cllullwir (o) (1.13)

was shown in [25] for convex polygons with mesh satisfying . Such W1 stability
estimates were also established for the Stokes equation in convex polyhedra [17]. The
extension of these results to nonconvex polygons or polyhedra still remains open, similarly
as the L stability result in (1.5)).

In this article, we prove the maximum-norm stability for general polygons, with
finite elements of arbitrary degree and locally refined mesh satisfying ; see Theorem
The local refinement parameter v; is only required to satisfy v; € (0,8;) N (0,1],
which is weaker than the condition v; < 3;/2 required to obtain the maximum-norm error
estimates in the literature. Some new techniques are developed to prove such maximum-
norm stability results in nonconvex polygons and with graded mesh. In particular, in
the literature of maximum-norm stability and error estimates for finite element methods,
people often use a “dyadic decomposition” corresponding to a point xy where uy, attains its
maximum, i.e.,

J
2= U Q; with 2, ={zx € 2:pj41 <|r— 0| <p;} and p; = 277 diameter(12),
§=0
and reduce the problem to some technical estimates on the subdomains {2;, in order to
derive estimates of |up(zo)| or |up(zo) — u(zp)|. In this article, we introduce a “double
dyadic decomposition” corresponding to both xg and a corner zg, as described in Section
In this way, different estimates can be obtained on the subdomains closer to xg and
the subdomains closer to zg, respectively. Therefore, such a double dyadic decomposition
is convenient for analysis of the maximum-norm stability of finite element methods with
graded mesh locally refined at a corner.



As a consequence of (|1.5) and a local regularity result to be established in this article,
we also obtain the following maximum-norm error estimates:

Cghhk+27%||f||wk,p(g) if r>k+1and~y;e (0 M] at corners,

|w = up|| poo () < " minv(lk;?)d/p
Clyh"t 1 f1l £e (2 if ==k and v; € (0, le] at corners,

(1.14)

where k is any nonnegative integer and p € [2,00) can be arbitrarily large; see Corollary
In particular, if f is sufficiently smooth compared with the degree of finite elements
(in the case r = k), then the order of convergence is optimal with respect to the degree of
finite elements (up to a factor ¢;,); if f is not sufficiently smooth compared with the degree
of finite elements (in the case » > k + 1), then the order of convergence is optimal with
respect to the regularity of f.

The rest of this article is organized as follows. In Section [2| we present the notation,
assumptions and main theorems. In Section [3| we present local H'** W?2P and H?*t®
estimates of Green’s function in nonconvex polygons. These results are used in Section
to prove the maximum-norm stability of the Ritz projection. The proof of is presented in
Section Some technical estimates are presented in Appendices A—C. Throughout this
article, we denote by C' a generic positive constant, which may be different at different
occurrences but will be independent of the mesh size h.

2 Main results

2.1 Triangulation locally refined at the corners

Let (2 be a nonconvex polygon, with vertices z;, j = 0,...,m — 1, oriented counter
clockwise, and denote by I'; the edge between the vertices z; and 241, with z,, = 2. Let
6; be the interior angle of the polygon (2 at the vertex z;, and define 3; := 7/6;. We assume
that the domain (2 is triangulated with the following properties.

(1) Local quasi-uniformity: The ratio between the radius of circumcircle and the radius
of inscribed circle of each triangle is bounded, and the ratios between the diameters
of adjacent triangles are bounded.

(2) Local refinement at the corners: Let h denote the mesh size of the triangulation
(maximal diameter of the triangles). Let h,; ~ hY/% for some constant S
(0, 8)N(0, 1], represent the diameter (up to a constant multiple) of triangles near the
corner z;, and let A(x) denote the maximal diameter of triangles which contain x. We
assume that /i(z) is equivalent to h away from (when x is outside a neighborhood of)

the corners and satisfies the following conditions near the corners z;, j = 0,...,m—1:
h(z) ~ |z — 2", if |z — 2| > 2hs j, (2.1a)
h(I) ~ h*J? lf |:L‘ — Zj’ S 2]1*7]'. (21b)
Hence, the mesh is locally refined at the corners z;, j = 0,...,m — 1, and is quasi-

uniform away from the corners. In particular, the mesh size near the corner z; is
1—’Yj . 1 .
By "B~ B g, with by j ~ W1/,
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If we denote by N the number of degrees of freedom in the triangulation above, then the
following inequality can be shown:

N < Ch™2. (2.2)

Namely, the number of degrees of freedom in the above locally refined triangulation is
equivalent to the number of degrees of freedom in a quasi-uniform triangulation with mesh
size h.

Let 7Ty, denote the set of triangles in the triangulation of the domain (2, and let Sy, be the
finite element space of degree r > 1 subject to the triangulation, i.e.,

Sy = {vn, € HY(2) : vp|, is a polynomial of degree  for all 7 € Tj,}.

2.2 Main results

Theorem 2.1 Let {2 be a polygon which is triangulated as described in Section|2.1. Then
the Ritz projection Ry, : H'(£2) — Sy, defined by

(V(u — Rhu), V’Uh) =0, VYo, € Sh, (2.3)

with the normalization condition fn Rpudx = fQ udz, satisfies the following stability esti-
mate:

||RhuHLoo(Q) < C’EhHuHLoo(Q) Yue C(ﬁ) N Hl(.Q), (2.4)
where Ly, is defined in (1.6)).
Remark 2.1 Since C(£2) N H'(£2) is dense in C(§2), the stability inequality (2.4) implies

that the Ritz projection has an extension Ry, : C(§2) — Sj,. The maximum-norm stability of
the Ritz projection in Theorem immediately implies ([1.5]) for the solutions of (|L.1{)—(1.2]).

The L stability of the Ritz projection in Theorem immediately implies that the
solutions of (1.1)—(1.2) have the following property:

[ nu — un| Lo (@) = [[Br(Ipw — u)|| Lo (2) < ClhllIpu — ul| oo () (2.5)
and therefore
|w = up |l oo (2) < Clpllu — Tpul[ oo (o) (2.6)

The inequality above is called the best approximation property in maximum norm. By
using this best approximation property and the regularity result in Lemma we
can prove the following maximum-norm error estimate, which is optimal with respect to
regularity of f.

Corollary 2.1 Let f € WFP(£2), where k is a nonnegative integer and p > 2 is a real
number such that (k,p) # (0,2) and (1 — %)% is not an integer for j = 0,1,...,m — 1.

s

Then the solutions of (1.1)—(1.2)) satisfy the error bound in ((1.14)).

The rest part of this paper is devoted to the proof of Theorem and Corollary For
simplicity, in the proof of Theorem we assume that there is only one reentrant corner
at zo with 0y € (7, 27), with §; € (0,7) for j =1,...,m — 1, and assume that the mesh is
locally refined only at the reentrant corner zg with a parameter v = ~y. The proof would
be similar if there are multiple reentrant corners or the mesh is refined at multiple corners.



3 Local estimates of Green’s function in nonconvex polygons

In this section we present local W?2P and H?+® estimates for the solution of the Neumann

problem
—Au=f in {2,
{ Ohu=g on 0f2. (3.1)
Note that the compatibility condition

/Qfdx = /Em gds (3.2)

is automatically satisfied once u is a solution of (3.1). Conversely, this compatibility con-
dition also guarantees the existence and uniqueness of solutions to (3.1) under the normal-
ization condition [, udz = 0 (for uniqueness).
Throughout this paper, we denote by s a number satisfying the following condition (unless
otherwise specified):
1 7r 1
e (=, ith :—6(7,1). 3.3
S(zﬁ)mﬁeoz (3:3)
We denote by H*"1(£2) the dual space of H=5(£2). Then LP:(§2) — H*"1(§2) for ps =
2/(2—s).

3.1 H'** estimates in a polygon

1
Lemma 3.1 (Existence of lifted functions in H**1(£2)) Let ¢ € H;izczewise
_1
H. 2 . (892). There exists a lifted function w € H"1(82) satisfying

piecewise

(092) and g €

_1
w:d>€HS+%(8(Z) and Oyw=ge H . 2 . (892) ondf,

piecewise
if and only if the following condition holds:
¢ 1is continuous at the corners z;, j =0,1,...,m — 1. (3.4)

In this case, the lifted function w satisfies the following estimate:

; < ‘
Il o) = C<”¢” N ol 3 (an))

piecewise

(3.5)

piecewise

Proof. Condition (3.4) with s € (3,1) is exactly the condition (5.3) in [3, Theorem 5.2]
in the case n = 0 and m = 2. As a result, the existence of the lifted function and its
boundedness in H*"1(£2) follow from [3, Theorem 5.2 and Corollary 5.3]. |

The following regularity result can be proved by using Lemma [3.1

Lemma 3.2 Let s be any number satisfying (3.3). For any given f € H*"1(2) and
1
ge H . 2 . (d12), the solution of (1)) is in H*T1(£2), and

piecewise
sy < O Naemsiany + gl oy (3.0)

piecewise

Proof. Let ¢ = 0. Then condition (3.4]) is fulfilled, and Lemma implies that there
exists a function w € H**1(£2) satisfying

Ohw =gon 92 and |lw|gs1(o) < Clgll —1 00 (3.7)

piecewise(



If u is the solution of (3.1]) then u — w is the solution of

{ —A(u—w)=f+Aw in {2,

Op(u—w) =0 on 0f2. (3.8)

with the homogeneous Neumann boundary condition. Since w € H**1(£2), it follows that
f+Aw e H1(2). In [8, (23.3)] it is shown that, when 0 < s < 3 as shown in (3.3)), the
solution to the Neumann problem (3.8]) has the following regularity result:
lu — wl| gs1(0) < Cf + Awl| gs—1(0)
< Clfllas—(0) + Clwllgs+ (o)

<C s— C . 3.9
< C1sleovion + Clll s 0 (39
The two estimates in (3.7) and (3.9)) imply the desired result in Lemma |

For a subdomain D C {2 we define the fractional-order Sobolev space on D by

]l gratx Dy = i%f 0]l gra+x() when o € (0,1) and k is a nonnegative integer,  (3.10)

where the infimum extends over all possible extensions & € H*T#(£2) such that o = v on
D. The definition in is equivalent to the usual definition of Sobolev spaces when
D is a fixed Lipschitz domain (see [32, p. 181, Theorem 5]), but is more convenient for
analysis when the subdomain D is nonsmooth and not fixed. By using the regularity result
in Lemma we prove the following local H*T! estimate.

Lemma 3.3 Let D = By(z) N2 and D' = Boy(z) N 2 be subdomains of §2, where z € {2
and 0 < d < diameter(§2), and let w be a smooth cut-off function satisfying

w(x) =1, x € By(2) (3.11a)
w(z) =0, x € R*\Bsg/2(2) (3.11b)
|VFw| < Cpd ™", k=1,2,... (3.11c)

Then for any given f € LP*(£2) and g = 0, with [, fdz =0 and ps := 2/(2—s), the solution
of (3.1) satisfies
|lw = upl|gst1py < Cllfllzes (pry + Cd™*([[ul| p2.00 () + VUl 2,00 (02)) (3.12)

where up is some constant depending on both u and the subdomain D, satisfying |up| <
C’d_2Hu||L1(Q), and || - ||Lp.oo () denotes the weak LP norm defined by

folismqo) = fupAlge € @<l > A}, (3.13)

where [{x € 2 : |w(x)|P > A}| denotes the measure of the set {x € 2 : |w(x)|P > A}.
Proof. Since ps = 2/(2 — s), the following two Sobolev embedding results hold and will be
used frequently:

LPs(2) — H*Y2) and WP (02) < H(0). (3.14)
Let LP9(£2) be the Lorentz space (see 15, §1.4]), and let W1P4(£2) be the space of functions
w such that )

wlhwraga) = (0 + VU ) < .
In the case ¢ = oo, the LP9({2) norm is equivalent to the definition in (3.13)).



Let E : LY(2) — L'(R?) be Stein’s extension operator as described in [32, p. 181,
Theorem 5], which is bounded from W#?(£2) to W*kP(R?) for 1 < p < oo and k > 0.
According to |26, Example 7], the real interpolation space between W1P1(§2) and W1P2((2)
is

1 1-60 6
(WEPL(Q), WEPL(02))g, = WIPUQ)  with — = +— and 1< g <o0.
p p1 p2
By choosing ¢ = oo and using the real interpolation result, we obtain that Stein’s extension
operator is bounded from W1P(£2) to WP (R?) for 1 < p < co. We denote @ = Eu so
that @ = » in 2 and

6] 2,00 m2) + [V 2,00 m2) < C(|[1t]| L2.00 (02) + |Vl L2.00(12))- (3.15)
Since f € LP:(2) — H*1(2), with [, fdz = 0 and g = 0, it follows that (3.I)) has a
unique solution in H'(f2) and therefore the right-hand side of ([3.15)) is bounded (L2

norm is weaker than L? norm).
Let u4 be the average of @ on Byy(z). Then @ := w(u — @gq) is the solution of

Lo sin o o, @19
where
f=fw—2Vi-Vw— (@ — ig)Aw, (3.17)
g=(a—1ug)Vw and g-n=(a—uq)Vw-n. (3.18)
Since f € LP+(2) < H*~'(2) and Vi € L*(2) — H*~'(£2), it follows that f € H*~'(12).
Since u € H(2) — WlPs(2) — H*(2), it follows that
GEWI P (Q) o HY(2) and §-n = (i — 1) Ve 1 € Hioli(092).
Then Lemma implies that

@l s+ ) < CUflls—1(2) + 119 nHHS,% 80))

piecewise(

< C(Ifllge=1(2) + 19l s (e2))
< CUIfls=1() + 19llwres ()
< Cllwflizes @) + ClIVE - Vol Los ()
+ C[(2 — ) Aw|| s () + C||(@ — @a) Vw||y1ps (0)- (3.19)
By using (3.11¢)) to estimate Vw and Aw on the right-hand side of (3.19)), we have
@l zro+1(2) < Cllwfllprs () + Cd™2 @ = Gall Lo (By(z)) + CA VG Los (Bag(2))
< C| fllvs (D) + Cd™ |V 1ps (Boa(z))  (by Poincaré’s inequality)
< Ol flles(pry + Cd72+p%HV'EL||L2,oo(R2) (|15, Exercise 1.1.15])

94 2
< Ol fllge(pr) + CA 27 ([ull e ) + [Vl 2w 1): (3.20)

Since ps; = % implies —2 + p% = —s, and @ = w(u — ug) is an extension of u — 4y from
D to 2, the last inequality implies (3.12)) in view of the definition in (3.10)), with up = g,

i.e., the average of &« = Fu in Byy(z). Therefore,

1
/ Fudz
Baa(2)

<Cd? |Eu|dz < Cd_2||u||L1(Q),
BQd(Z)

u =
ol = 5



where the boundedness of the extension operator E : L'(§2) — L'(R?) is used. [

3.2 A priori W?? and H?*t® estimates in a polygon

It is well known that in a nonconvex polygon, f € LP({2) and g € wi-lp (002) with

1ecew156

p > 1 may not imply u € W?2P(£2) for the solution of ([3.1]). However, for a solution u which
is a priori in W2P(£2), we still have the following WP estimates.

Lemma 3.4 (A priori W2? estimates) Let u € W2P(£2), with p > 1, be a solution of
(13.1), and assume that the following conditions are satisfied:

2 1\ 20,
2 —— and (1 - ) = are not integers for j =0,1,...,m — 1. (3.21)
p p), ™
Then
[ulwieo) + [ulw2e2) < CUIf e + llgll 163451:;(09)) (3.22)
where
WiodlB (902) = {q € LP(092) : q € WIVPP(D}), j=0,1,...,m —1}. (3.23)
In particular, if w € H?(£2) is a solution of (3.1) with g =0, then
lulm o) + [ulmz@e) < CllfllL2)- (3.24)

Proof. From [16 Corollary 4.4.4.14] we know that for the given f € LP(f2) and ¢ €
Wwi-1/p (012) satisfying the compatibility condition [, fdz = [,,gds (which must be

plecewise

true if u € W2P(£2) is the solution of (3.1))), there exist some constants cj,, n =1,..., K;
and j =0,...,m — 1, such that

m—1 Kg
¢jnSin € W2P(02), (3.25)
j=0 n=1
where Sj,, n =1,..., K}, are some weakly singular functions (independent of f and g) not

in W2P(£2), but AS;, € LP(§2) and 0,5, = 0 on 2. The number of such singular terms
depend only on {2 and p. In fact, we have

nm

Sin(w) = 6l = sz = 2" cos (FL05(2), (3.26)

where ©;(z) denotes the angle between the two vectors x — z; and z;41 — 25, and ¢ : R —

R is some smooth cut-off function such that ¢(|z — z;|) = 0 when x is outside a small
neighborhood of the corner z;, and Kj is the largest integer such that K; < (1 — 7)&

o ?

Let X be the Banach space spanned by W?2P(£2) and Sjn, with n = 1,..., K; and

j=0,1,...,m—1, and define Xg = {v € X : [,vdz = 0}. Let Y = {(f,g) € LP(Q) X
ngecle/vf;fe(a(z 2, o fdr = /. a5 9ds}. Then the above-mentioned regularity result implies

that the operator
(A, 6n) : XO —Y
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is one-to-one, bounded and onto. Therefore, there exists a bounded right inverse of the
above operator. This implies that

m—1 Kj m—1 K;
Solesal +|ume= Y3 GaSin| < Oy + ol o) (3:27)
j=0 n=1 §=0 n=1 W2r(02) P
for some constant ¢ = ﬁ [oudz. If w is a priori in W*P(£2) then ¢;,, =0forn=1,..., K;

and j =0,...,m — 1. In this case, the above inequality implies (3.22)).
In the case p = 2 and g = 0, it is shown in [16, Theorem 4.3.1.4] that any solution
u € H?(02) of (3.1 with g = 0 satisfies the following estimate:

ull 20y < CUIfll2o) + llullz2(2)-

Let up = ﬁ Jo udz be the average of u over £2. Then u — ug is also a solution of ([3.)
with ¢ = 0. Replacing v by u — ug in the inequality above yields

lu —ugllm2@) < CUlfllzee) + lu —uellr2@) < CUIfllz) + [IVullp2)-
By substituting the standard energy estimate ||Vu| ;2() < C| fll12(0) into the inequality

above, we obtain ((3.24]). [

Similar as Lemma for a solution which is a priori in H?*%(2), the standard H?**
estimates still hold. The proof of this result requires using the existence of a function

1
w € H*F () satisfying d,w = g, for any g € Hsizczwise((‘)()). This is guaranteed by the
following lemma.

Lemma 3.5 (Existence of lifted functions in H?T%(§2)) Let a € (0,1), and let ¢ €
EN 1iq
o2 (092) and g € o2 (092). There exists a lifted function w € H*T(§2) sat-

piecewise piecewise
isfying
w=¢ and O,w=g on OS2,
if and only if the following conditions hold:
¢ and (0r¢)T + gn are both continuous at the corners z;, j=0,1,...,m—1,  (3.28)

where T and n denote the unit tangential and normal vectors on the boundary 02, respec-
tively. In this case, the lifted function w satisfies the following estimate:

lwlgzeae < (Il (3.29)

<arz>> '

goo Hllal e

H (02) H

piecewise piecewise

Proof. Condition (3.4)) is exactly the condition (5.3) in [3, Theorem 5.2] in the case n = 0, 1
and m = 2 therein. As a result, the existence of the lifted function and its boundedness in
H?*2(0) follow from [3, Theorem 5.2 and Corollary 5.3]. [

Lemma 3.6 (A priori H?T® estimate) Let u € H?>TY(£2) be a solution of (3.1), with

(1 + Oé)ej

a € (0,1) and is not an integer for 5 =0,1,...,m — 1. (3.30)

Then there exist constants ¢ and C such that

= cllsrecer < O Nz + 19l e )

piecewise
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where
HI  (90) = {qe LX092): qe H¥"(T,), j=0,1,...,m — 1},

piecewise

lc| < Cllull (o) and the constant C is independent of u, f and g.

Proof. We define ¢ to be a cubic polynomial on each side I'j, j = 0,1,...,m —1, such that

0=0, O0=T—TT and g g = I
Ty - N— T— N4

at every corner z; from both sides of the corner, where 7_ and n_ denote the tangential
and normal vectors on the left side of the corner, 7, and n4 denote the normal vectors on
the right side of the corner, and g_ and g4+ denote the values of g on the left and right sides
of the corner. Then ¢ and g satisfy the conditions in . In fact, the above expressions
of 07, ¢ and 0;_¢ at a corner can be solved from the following two equations:

(D7, 64)74 + gini] - ne = [ 6-)7— +g-n_] -n = g,
[(Or_¢-)7— + g-n_] -ny =[(Or, ¢4 )7+ + g4nq] -1y = g4 .
Therefore, Lemma implies that there exists a lifted function w € H**2(2) satisfying

a+i
Opw =g € H o 2:.(002) on 002 and  [[w[g2+a(g) < C’HgHH;:CZWQ(am. (3.31)
If u is the solution of (3.1)) then u — w is the solution of
—Alu—w)=f+Aw in £,
{ On(u—w) =0 on 0f2. (3.32)

with the homogeneous Neumann boundary condition. Since w € H**2(42), it follows that
f+Aw € HY(2). In [8, (5.11) and p. 210] (also see |7, page 24]) it is shown that the
solution of the PDE problem with f + Aw € H*({2) can be written as a singular
part plus a regular part (similarly as in the proof of Lemma , ie.,

m—1 Kj nmw
w—w—3"3"¢juSin € H*(Q) with Sju() = |z — 2| cos (Zi@j(x)), (3.33)
j=0 n=1 J

1\ 26,

where Kj is the largest integer such that K; < (1— 7> =L Moreover, the following estimate
p/

holds (similarly as in the proof of Lemma [3.4)):

m—1 Kj m—1 Kj
ZZ\%H u—w—co= > ¢nSin < C|If + Awl|ga(e)
j=0 n=1 j=0 n=1 H2> e (02)

< CHfHHa(Q) + Hw||H2+a(Q).

where ¢y = ﬁ Jo(u—w)dz =: ¢+ ¢1, where ¢ = ﬁ Joudz and ¢; = ﬁ Jowdz. By using
the triangle inequality and (3.31]), the inequality above implies that

m—1 K] m—1 K
EHEIETESY chn jin < Clfllmee) + Cllwlgztao) + Ce
j=0 n=1 Jj=0 n=1 H2He(0)

C o .
(1@ + e )

piecewise
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If u is a priori in H**%(£2) then ¢j, =0 forn =1,...,K; and j = 0,...,m — 1. In this
case, the above inequality implies the desired result in Lemma (3.6 |

3.3 W?2P and H?™® estimates away from the reentrant corner

As mentioned at the end of Section [2, we assume that there is only one reentrant corner
at 2o with p € (m,2m), with §; € (0,7) for j =1,...,m — 1. We define

ap := min (292 -1, 1§jmgi£71 (;;) - 1) € (0,1), (3.34)
2

N 1-— (70} ’
Then any p € (2,pp) and « € (0, ap) satisfy the conditions in and . Moreover,
we have the following qualitative regularity results away from the reentrant corner as a

result of the decomposition in (3.25)) and (3.33)).

Lemma 3.7 For any 0 < d < diameter({2), the solution of (3.1)) has the following prop-
erties:

(1) If f € LP(©2) and g € W /PP (902), then u € W2P(2\By(20));

piecewise

(2) If f € H(2) and g € HY2T (802), then u € H*(2\Bqy(z0)).

piecewise

Po: (3.35)

For the Neumann problem (3.1) with g = 0, by using Lemma and we have the

following local quantitative estimates away from the reentrant corner.

Lemma 3.8 (Local W2? and H?* estimates away from the reentrant corner) Let p €
[2,p0) and o € (0, ), and let u be a solution of (3.1) with g =0. Let D = By(z) N {2 and
D' = Byya, (2) N 02, with z € §2, be subdomains of £2 such that

d< Kd, and d+d,<|z— 2]
Then

lul g1y < Cr(dil| fll2(pry + [Vl L2.00(pry), if felL*D),
(3.36a)

[ulwir(p) + [ulwzr(p) < Ck <HfHLP(D/) + d:2+2/p”quLQv°°(D’)> , if feLP(D).
(3.36b)

Moreover, there exists 5 € (0,1) such that D can be covered by a bounded number of smaller
subdomains Dj = Bgq/o(j) N §2 (with some points (; € D), j =1,...,Jg, such that

lu = up | g2vepry < Crd,® (If 2oy + AV fllpzpry + di I Vull p2oopy) - (3.37)
if feH\ (D),
where D;- = Bga(¢;)NS2 and upy, are some constants depending on both u and D;, satisfying

lup:| < Cd,?|lull 1 (-

Remark 3.1 In Section 4, we will decompose the domain into some subdomains and
cover each subdomain by a finite number of balls B4(z) (with several different z in the
subdomain). Then we apply the estimates on each By, /8(2) to obtain Lemma 4.2.
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In the estlmatlon of the Green function and the regularized Green function (see Lemmas
., u 4.1) and 4.2)), and in the proof of Theorem [2.1] ., we have to frequently use some H?+®
estimates of the Green function. Since we cannot directly prove such H?T® estimates on
the subdomain D = By(z) N 2 (which may intersects two adjacent sides of {2 and therefore
nonconvex), we have to cover D by some smaller convex subdomains D; = Bgg/2((;) N §2
which intersect at most one edge of 2 (and therefore convex) and use the estimates on
these convex subdomains D;. This is the motivation of dividing D into subdomains D,
j=1,...,Js

Proof. Without loss of generality, we can assume that f is qualitatively smooth enough,
provided our quantitative estimates presented below are independent of the assumed extra
smoothness of f.

Let (€ D be any fixed point and consider D¢ := Bgq(¢) N 2 and Dj; := Bgaypa, (¢) N 12,
with g = 1+K) sin(2r — 6p). Then we have 8d + Bd, < |¢ — 20| sin(2m — ), which
guarantees that the disk Bggygd, (¢) can intersects at most one side of the wedge at corner
zp. As a result, the subdomain Dj is convex and |Dy| > d?/C. In this case, the following
Poincaré’s inequality holds (cf. [4, Theorems 1.1-1.2]):

lu = upllLapy) < Cdul[Vullpapyy V1< g < o0, (3.38)

where u Dy denotes the average of u on D’

Since D = By(z) N 2 can be covered by a finite number of subdomains of the type
Bﬁd/Q(C) N 2 with ¢ € D (the number depends only on 3, independent of z, d, d,), we only
need to prove the following estimates in Dy = Bgq({) N £2:

[l (pg) < Ck (dell fllL2(or) + IVull L2 (pr)) (3.39a)

lulwir(pe) + [ulwzepy < CK(HfHLP(D’C) + d*_2+2/pHVUHL2,oo(D'C)) for p € [2,po),
(3.39)

lu = cllmz+any) < Crdy® (I fll2(py) + del VF 2oy + di I Vullzzeo(ny),  (3.39¢)

where ¢ is some constant depending on w and D¢, satisfying that |c| < Cd;2HuHL1(D/C).

Then (3.36)—(3.37) follow from ([3.39)).
To prove (3.39a)-(3.39¢), we introduce a convex subdomain D; := Bggyga, /2(¢) N £2,
which satisfies D¢ C 5& C D/, and define a smooth cut-off function w(x) such that

w(z) =1, x € Bgq(Q) (3.40a)
w(x) =0, € R*\Bgyiga, () (3.40Db)
IVFw| < Cpd®, k=1,2,... (3.40c)

In view of Lemma we have @ = w(u — up, ) € W2P(£2), and it is the solution of the
¢

equation

—Aa=f in £,
{ Opi =¢g-n on 012, (3.41)
where
f=fw—-2Vu-Vw—(u—-up )Aw and g§=(u—up )Vw. (3.42)
¢
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For p € (2,pg), we choose g € (1,2) satisfying 1 = 2/q — 2/p so that WhH4(02) — LP(£2)
and W24(02) — WLP(£2). Since 1 < ¢ < p < po, it follows that ¢ also satisfies the condition
(3.21]), as explained below ([3.35)). Then Lemma implies that

IVallwrace) < ClFlzac) + CllG - 1llyi-1/aa o

piecewise

< C|lfllzac) + Clgllwrae)
< CUlfllogpy) + d;luvunm(ﬁé) +d7?u— gy | ucny)
< C(Hf”Lq(BZ_) + d*—luvu”m(f),g)) (the Poincaré inequality (3.38]) is used)

< Ol 2 gy + IVl e ) (3.43)

)
and so

Vil Lr(2) < ClValwrao)
< C(d:1+2/q”fHL2(5’<) + d:2+2/q||vu‘|p,oo(5/c))

< C(di/prHLz(fyg) + d;1+2/P||VuHLz,oo(5/§)), (3.44)

where 1 =2/q — 2/p is used in the last inequality. Since w =1 on D¢ and @ = w(u — u[)'c)’

the last inequality implies that

2 —142
IVullzoig < C@ 1 £l 2y + di 71Vl e ) (3.45)
By using Holder’s inequality, we can further derive the following two inequalities:
1-2
IVl 2(pg) < A7V ullioing) < CN oy + V0l paoniy): (3.46)
—142
||Vu||LP(DC) < C(d*Hf”Lp(ﬁ/() + d* * /p”VU||L2,oo(5/C)) (347)
This proves (3.39al).

Similarly as (3.46)—(3.47), replacing D¢ and ZN?Z by lND’C and DIC’ respectively, we also have
the following estimates:

IVull 25y < Cldellfllz2oy) + IVl 2o oy, (3.48)
IVl o sy < Ol lonyy + 2P IVul 2o o). (3.49)
The last inequality and Lemma |3.4] imply
lilwro(o) + ldlw2e) < Cllf o) + Cllg - nHW;;L@";S’;(aﬂ)
< ClIfllo(e) + Clldllwro(o)
< CUIf oy + 4 IVl oy + 22— s o)
< C(Hf”,;p(ﬁfg) + d;1‘|VUHLp(5/C))
< C (05 + 4 @l gy + & 2PV ull 2o o))
< C(|fllzooy) + de P [ Vull ooe (r)-
This proves in the case p € (2,pp).
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For p = 2 we have @ = 17 + U9, where 47 and @y are solutions of

—Ady = f in £, and —Al; =0 in £,
Optiy =0  on 912, Oplia = g-n on 0f2.

By applying (3.24]) and (3.22)) to 41 and g, respectively, we obtain

1|1 () + 1|20y < CllF 20
< CUfll2(py) + d*_lHVUHLZ(ﬁC) +d 2| - upy 2 m))
< CU N iy + dilﬂquLz(ﬁé))
and

|G2lwir (o) +l@2lw2e@) < Clg-nlly1-1/m0 50,

piecewise
< Cllgllwrr(e)
< CdilHVUHLp@/()

-142 —242
<Clde "Nl +de "lIVullp20 ()

where ([3.45)) is used in the last inequality. By using Holder’s inequality, we have
_ _ -2 _
ol 1) + 2| g2(0) < Cdi P (|t2]wiro) + [G2|w2e ()

< C(Iflle2y) + dIIHVUHL%w(Dg))
Combining the estimates of @ and s, we obtain
lal o) + @l g20) < CUf 2oy + dillwuHL%w(Dg)) (3.50)

This proves (3.39b)) in the case p = 2.
Next, we prove (3.39¢). In view of the qualitative regularity results in Lemma we

have @ = w(u —up, ) € H*T%(£2), which is the solution of (3.41). For the given a € (0, ap),
¢

we choose p = 2/(1 — «) so that H*({2) < LP({2). Let @ be a smooth cut-off function such
that

w(x) =1, € Bgaypa,/2(C) (3.51a)
©(x) =0, = €R*\Bgarpa, (C) (3.51b)
VG| < Cpd®, k=1,2,... (3.51c)

so that w =1 on 152 and @ = 0 outside D/C'
Since

1f@llr2(2) < Cllflz2(or)
f@llgo) < Cd;1||f||L2(D'C) + C”foLQ(D/C)a
it follows from the interpolation and Young’s inequalities that
|18y < 11805y 13150 ) < O FLzacy) + O Izt IV 2
< Cd | fllzaeory + CdifaHVme(Dg)- (3.52)
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Similarly, for the smooth cut-off function w defined in , the following result holds:
I fwllaqay < I fwllpaio) I fwllfn g < Cdy aHfHLz ) +C||f||L2(D, IV £z
< Oy + OV oy (359
By an obvious change of domain from D{. to l~)’<, implies
[alwroq) + lilwer) < Ul guzy + 7 1Vull 2. )
< CIBf o) + 2P IVul o 5)
< CI&f o+ ds |Vl 2 )

< O(d: I fll 2oy + AUV Fll2op) + A 2PV all g2y
(3.54)

which reduces to

[ulwrr(pe) + [ulw2(p) < CU |2y +di @IV Fll 2oy + dn > PVl 2o (y)-

Again, by an obvious change of domain from D to D’ , we can rewrite the last inequality
as

- o —242
oy + [ehwascay) < Ol oy + 4 IV Flzaqop) + ds 7V ul e ony)
Since 1 — 2/p = «a, by using Holder’s inequality we get
1-2/p
|u’H1(52) + |U’H2([)/C) < Cdy (‘U|W1,p(52) + ‘U|W2,p(5/<))
< C(Hf”L?(D’C) + d*||VfHL2(D'C) + dIIHVUHLZOO(Dg)) (3.55)

In order to obtain H?t® estimate for @, we first estimate || f|| He () below, where fis
defined in (3.42)). By the properties of w and the Holder inequality, we have

[(u = up Al r20) < Cd 2 lu—up, |25,y < CAM IVl ),

I(u = up ) Awlme) < [(u —up ) Awlr2(0) + [[Vudwllraig) + 1w — up ) VAW r20)

< Cd?|lu — up, HLQ(EQ) + Cd;QHVuHLQ(Eé) + Cd3u — g, HLQ(E,C)

-2

< Cd, HVUHL2(5/)

By the interpolation inequality between LQ(Q) and H'(§2), we have
I(w = up, ) Al ey < ll(u — )AWHLQ (ol = up)Awlin g
—1-a
< Cd; ||VuHL2(5,<). (3.56)

Similarly, we have

HV’LL V(.UHL2 <Cd 1HVUHL2(D/

[V Veoll sy <CAZ2Vull gy + O™l ) + [l i)
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which imply the following result by the Sobolev interpolation inequality and Young’s in-
equality:

[Vu - Vol gaioy < |[Vu - Vw||L2(Q)||Vu'VwH?}1(Q

< cd; IVully2, b1 (Cx 21 ull 2y + Ol s )
< cd; || vu ull e B, (Cds 2| Vaullg,, By +Cds 1\u|H2(D, )
<cd;'” 0‘||Vu||L2(D, +Cd; 1||Vu||L2(D, [l 5 (3.57)
The estimates in and - 7)) imply that
HfHHc« ) <Cdy “I!f!!L2(D)+Cd1 WV Al 2,
+ Cd 0 Vul oy + C 1HVu||L2 Wl (3.58)

By applying Lemmam 3.6/ to equation (3 and using , we obtain
|2 — 1|l gae (o)
< Clif ey + Cllg - nll i 2+a

plecewuae
< C”JZ”H“(Q) + C| gl fri+e (o)
< CA N fll oy + O IV Fll 2

(092)

+Cd; ™ Va5 By) + Cd7 |Vt

Julf

L D' H2(D})

< Ol 2y +Cd, IV £l 2 B) +Cd |Vl (@) T Cd ul e i),

where ¢; is some constant satisfying |ci| < C [, Ja|dz < CfD, |u|dz. Then, substituting

and into the inequality above, we have
hu—up, - c1\\H2+a<D<> < Cre (A1 2oy + A1 Flaqoy) + 4= Vull ooy ) -

where the constant ¢ :=u B, + ¢ satisfies |c| < Odj_2 I} o7 |u|dz. This proves (3.39¢)).
The proof of Lemma is complete. |

3.4 Local estimates of the Green function

Let I'(x,y) be the Green function of the Neumann problem, defined by

{ —AL(,y) =0y — 5 in 2,

(3.59)
nI'(,y)=0 on 012,

where d,(z) is the delta function satisfying [, d,(z)¢(x)dz = ¢(y) for any qb E C(ﬁ) For
uniqueness of the Green function, we impose the normalization condition [, T 0 ,y) doe =
the Green function satisfies the basic weak L? estimate [27, Theorem 1.3]:

IVE(, )l 220y < C. (3.60)
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Since [, T'(z,y) dx = 0, the above estimate also implies (via the Sobolev embedding in-
equality)
ITC ) llLae) < CIVEC y)llp2ee) < € for 1< g < oo. (3.61)
We will need the following local estimates of the Green function in the next section.

Lemma 3.9 (Local estimates of the Green function) Let p € (2,pg) and a € (0, ), and
let D = Bg(z) N §2 with

d < Kd, and d+ di < min(|z — 2o}, |2 — y]).
Then the Green function I'(z,y) satisfies

1Tl a0y < Cks (3.62a)
ITCs )20y < Ckd; ", (3.62b)
ITC, ) lwer(py < Credi 7. (3.62¢)

Moveover, there exists f € (0,1) such that D can be covered by a bounded number of
subdomains Dj = Bgg/2((5) N §2, j =1,...,Jg, with

ITCy) = e, W)l pz+a(pry < Crdi ™2, (3.63)
where D;- = Bgq((j) N 2 and D, (y) is some constant depending on D; and y, satisfying
e, (y)| < Cd.2.

Ifd+d, < Kdy and d+d, + dy < |z —y|, then the following improved estimates hold:
TGl 2oy < Crdy'dy®, (3.64a)

—2424s
ITC 9 llwenpy) < Crde 7 dy° (3.64b)

Proof. The condition d 4+ dy < min(|z — 29|, |z — y|) guarantees that the subdomain D" =

Byi4,(2) N §2 is away from the reentrant corner and the singularity point y. As a result,

the solution I'(,y) of equation has W?2P? and H?**® regularity in the subdomain D'
By applying Lemma and using the basic estimate , we have

TG )i py < Cr (dell1/12[ll L2y + IVL G 9) || 200 (1)) < Ok,
ICCo9)lwiwo) +I0C9)lwzapy < Ck (g llzeon + d:2+2/p||vr('»y)HLQm(D’))
I0C,9) 1) + DG 0) |20y < Credi 2P0 C 9wy + [0C,9) lwen(p)) < Credy

Moreover, according to Lemma D can be covered by a bounded number of subdomains
D; = Bﬁd/g(gj) N§2,j=1,...,Js, with

ITCy) = e, lm2vapyy < Cr (dN11/120 2oy + d IV ()20 (pry) < Cdi 70
where cp, (y) is some constant which satisfy |cp,(y)| < C'd*_2||I‘(-,y)||L1(D/.) < Cd;?. The
J
above semi-norm estimates and the L?-norm estimate in (3.61]) together imply the desired

results in (3.62)—(3.63]).

Let D" = Bjyd,+d,(2) N {2. Let w be a smooth cut-off function such that
w(x)=1, =€ Bgyq, (2) (3.65a)
w(x) =0, xe€ Q\Bd+d*+d# (Z) (365b)
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IVFw| < CrdzF, k=1,2,... (3.65¢)
Hence, w = 1 on D’ and w = 0 outside D”. Then applying Lemma [3.8 yields
ITC, ) lwrey + TG y)lwze(p)
< O (1120 ooy + d P IV 20w 1)

_942 1.2
<Cg (C’ + d, +pd* ¢ HVF(-,y)HLq(D/)) (Holder inequality with g > 2 satisfying s = 1 — %)

_942. g
<Cr(Crde T, y) = )llmn)  (with HF(2) = Wha(2))
—2+%+s s
< Cx[C+a T (1120 s oy + dg (T C ) 2y + IVTC9) o)) |
9424
S CKd*2+p+ d;/;sa

where ¢ can be an arbitrary constant in the third to last inequality, and we have used ([3.20)
in estimating |lw(T(-,y) — ¢)[|gs+1() With u =T'(,y), ¢ = g, f = 1/|£2| and ps = 2/(2 - s).
By using Holder’s inequality, we further derive the following result:

1-2 s
TGy + TG )2y < Cdie " (TG 9) ey + TG 9)lweep)) < Credy'dy”

The two semi-norm estimates above and the L%-norm (3.61]) together imply the desired
results in (3.64). The proof of Lemma is complete. [

4 Proof of Theorem

We only need to prove the following result for any given point xg € (2 in the interior of
some triangle 7q:

|Rpu(zo)| < Cllullpee(n) for any given zq € (2.

We first focus on the case |xo — zg| > 16Kh., where k > 1 is a parameter to be determined
later. From now on, we keep the generic positive constant C' independent of x until it is
determined, and keep C' independent of xg. The case |29 — 29| < 16xh, will be discussed
after the parameter x is determined.

4.1 Double dyadic decomposition of the domain

We decompose the domain {2 into disjoint subsets

2 =0, Jul,0;Jo. | Ju0; | Julti e, (4.1)
where

Oy ={xe:|x—2|<dji1}, (4.2a)
Oj :={x e R:dj41 <|r— 2] < dj}, j=0,1,...,Js, (4.2b)
O, :={z € Q:|x— 0| <dy 41}, (4.2¢)
Oj:={xeR:dj <|z—mx <dj}, F=0,1,..., Jp, (4.2d)
Q;={xe:pj1 <|x— 2| <pj}, j=0,1,...,J, (4.2¢)
Qo ={x e R:|z—xo| >doy, do < |z — 20| < prs1}, (4.2f)
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with d; = 2777 2|zg — 29|, Jx = [log2 (lﬁg;ﬁl)} and J,, = [logQ (M)} for some

16r77 h(a)
o € (0,1), and p; = 2 diameter(§2) and J = [logQ (%‘fﬁ‘?)) ], so that
2khy < dj, 11 < 4khy, (4.3a)
2677 M(x0) < dy,,+1 < 4677 R(0), (4.3b)
8lxo — 20| < pyr1 < 16]zo — 2], (4.3¢)
dist(0;, 0;) ~ |xo — 20l (4.3d)
dist(Oj, §2;) ~ dist(Og, £2)) ~ pi, (4.3e)

where dist(Oy, 52) denotes the distance between the two sets O; and O;. Moreover, we have

K™ h, < h(z) < 2Kk h,, Ve O,, (4.4a)
h(x) ~ d; " "h V€ 0;, (4.4b)
A(z) ~ h(zo) V& e 0;UO,, (4.4c)
h(x) ~ pjl-fwh Vo e f2, (4.4d)

for some positive constant K (independent of k). We denote by h; the mesh size in O; and
h; the mesh size in £2;.

Let

0; = 0;_15U0; U0 1), (4.5)
0% = 0j_12U0; UOjy1, (4.6)
Q5= 025_1,UQ2;UQ1, (4.7)
(4.8)

with
Oj—1/2 = {.’E € dj+1/2 < ‘JZ — Zo‘ < dj—1/2}7 (4.9&)
Oj—1/2 = {x €. dj+1/2 < ‘l’ — ZIZ‘0| < dj—l/?}a (49b)
2 _1y2 = {r€2:pjr12 < |z —20] <pj_i/2}, (4.9¢c)
O_1=0_1 =024, (4.9d)
R719:=0pU 50, (4.96)
(4.9f)

and
O, =1{0;:0<j < J.}, 0., = 0, U{O0.}, (4.10a)
Opo i={0j : 0<j < Juo}, Ol =0, U{0,}, (4.10Db)
O:={02;:0<j<J+1}, O :=0U{2)42}. (4.10c)

Then we have 2 = O, Ué* U ( Uo,e0., Oj) U ( U@eozo 5]) U ( Ug,eo Qj).
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Remark 4.1 In the case |zg — 29| > 16khs ~ 16kh*/7 we have |z — 2o|Y > 167x7h and
|xo — 20] |zo — 20| |z — zo|7 _ KY1=9)
KYh(xo) KV |xo — 20/' 7R KYYh —  C

Hence, for the fixed o € (0, 1), we can choose « sufficiently large to make sure that |z¢—zo| >
16x77h(xo).

Remark 4.2 The double dyadic decomposition O; := {z € 2 :d;41 < |z — 2| < d;} and
5j = {x € 2 :dj11 < |z — 20| < dj} are defined for d; = 277 2|xg — 29|, j = 1,..., s
and therefore with radius d; smaller than |zg — z9|. They reduce to the single dyadic
decomposition §2; := {x € 2 : pj11 < |z — 20| < pj} when the radius exceeds |zg — zo|. We
use p; to denote the radius when it is bigger than |zy — 2o

4.2 Regularized Green’s function

Recall that 7y is the triangle which contains xg. We denote by Sxo € C3(7p) a regularized
Delta function which has the following properties:

Sxo is compactly supported in g, (4.11a)

(620, 0n)ro = vn(z0), Vup € Sh, (4.11b)
/ Oz () da =1, (4.11c)
1620 () < Ch(z0) 2077 for 1< p < oo, 1=0,1,2,3, (4.11d)

It is known that such a smoothed Delta function exists; see [34, Lemma 2.2].
The regularized Green’s function G(z,x¢) is defined by using the regularized Delta func-
tion, as the solution of

(4.12)

—AG(w0) = 05y (1) = iy I L2,
oG (-,29) =0 on 0f2.

Since [, (6(z) — ﬁ)dx = 0, the equation above admits a unique solution up to a constant.

The discrete Green’s function G (-, o) € Sy, is defined as the finite element solution of the
problem

1
(VGh(+, z0), Vop) = vp(zo) — m /th(a:)dx, Yoy € Sp, (4.13)

which is also well defined up to a constant. For uniqueness, we further impose the condition

/QG(:U,wo)da::/QGh(:r:,:no)dm:

Similarly as the local estimates of Green’s function in Lemma the following local
estimates of the regularized Green’s function hold.

Lemma 4.1 (Local estimates of the regularized Green’s function) Let p € (2,py) and
a € (0,a0). Let D = By(z) N 2 and assume that

d < Kd, and Bgiq (z) {20} = Bira,(z) Nsupp(dy,) = 0.
Then the regularized Green’s function G(x,xo) satisfies the following estimates:

1G(-s o)1) < Ok, (4.14a)
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IG(-, 20)ll 2y < Crcdy (4.14Db)

HG(HiUO)”W?vP(D) < CKd:2+2/p- (4.14c)

Moweover, there exists f € (0,1) such that D can be covered by a bounded number of
subdomains Dj = Bgy/2((5) N §2, j=1,...,Jg, with {; € D, and

IG (-, x0) = ep, [l ey < Crd ™%, (4.15)

where D;- = Bpa((5) N2 and cp; is some constant depending on G and D;.

Ifd+d. < Kdy and d+ d, + dy < dist(z,supp(da,)), then the following estimates hold:

IG (-, o)l 2(py < Oy d®, (4.16)
—2+2 45 s
HG('P%'O)HWZP(D) <Ckdy 7 d# . (4.17)

Proof. By representing G(z,xg) in terms of the continuous Green function, i.e.

G, 20) = /Q T (2, )b, (€) dE,

we see that |z — £| > dy when x € D and £ € supp(dz,). Therefore, the following estimate
holds as a result of Lemma [3.9}

16 20) (o) < /Q ITC )l B ()] d

= / Cd, > TP15,,(6)] de < Cd, > TP,
2

The other estimates in (4.14) and (4.16)—(4.17) can be proved in the same way.
The local H?>*® estimate in (4.15) needs to be proved in a slightly different way, by
considering the following expression:

Gl a0) — ¢ = /Q (N2, y) — cp, (5)5a0 (1) dy

where ¢ = [, ep, (y)ds, (y)dy satisfies || < [, Cd;20,,(y)dy < Cd;2. By using (3.63) we
obtain

IGr0) = clssaiy < [ 1090 = e, 0o ol (0]

< / Cd 5, ()] dy < O
N

[
Each O; can be covered by a finite number of balls ij/g(Z) with z € O;, and the number
of balls are independent of d;, where each ball By, ,(z) satisfies the condition of Lemma

with d = d, = d;/8. Similarly, 6j and {2; can also be covered by balls of radius d;/8
and p;/8, respectively. Hence, Lemma immediately implies the following results.

Lemma 4.2 (Local estimates in Oj, 5j and §2;) Letp € (2,p0) and o € (0,g). Then we
have

IG(; z0)ll (0, < C, (4.18a)
IG(,20) |l 2(0,) < Cdy (4.18b)



IG( 0) lwen(o,) < Cd; 2P, (4.18¢)
GG 20)l g6, < € (4.18d)
GG, 20)ll 25,y < Oy, (4.18¢)
—242
HG(wxo)wa 5,y < Cd 7, (4.18f)
Gy zo)ll () < C, (4.18g)
HG('va)”HQ ) < Opjt, (4.18h)
HG(-wo)wa(gj) < Cp 2. (4.18)

Moveover, there exists f € (0,1) such that O; can be covered by a bounded number of
subdomains Dj; = B/ij/g(g“jﬂ-) N2, i=1,...,Jg, with (j; € O;, and

IG(, 20) — e, Il zta(ps ) < Cd; '™, (4.19)

where D’ ; = Bga,; (i) N 2 and cp; is some cmzstant depending on G and D ;.
Similarly, there exists € (0,1) such that O; can be covered by a bounded number of
subdomains Dj,; = Bﬁdj/Q(Cj,i) N2, i=1,...,J3, with (;; € Oj, and

HG(a xO) - Cﬁj,i HH2+O¢(53_) < Cdj_l_a, (4.20)

where D = Bgu, (¢ji) N £2 and B, , is some constant depending on G and l~?j i
There e:msts B € (0,1) such that !2 can be covered by a bounded number of subdomains
D i Bﬁpj/g(cw) N2, i=1,...,Jg, with (j; € £2;, and

G 70) — 5, Igssair» < O™ (4.21)
where ﬁ;z = Bg,,/(Cji) N2 and ¢p,, s some constant depending on G and D
If 2; € O and O; € Oy \{Oo}, then
3 G0y < Cloo 20715, (4.22)

Proof. is a consequence of (4.14)); (4.19)—(.21)) follow from (4.15); (4.22)) is a con-
sequence of - |

Since G}, is piecewisely defined in the elements and therefore not in H?(f2), we denote
by V%—Gh the elementwise second-order derivative (Hessian) of G,. For the simplicity of
notation, we denote

IVFHGh = Gllapy == Y IVH(Gh = D)l

TND#)
and
||G('7xO)HHf+a(Oj) = Z ||G(a l‘o) - CDj,i||H2+a(D;7i)7 (423)
IG (-, 20) | g2+a 5, Z G 0) = €pjill gava i ) (4.24)

||G('ax0)HHf+a(_Qj) = Z ”G '71‘0) - éDj,iHH%-a(ﬁ;Yi)a (425)
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where the number of terms in the three summations above is bounded (independent of h),
as mentioned in Lemma Then we have the following estimates:

IVIG( 20) = InG (-, x0)]ll 22(0;) < Z IVIG — IhG( 2o)lllz2(p; )
= Z IVI(G(-,20) — ¢ep;,) — In(G(-s20) — ep; )2, )
< ZC’ZHQHG('JO) —cp;llgzee(py ) (ifr>2)
_ Ch1+a||G(-,xo)\|H3+a(Oj), (4.26)
IVFHG(-, z0) — InG(-, 20)]ll 12(0;) < ZHVT — InG(, o)l L2(p, )
= Z IVF(G(,20) = epj,) = In(G (- 20) = ep; )l L2, )

< 3 ChG s w0) — eny iy, (7> 2)

= Ch||G( o)l 2+ o)) (4.27)
and similarly, the following estimates hold for r > 2:
V(G 20) — G20 125, < CH G20l gve s (4.28)
V3G 20) — InG,20)] 125, < CH G ) 2ve (4:29)
IVIG (- 20) = InG (- x0)lll r2(02;) < CRFG( 20) | 2o (4.30)
IVFIG(, 20) — InG (- w0)lll 2()) < ChIG (-, o)l g2te - (4.31)

For r = 1 the estimates in (4.26[)—(4.31]) should be replaced by the following standard
estimates:

IVIG(-; 20) = InG (-, 20)]l 2(0,) < CRIG(; 20)ll 204,

IVFIG(, 20) — InG (- w0)lll22(0,) < CIG (- 20)ll 2 (01

IVIG(, 20) = G, 20)lll 125,y < CRIG(, 20)l 23

IVFIG(:,x0) — IhG(',xo)]HLz(aj) < CIG( 20l 23y
IVIG(, w0) = InG (-, z0)ll L2(2;) < ChIG( 20) 202,
IVFG(-, 20) — InG (-, 20)] [l 12(0;) < CIGCs zo)ll 2 (as)-

4.3 Reduction to the estimation of |[VZ(G), — G)| 11 (0) + |F'V(Gh — G110

The standard Lagrange interpolation operator I, : C(£2) — S, has the following approx-
imation properties (cf. [5, Theorem 3.1.5])

|u — Ihullpa(py < ol it P)\u\wzp (pry, for 1 <p<q< oo, (4.32)
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where D C D' C §2 can be any subdomains such that {7 : 7N D # 0} C D"
Then we have

Rpu(zg) — Inu(xg) — ’(12’ /Q(Rhu — Ihu)dx
[(VGh, V(Rpu — Ihu))|

[(VGh, V(u — Thu))|

(V(Gr — G),V(u— Ipu)) + (VG,V(u — Ihu))|

V(G — G),V(u— Ihu)) + (029, u) — Inu(zo) ‘Q/ — Ihu)dx

Z(—A(Gh—G u—Ihu —I-Z Gh— u—Ihu)e

T€TH ec&y

+ (629, 1) — Tnu(xo) / — Ihu)dx
’ 1l

(ZHAGh— i+ 3 110u(Gh — G ]||L1)+c)uurmm

T€TH ec&y
CIVFHGh = Dl + 17V (Gh = G pr (o) + 1) l[ull oo (@) (4.33)

where we have used the following trace inequality in the last inequality of (4.33]) (e is an
edge of 7):

IV(Gh— @lpie) < C (I'V(Gh — Olpiry + IVFHGL = Gl 11(r)) - (4.34)
It remains to prove
IV5(Gh = D)1y + 1B V(G = Gl () < Clas (4.35)

where ¢}, is defined in (1.6). Once the above inequality is proved, (4.33) would reduce to

1
[Ru(a) = Tyu(eo)] < Ctilulloy + |rgr [ (R = Tn)da

m

u— Tpu)de

1
— Clyllull e + '|r2|

< Clp||ul| Lo ()

where we have used the normalization condition [, Ryudx = [, udx for the Ritz projeciton.
By using the triangle inequality, we obtain from the inequality above

|Rpu(zo)| < Clyllullpoe (o) + [Tnu(zo)| < Clp|ull oo (0)- (4.36)
Since the constant C' is independent of z, the inequality above implies (2.4)) and therefore

complete the proof of Theorem
It remains to prove the key estimate (|4.35]), which is presented in the next two subsections.
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4.4 Reduction to the estimation of ||~ !'V(G), — G)| (0

By using the inverse inequality, we have

IVFH(Gr = Gy + 1RV(Gh = Gl o)
<|IVHGL = Iy + IVFILG — G)llpi) + 1K 'V(Gh = G) |l 110

. ) . (4.37)
< CRV(GL — InG) L) + IVFURG — Gl + 1A V(Gr — )llLl(Q)
< O V(Gh = G)lipra) + CIIRTIV(G = kGl pv) + IVFHE = 16|
The last two terms on the right-hand side are estimated in the following lemma.
Lemma 4.3 There exists a constant C, independent of h, such that
1B V(G = InG)l| L0y + IVFH(G = InG) | L1 () < Cln. (4.38)

Proof. By using the decomposition (4.1]), we have
IVHG = InG)llag) + 1B V(G = InG)l| 110
<|IVHG — LG 10, + 1R7'V(G = IiG) | 11 0.

+ Y IVHG = 1hG)llioy + Y IB7'V(G = LiG)o
O‘GOzO O'GOZO

HIVHG = LGl i 5,y + 1B7V(G = LGl 1 5,
+ > IVHG - IhG)HLl D DN v (cEy ey Mo,

0,04, 0,604,
+ ) IVHG = L)) + > I1FV(G = LG 11(e;)-
QjGO .QjEO

To estimate the integrals on O, we use the following result: for sufficiently small g € (1,2)
the W estimate ||G|ly2.a(0) < C||6 — 1/|92]]|La() holds; see [16]. By applying this result
and the H*"! estimate in Lemma we obtain

Ih'V(G = G| 0, + Hv%’<G_IhG)HL1(O )
< Ch;'dy||V(G = IG) |l 1200,y + Cd 7(G = 1G) |l a0
< Ck(k Th)* |Gl s+ () + CHQ/‘J hZ/q |G llw2a0)

V

(!
< Cr(KT ) 18ag — 1/120 | s-1(0) + CRY T B |62 — 171201 100 (4.39)
< CR(K )8y — 1/192]]| s ) + CR T 2|5, 1/!9“&‘1(9

< Cr(KYVhy ) h(wg) ~2T2/Ps —I-C/<;2/q hZ~ 2/qh(:no) 22/4 (here ([ is used)

< C’/i—i-C/@zV/q,

where we have chosen pg := 2/(2 — s), which satisfies LPs(£2) < H*~1(§2) and —2+2/ps =
—s, and we have also used the following relation in the derivation of the last inequality:

h(zo) ~ |zo — 20" Th > C(kh)™Vh] ~ Ck'Vh,.



Similarly, the following estimate holds:
157G = L&)l 6,) + IVHG — 1 1 o,

< Ch(wo) " dy,, V(G — 1O 2 g + CL ||vT<G 1,G)
< R h(20) |Gl zo+1 () + O () | Gllwae
< R h(20) 1dan — 1/1921[1ro-1(0) + CR 7 B(20)) 2/ 32y — 1121 | oo
(20)°
(

||Lq(5*)

< ORI 1(0)° 1020 — 1/12/l| e (2 + C (-7 l0))* " |62 = 1/12]]| a2
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< ORI R(x) (o) ~2T2/Ps + CWUZ/q h(20)2~ (o) "2T2/7  (here |D is used)

< C(K7 + K172
< Ck°.

We estimate the integrals on O; below by using Lemma
IFV(G = Gl o, + IVFH(G = LG) | Ly o,

< C (B HIV(G = 1G)z2(0,) + 45 VG — fhawm)
< Cdj”GHm”” U7 D (here the notation in (T25) - (E3) s used)
ere € notation 1in . —\|&. 1S use
Cd;hg |G y2vao,, if 722,

{ C if r=1,
< oo
Chj dj if > 2.
Since h ~ hJ, dj,+1 > 2kh, and k > 1, it follows that
g S = S S O ) S €
] J

(4.40)

(4.41)

By using the 1nequality above in the case r > 2, and using the inequality J, < C'In(2+1/h)

in the case r = 1, we obtain

S ARIVGE - LG oy+ Y. IVFHG = 1G)llo

OjEOzO OjGOZO
- Cln(2+1/h) if r=1,

1 C if > 2,

= Clp,.

In the same way, one can prove that

Yo VG - LD pey+ Y IVHG = IG5,

0;€04, 0;€0s,
+ > NETV(G = L)y + Y IVFHGE = TGl g, < Cla.
2;€0 2,€0

Summing up and (4.42)— e obtain the desired result ( -

Then, by substltutmg Lemma 4.3] mto 1- , we obtain

IV5H(Gh = Gy + 1RV (GL = @)l i) < CIRT'V(GhL = G|l 110y + Clh.

(4.42)

(4.43)

(4.44)
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Now it remains to estimate |h~'V (G, — G110

4.5 Estimation of ||h'V(G) — G| (o)

We consider the decomposition

IRV (Gh = G)lpr) < ChH VG = Gr)llpyo.) + Chlzo) M IV(G = Gl .

+C > BHVG =Gl

Ojeozo

+C Y h(wo) MVG - Gillpa5,)
6]'6010

+C Y b V(G = Gr)lre,
_QjEO

< CklIV(G = Gl r2(0.) + CKIIVIG = Gh)ll 25,

+C > dih VG = G0,

O]EOZO

0 Y dhlao) VG - Gl e,
@eOIO

+C Y ph V(G = Gl
QjEO

Again, we use the notation ps = 2/(2 — s), with LPs(2) — H*~(£2). Then we have

IV(G = G)llrz(0.) + IIV(G = Gi)ll 25,

< 2|IV(G = Gp)ll 2

<2|V(G = IG) |20

<2[V(G = 1nG)l2(0.) +2IV(G = InG)ll 125,

+2 Y V(G = IhG)llzi0,) +2 Y IIVG = LGl 5,
0;€0% 0,€04,
+2 ) IV(G = 1nG) |20,
_QjEO
< O(R )| Cllzes1(02) + OB0) |Gl gers 1

+C Y hillGllaon +C Y m@o)l|Gllgary +C D billGllmee)

0;€0;, 0. EOIEO 2;,€0

< C(K' R 10z — 1/ 1921l mrs-1(2) + CR(x0)* 1920 — 1/1920 1151

(4.45)

+C Z hjdj_l—i—C' Z h(a:o)dj +C Z hjpj (Lemmais used here)

0,€0. 0,604, Q2,€0

(5" ha) 18y = 1/192l o= (2 + CPlw0)* 102 = 1/12 o= (2 + €
C(K' 7R h(xo) 2+2/ps+0h<xo> (o) **/P + € (here (ELI1d) is used)
C

(4.46)
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The estimates (4.45)—(4.46)) imply
A~V (G), - Gl <C+COM, (4.47)

where

M= Z djhj_IHV(G = Gn)llz2(0,)

OjEOzo
+ Y diblzo) V(G = Gu)ll 25, (4.48)
+ > o M IV(G = Gu)llrzey)-
.QjEO

To estimate M, we need to use the following local energy error estimate (cf. [9, Theorem
3.4]), which holds in general polygons.

Lemma 4.4 For any & € (2, let Ly and Ly be two concentric annuli such that {x € R? :
dist(x, Lg) < d} C Ly, and consider the subdomains D = Ly N 2 and D' = Ly N 2 of (2.
Moreover, we assume that h(z) < d and h(xz) ~ h(y) for all z,y € D’. Then any function
u € WH(02)n HY(D') satisfies

lu — Ryullgipy < C (llu = Inull grpry + dHlu = Tnull 2oy + d 7w — Ryull g2 (o) -

Since G}, = Ry G, we can apply Lemma with u = G(+, zo) and use the local regularity
estimates in Lemma .2 Then we obtain

dih; V(G = Gl 120,
<cC (djhj_lHV(G ~ InG)llz2 (o) + hi G ~ thllLZ‘(o;.)) +ChHIG — Glliz(0)

¢ (deGHm(o;/) + thGHm(oy)) +Chi G - GhllLzoy if r=1,

< a o ‘
S\ C (GBS 1G zreion + 131G v o)) (4.49)
+Ch; G — Ghllrz(or) if r>2,
C+ Chi |G = Gullrz(o) if r=1,

¢ <d;ahjo'é + djiliah}Jra) + Ch;1||G - Gh”m(o;) if > 2.

Since J, < ClIn(2+ 1/h) and ZO]‘GOZO d;*h$ < C, it follows that
Y G HVGE = Gh)llzio) < Clh+C Y hiMIG = Ghllzon (4.50)
O]'EOZO OjEOZO
In the same way, one can prove that

> dilao) V(G = Gl oy SC+C Y hwo) G = Gillpag),  (451)
6]'6010 6]'6010

> o VG = Ga)llezo) < Cl+C D G- Ghllr2(e)- (4.52)
QjEO QjEO
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Hence, by summing up (4.50)—(4.52)), we have
ML Clh+C D> BG - Ghllz2(0)

O‘GOZO
+C Y h(wo) MG = Gl @) +C > bG = Grllaga
O EO(LO Q €0 (4 53)
<Cl+C D> b G = Ghllizo,) '
0;€0L,
+C Y h@o) G = Ghllz,) +C D b HIG — Gllizgay),
0;€0}, 2;€0

where we have used (4.46]) in the last inequality.
The following three technical estimates can be proved for some o € (v,(), and their
proofs are presented in Appendix:

> NG = Ghllpzo,) < CEYTT 4 CrTITM, (4.54)
0,€0.,
> hlwo) TG = Gl s, < CR7 + CRTITM, (4.55)
O EO’
> NG = Gallpag,) < CRUT) + CrTIIM. (4.56)
;€0
Substituting (4.54] into ( , we have
M < Cly + Cr10=9) 4 O™ M. (4.57)

Then, by choosing k sufficiently large, the last term of the above inequality would be
absorbed by its left-hand side, and therefore we obtain

M < Cl,. (4.58)

By substituting the above result into (4.47) and using (4.44]), we obtain the key estimate
(4.35)). This completes the proof of Theorem [2.1]in the case |xg — 2| > 16Kh..

4.6 The case |29 — 2| < 16Kh,

Note that « is a fixed constant already determined below (4.57)). In the case |xo — zp| <
16Kh., we decompose the domain 2 into disjoint subsets

J+1
n=J, (4.59)

where
Q;={x e 2:pj1 <|r— 20| <pj}, j=0,1,...,J, (4.60a)
Q1 ={z € 2: |z — 20| < pssa}, (4.60Db)

with p; = 27 diameter(2) and J = [logQ (%W) ], so that

8khiA < pry1 < 16KhLA, (4.61a)
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where A is a constant to be determined later (like the constant « in the previous subsections).
The rest proof is similar as the proof for the case |zg — 29| > 16kh., except that the

decomposition (4.1)) is replaced by the simpler one (4.59). In particular, inequality (4.33))
still holds, i.e.,

1
Rpu(xo) — Inu(zo) — ] /Q(Rhu — Ipu)dx

< C(IVFH(Gh = D)oy + 1B V(Gh = Gl pa() + 1) [[ull Lo (o), (4.62)
and f would be replaced by
IVFH(Gh = Gy + IRV (Gh = Gl i) < Cly + CM, (4.63)
with
J
M= pih V(G = G2y (4.64)
§=0

The similar estimates as in the previous subsections would yield the following estimate
(similarly as (4.57)):
M < Cly, + X079 L CAT7 M. (4.65)

By choosing sufficiently large A, the last term of (4.65) can be absorbed by its left-hand
side and therefore,

M < Cly. (4.66)

Substituting (4.63)) and (4.66[) into (4.62)) would yield the desired result, i.e.,
|Rpu(wo)| < Clpllullp(0)- (4.67)
This completes the proof of Theorem [2.1 |

5 Proof of Corollary

In this section, we prove Corollary 2.1 by applying the result of Theorem[2.1and assuming
that the triangulation satisfies the general conditions described in Section [2.1

We first prove the following local WF+2P regularity for the solutions of the Poisson
equation and then use this result to prove Corollary

Lemma 5.1 (Local W**2P estimates) Let k and p be nonnegative integer and real number,
respectively, such that p > 2, (k,p) # (0,2), and (1 — %)% are not integers for j =

0,1,...,m—1. Let f € WkP(£2) (satisfying the compatibility condition Jo fdz =0) and let
u be the unique solution of (L.1), and let d > 0 be small enough so that dist(£2NBsq(2;), zj) >
C wheni#jandi,j=0,1,....,m—1. Then

—k—14+2-2
[ullwe+2. (@0 Baa(zj)\Ba(z)) < Cd P | fllwer ) (5.1)

where ¢; =2/(1 — B;) if B; <1 and gj = o0 if fj > 1 and k > 1.
Proof. Since we have assumed that £ > 0, p > 2 and (k,p) # (0,2), there are two cases:

(1) If k = 0 then p > 2; (2) If k > 1 then W*P(2) — L9(£2) for some ¢ > 2. In either
case, f € WFP(£2) < L9(£2) for some ¢ > 2. We can choose such a fixed ¢ > 2 such that



32

condition (3.21)) is satisfied. Then from (3.25)—(3.27)) (or [16, Corollary 4.4.4.11]) we know

there exist some constants ¢j,, n=1,...,K; and j =0,...,m — 1, such that
m—1 K
u= > cinSin € WH(0),
7=0 n=1

where the expression of S, in (3.26]) implies that
HVSJ'mHLqJ',OO(_Q) < C with q; = 2/(1 - 6]) if ,3]' = wlj < 1, and q; = 0 if Bj > 1.
Moreover, as explained in the text above (3.27)), there exists ¢ € R such that

m—1 Kj m—1 Kj
S el + u—c= D" ¢inSin < Cllfllay < Clf lwewe)-
j=0 n=1 j=0 n=1 Wa(g2)

Since ¢ > 2, it follows that W29(£2) — W1®(02) — Whii(2). As a result, the two
inequalities above and the triangle inequality imply that

IVull L5 (nBya(z;)) < Clflwkwa) for j=0,1,....,m—1.

This is the basic estimate to be used in the following proof.

For any fixed f € (0,1), the circular region 2 N Bai(20)\Bi(z0) can be covered by
a bounded number of disks of radius Sd (the number depends on ). We shall present
estimates of the solution in each of these disks. To this end, for { € 2 N Bag(zj)\Ba(z;)
and k > 0, we denote by wj a smooth cut-off function such that

wr(x) =1, in Bggor+s(C) (5.2a)
wi(x) =0, outside Bpgg/or+2(C) (5.2b)
Viwy| < Cid ™, 1=1,2,... (5.2¢)
and let ¢ be an arbitrary constant. Since u is the solution of (3.1)), it follows that @ =
wi(u — ¢) is the solution of
Lotsin oo, 53
with
f = fwp —2Vu - Vwy, — (u — ¢)Aw, (5.4)
g = (u—c)Vw. (5.5)

Note that the functions @, f and § are all supported on Bggar+2(C). If Bgay2(¢) N 0N =10

then the equation in actually holds on R2. Then the W*+2P estimates of @& can be
obtained similarly as (but simpler than) the following argument for the more complicated
case that Bgg/o(¢) N AN # 0.

Without loss of generality, we focus on the case Bgq/(¢) N 0§2 # () and, by choosing
[ small enough we can make sure that Bgg(¢) does not intersect other sides of £2. Via a
rotation we can assume that one side of 042N Bgg/2(C) is contained in Ry x {0}. Since @ is
supported in Bgg/3((), it follows that holds in the upper half plane, i.e.,

{Aa:f in R xRy,

optt=g-n on R x {0}, (5:6)
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where g(x1,0) = 0 for x1 < 0. Let Bgq/o(C)+ = Bgg2(¢) N (R x Ry). By applying the
Wk+LP estimates on the upper half plane we obtain

’u|W’9+2vP(R><IR+)

< CHfHW’“vP(RXRH + CHQ . n”wkﬂf%‘p(ﬂ{x{o})

< Cllflwro@xr,) + Cldlwrrio@xr, )

k k
_; —j-1
<C) d =i, 002 0) + ¢y d- lellwrsi—sos,, sa©04)
§=0 Jj=0
k k+1
_i_92 —j—1
+C Z A= ju ~ C|’Wk7j’p(Bﬁd/2k+2(O+) + CZ A= u - CHWMI*M(BM/Z“Q(<)+)’
§=0 J=0

where we have substituted the expressions (5.4)—(5.5) in deriving the last inequality. By
choosing ¢ to be the average of u on Byqk+2((), we have

lu — C|LP(BBd/2k+2(C)+) S Cd|u|Wl’p(B@d/2k+2(O+)'

Since wy =1 on Bggor+3(C), it follows that

[ulwrs2e(B,, p4s ()
k k
» i
< CY AN lwr-sn(s,, pentone) T C DA Hullwrni-ings,, aoney (67
j=0 §=0
Since the right-hand side contains strictly lower-order norms of u than the left-hand side,
by iterating the inequality with respect to k£ we can obtain
k
—j —k—1
[ulwrszos,, s @ne) < C D A7 fllwr-in(syuone) + C4 VUl Loy, 000
j=0

Then, substituting the LP estimate for Vu in (3.49) into the above inequality, we have

’u‘wk+2’p(35d/2k+3 (C)QQ)
k
—j —k—242
<CY A7 fllwr-in(Byg a2 + Cd 7 Vull 2B,y 5(000)
j=0
: —j —k—1+2-2
< CZd [ fllwr=ie(Bsq/2(0n0) + Cd ? ||Vl Lase (B (0n02) (5.8)
§=0
where the last inequality follows from using Holder’s inequality with the weak L? norm, for
arbitrary g € [2,00]. The proof of above inequality relies on the iteration of ([5.7). In fact,
we can construct many intermediate disks between Bgy(¢) and Bgg/2(¢) and apply similar
iterations as (5.7)). In this way, we would obtain a similar inequality as (5.8), but with
B or+3(C) replaced by Bgg/4(C) on the left-hand side, i.e.,

k

—j —k—14+2_2
|ulwrt2s(Byy 4 (0nR) < cy d N we=in(Bsy 0 0)n2) +Cd T IVl Lac (B4, (0)n02)»
=0
(5.9)
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Since the circular region 2 N Byg(zj)\Ba(z;) can be covered by a bounded number of
balls of radius 8d, by summing up the W#**2P estimates over these balls, we obtain

—142-2

lwllws+2.p (20 Baa(z;)\Ba(zy)) CZd N fllyre- ir(R) T cd" IVl L9520 (0nBya(z)))
7=0
—k—1+2-2
<Cd P95 fllwrer (o) (5.10)
This proves the desired result of Lemma |

Let d be a sufficiently small constant such that dist(z;,z;) > 4d for any two different
vertices z; and z; of the polygon (2. For any j = 0,1,...,m — 1, we denote D;; = 2N
Baa,(2)\Ba,(z;), with d; = 27172d for i = 0,1,..., I, where I; is determined by 27%d ~
khs j, where k can be chosen to be large enough so that d; > C'k7h;; is bigger than twice
of the mesh size in By, (2;).

Let 29 = {z € 2 : dist(z, 2;) > d/4 for j =0,1,...,m—1}. We denote by h;; the mesh
size in D;;. According to the mesh size choice in , we have

hji=d;, "h.
Then
m—1
=020 ] UZyD;
§=0

Theorem implies that the finite element solution given by (1.2]) satisfies the following
error estimate:
lu = unllpeo(2) = lu — Inu — Rp(u — Inu)|| e ()

< Clpllu — Inul| oo ()

< Ol max | e lu = Inulloo(@nBag, (:)\Ba () + Cnllt = Intlle(sy).

(5.11)
We consider two cases separately.
Case 1: r > k 4+ 1. In this case, we have
k+2-2
[ = Inttl| Lo (@nBag, (2)\Bay (2)) < Chyi " llullwisza(0nBay, (2)\By, j2(29))
4o-2 _k_H_,_f
< Ch "d, N lwre
1=y (k+2— k—1+2—l.
<cd IR g
2 () (R2=2)—k-142 -2
<oprig |l
2 —y(k+2-2)+1-2
<O od, U fheoto (5.12)
1-2/q; _ mln(17ﬁj)

By choosing —v;(k+2— %) +1-— q%_ > 0, or equivalently v; <

> %22 - Fte—2/p (as gj = o0
when 3; > 1), we obtain

||u_IhuHLOO(_QﬁBQdi(zj)\Bdi(z]-))ECh 2_7||f||wkp (2)- (5.13)
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Since the mesh size in 2y is O(h), it follows that
k+2-2 k+2-2
lu = Inull oo () < CH™ 77 ullwisn(ayy < OB 21 i) (5.14)
where ) = {z € 2 : dist(z, z;) > d/8} D (2. By substituting the two estimates above
into (5.11)), we obtain
k42— 2
lu = unll oo ) < COR 272 Fllwra(ay, (5.15)

This proves the desired result of Corollary 2.1]in the case r > k + 1.

Case 2: r =k > 1. In this case, we choose p = 2 in Lemma and replace (5.12)) by the
following estimate:

r+1
lu = Inull Lo (0 Bag, (2)\Bay (23)) < OGNl 200 Bag, 25\ Ba, o))
2

14
<O d; U fllar e

(=) (r+1)=r—2

< Ch't'd, N F e ()- (5.16)
i — s 2 ; . < 1=2/q; _ min(1,5;) -
By choosing (1 —~;)(r+1) —r o =0, or equivalently o; < =27 = =75 (as gj = o0
when 3; > 1), we obtain
[l = Inull oo (20 Bag, (2:)\Ba, () < CRH™ M fll e ()- (5.17)

Since the mesh size in 2y is O(h), it follows that
= Tntloe ) < OB+l ey < O i (518)

where () = {z € 2 : dist(z, z;) > d/8} D (2. By substituting the two estimates above

into (5.11)), we obtain

lu = unl oo (@) < COR | Fll () (5.19)
This proves the desired result of Corollary in the case r = k. |

6 Conclusions

We have proved the maximum-norm stability of finite element solutions to the Poisson
equation with the Neumann boundary condition in a polygon which is possibly nonconvex.
The use of graded mesh, with triangulations locally refined at the reentrant corners, is
essential to the proof. With the maximum-norm stability result, the error estimation in the
L norm can be reduced to an interpolation error estimate. By analyzing the interpolation
error, the error estimate is derived in terms of the smoothness f € W*P(£2) of the right-
hand side, with 2 < p < co. By using norms in Lorentz spaces LP-4({2) (instead of the usual
Lebesgue spaces) for the singular functions, it is possible to choose the grading parameter
in the limit.

The analysis in this article may be extended to the Dirichlet boundary condition and more
general elliptic equations with variable diffusion coefficients in two-dimensional polygonal
domains. The maximum-norm stability of finite element solutions in three-dimensional
nonconvex polyhedral domains still remains open.



36

Acknowledgement

This work was partially supported by a grant from the Research Grants Council of
Hong Kong (GRF Project No. PolyU15300519), and an internal grant at The Hong Kong
Polytechnic University (PolyU Project ID: P0031035, Work Programme: ZZKQ).

Appendix A: Proof of (4.54)
For O; € 0., we estimate |G — Gp| 20, Via the duality

|G = Grllz20,) = sup (G — Gp, 7).
YeCFC(0;)
191200, S!

For any given ¢ € C5°(0;) satistying [|[¢)[[12(0;) < 1, we define w as the solution of

—Aw =1 —1 in £2,
{ Opw =0 on 02, (A1)

where 1) := ﬁ [ ¥(x)dz is the average of ¢ in the domain 2. The solution w exists and is

unique under the condition [, w(x)dz = 0. It is known that the solution of (A.I)) satisfies
that

1
lwllgs+1(2) < CllYllgs-1(0) for s=0 and s € <§,ﬁ>,
see Lemma [3.2] with ¢ = 0. By the complex interpolation, we have
Wl gs+1(2) < CllYllgs—1(0) for s €[0,8). (A.2)

Here we choose s > 7 to be sufficiently close to v so that (1 —+)(1+ s) < 1, and choose
o = s in the definition of J;, below (4.2). Inequality (A.2) will be used in Appendices A,
B and C.

By using the Sobolev embedding LPs(£2) — H*~1(£2) with p; = 2/(2 — s) and Hélder’s
inequality, we have

2
|

11 .
[l gra-1(2) < Cllllzes () < ClOj17= "2 |9l 2(0y < CdP* Y]l 20y = Cdj°. (A.3)

This inequality will be frequently used below.
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By using the normalization condition [, Gpdz = [, Gdz, we have (G — Gj,,%) = 0 and

therefore
(G = Gn,¥p) = (G = G,y =) = (G = Gp, —Aw) = (V(G — Gp), V)

(V(G Gh) (w — I]ﬂU))

(G — Gy),V(w — Iyw))o,
+ (V(G — Gh), V(w — Ihw))é*
+ Y (V(G=Gh),V(w - Iw))o,

0,€0.,U{0_1}

A4
+ > (VIG=Gr), V(w— Iw))g, (#.4)
0:€04,
+ > (V(G=Gh), V(w—Iw))g,
2,cO0\{2511}
5
=: Zé’j
j=1
We estimate &;, j = 1,...,5, separately.
The first term on the right-hand side of (A.4]) can be estimated by
&1] = [(V(G = Gr), V(w = Thw))o,|
< IV(G = Gl 20, [IV(w = Thw) | 12(0.)
< O TTh)* V(G = Gl 200wl o1 (2)
(A.5)

< (7 ha)*(IV(G = Gl 20 19 | re-1 ()

< C(KTh)% IV (G = Gh)ll2c0.)

< C(Kha)d)

where we have used in the second to last inequality, and in the last inequality.
The second term on the right-hand side of can be estimated by
&2| = [(V(G = Gr), V(w — [yw))s |

< Ch(ﬂfo)HwHHz((S*) (G — Gh)HLz(é )
< Chiao)l|wl a .. (A.6)

where we have used (4.46]). Note that ||wl| 2(0.) ¢an be estimated by using Green’s formula,

ie.,

wm:[juwwww:/rmwwwm

0;
Since ¢ € C§°(0;) and |9l r2(0,) < 1, it follows that

[wll 25,y < sup [ITC, )l
H2(0y) yeo; H2

. ~ _ 1
< Cdist(Ox, O;) 1\Oj|2H¢HL2(o])
< C|x0 — Zo’fldJ
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Then, substituting this result into (A.6]), we have
‘52’ < Cﬁ($0)|$0 — Zo|71dj. (A7)
For O; € O,, U{O_1} we have
&3] = [(V(G = Gr), V(w — Iyw))o,| < Chi|w grs+1() V(G = Gh) 22 (0,)
< Chi[Yllgs-1 ) IV(G = Gr)llz2(0,)
< Chil9l Les (@) lIV(G = Gr)ll 220, (A.8)
2 _1
< Chidy* Y]z V(G = Gr)llL2 (0,
< CH V(G — G20,
For 61 € Oy, there holds
w =, < sup ||G(-, =, .
Il = 5 1660410,
_ 1
< Clzo — 20| 710512 19 £2(0,)
< Clzo — 20| 7dj,
which implies that
&1 = [(V(G — Ga). V(w — L)) | < Chlao) ol e V(G — Gl 2o,

Y (A.9)
< Ch(zo)lzo = 20| dj[IV(G = Gl 125,
For §2; € O\{£2;41} there holds
|wll g2y < sup (|G ) la20n 1¥] o))
ye0;
< 10512 ¥l 20
< Cp; 'd;,
which implies that
&) = [(V(G = Ghr), V(w — Iyw)) ;| < Chil|w|| g2 V(G = Gi)llz22) (A.10)

< Chip; 'dj||[V(G = Gl 22,

Overall, substituting the estimates of |&;|, j = 1,...,5, into (A.4), we obtain (via the
duality argument)

HG - GhHL2(Oj) < C(Hli’yh*)sdjl-_s + Cﬁ(l’o”l’o - Zo|71dj
+C Y (dTRT ) dih V(G = Gl o,
Oieozou{o,l}
+C Y (djh(xo)*wo — 20|~ d; ) dih(z0) M IV(G = Gi)ll 125,
57;6010
+C D (ddp e V(G = Gl ey,

2,€0\{2;41} : )
A1l



and so
> hMG = Ghllzzo
O'EO/
<C Y ((57h)d T+ B(wo) o — 20| dihy )
O; e(’)’
O Y > @ R i IV (G = Gl

0;€0;,U{0-1} 0;€0,

+C Y D (dihy (o) d; o — 2ol T dih(xo) M V(G = Gh)l 125,

+C Y D (dihi 00 pin; V(G = Ga)llzz ey
2,€0\{$2;41} 0;€0%,

=: L1+ Lo+ L3 + Ly.
Since v < s < 3, as shown in (3.3]), we have

=C > ((K"77ha)di Bt + h(xo)|wo — 20| 'dih; )
O; eO’
l 1-s 1—yy—1
<C Y (7T7h) AT (hd; )
O; EO’
+C > h(xo)|wo — 20| tdj(hd; V)T
O; EO’
ol —y 7= (=)
<C > (KTTh TR T
O; 6(9’
+C > (hlwo — 20" )wo — 20| ' hVd)
0;e0.,

< C((KM M) BT (b))
+ Chl‘xo — ZU|1_’Y|$0 - Zo|_1h;7’$0 — 2o|"
<cx™MyC
By using the definition of M in (4.48]), we have

Ly < CM a Aot
2= OieOI:;U}{{Ol}OEZO, (J g i % )

<OM  max dy~ Shd N (hdl )
< 3 > “H(hd; ) d;

OZ‘G(')ZOU{O o, EO’
<CM max Z h*d; (=74 [ —(1=7)(s+1)]
0:€0U101} 25,

39

(A.12)

< CMAY (khy) ) (khy )"0 E+HD] (ote that 1 — (1 —~)(s +1) > 0)

< Ck™ "M,
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L3 <CM max Z (djhj_lh(xo)Qdi_llxo - 20\71)
0i€0s0 0;c01,

<CM D di(hd; ™) (o) (K7 h(o)) g — 20

0,0,
<CM Z h_ld}n_wsh(azo)]azo — 2|7t
0;€0,,
< CMhHag — 207677 (h)2zo — 20" 7)) |@o — 20|
< Cr™T°M,

Ly<COM  max dih'h2p2
4 > Qz’GO\{QJJrl}O];Q, ( 773 Pi )
20

)

< OM max Z dj(hd;_w)_l(hpil_vfp'_z

2,€0\{2541}
" oeor,
<CM max hd;.yp;%Y
€O\ 2} 520,
J EN)

< CM max hl|zo — zo|"|zo — 20 —2v

2,€0\{02,41}
<CM  max  h]l(khy)™"
2,c0\{2541}
< CrkIM.
Substituting the estimates of Ly, Lo, L3 and Ly into (A.12]) and using x > 1, we obtain
> BTG = Ghllpzo;) < CkUT + Crm M. (A.13)
0,€0r,

This completes the proof of (4.54)).

Appendix B: Proof of (4.55)

The proof of (4.55) is similar as the proof of (4.54]) in Appendix A. The main difference

here is that we focus on the subdomains O; which are closer to the singular point zg than
the reentrant corner zy (in Appendix A we focus on the subdomains O; which are closer
to the reentrant corner zp). For the convenience of readers, we include the complete proof
here.

For O; € O}, , we estimate |G — GhHL?(@-) via the duality

R
IG = Ghll e,y = sup_ (G —Gh, ).
+eCg(55)
1l 25, <1

For any given ¢ € C§°(0;) satisfying ||1/J||L2(5j) <1, we define w as the solution of

—Aw =1 —1 in 2,
{ Opw =0 on 02, (B.1)
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where 1) := ﬁ | o ¥(x)dx is the average of 1 in the domain 2. The solution w exists and
is unique under the condition [, w(x)dz = 0. Moreover, inequality (A.3)) holds similarly

here.

By using the normalization condition [, Gpdz = [, Gdz, we have (G — G, 1)) = 0 and

therefore
(G =G t) = (G = Gp,tb =) = (G — Gy, —Aw) = (V(G — Gy), Vw)
(V(G - Gp),V(w — Ihw))

(V(G = Gp),V(w — Ihw))o,

+ ) (V(G = Gr),V(w - Ihw))o,
0:€0.,

+ > (V(G=Gh),V(w—Iw))g,
QiEO\{QJ+1}

+ (V(G = Gh), V(w — Ihw))gs,

+ Y (V(E=Gh),V(w—Tw))s,
0;€04,U{0_1}

g,

I
-

Il
—

J
The term |€)| can be estimated in the same way as (A.5), i.e.
&1 =(V(G = Gp), V(w = yw))o.| < C(r'Thi) ).
The second and third terms on the right-hand side of (B.2) can be estimated by
[E2] = [(V(G = Gi), V(w = Iyw))o,| < Ok ||wl 10y IV (G = Gi)ll2(0,)

< ChillYll s IV(G = Gp)ll 20,
< Chid;~*|IV(G — Gi)ll12(0,)

< C(d; Ry d; ) dihy V(G = Gl r2(0,)-

and
1Es| = [(V(G = Gn), V(w — Iyw))o,| < CBS[[w] o1 IV (G = Gi)ll 120
< O} |9 gs-1(2)IV(G = Gi)ll 202y
< Chid;°||V(G — Gu)llr2(a)

< C(dgl'_sthrlPi_l)Pihi_lHV(G = G2

To estimate |g4|, we consider the two different cases below.

(B.2)

(B.3)

(B.4)

Case (1): If j = Jy, or j = Jy, + 1, then 6; NO. # 0§ and d; < Ckhi(zo). In this case, by

applying (3.36b)) with p = 2 we have
ol g2,y < € (I8 = Pllay) + 0 *h@) Vel 26

¢ (WHLQ@) + (*”Sﬁ(xo))*lHVwHLz@/)) :
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and so
€] = |(V(G = Gh), V(w — Thw))g |

< Ch(o) (11l 2wy + (7 B20)) IVl 2 ) V(G = Gl 25,

< Ch x(] <HwHL2 O// H’ysh(‘xo))s 1HVwHL2/(1 s) O”)) HV(G Gh)HL2 Ox) (B 6)
< Chxo) <||¢||L2 & ”sh(xo))s’l\lwllﬂswm) IV(G = Gl 26,

< Ch(xo) (1 + (K7 h(20))* 1Yl grs—1(0)) V(G = Gi)llr26.)

< Ch(zo) (L + (K" h(z0))* (K7 h(z0))' %) | V(G — Gi)llr2.)

< Ch(xp),

where we have used Hélder’s inequality in deriving the third inequality of , and used
(4.46)) in deriving the last inequality.

Case (2): If 0 < j < Jy,, then 5’- NO. =0 and for p € (2,po) as in Lemma we have
€4l = [(V(G = G), V(w — Tw)) |
< Ch(eo) [0y 1) IV(E — Gl

(

< Ch(x0)|Os Irfllesz onIV(G =Gl 2 5.,
2

< Ch(wo) (K h(20)) 7 w25,

where we have used (4.46) in the last inequality. Then, by applying the local W?2P estimate
in Lemma to the expression w(z) = fa I'(z,y)9¥(y)dy and using Holder’s inequality, we
J

have

—2+42 2/p—1
wlyay < 530 ITCH) hpan@ Il 5,y < O 2 2Pl 5., < O/,
yer

which implies that
& = [(V(G = Gn), V(w — Tyw))g, | < O V(o) d/" (B.7)

Similarly, we also consider the following two different cases in the estimation of |§5|
Case (17): If |[j —i] < 2, then O; N O; # . In this case, dj ~ d; and h; ~ h; ~ h(z), and
we have

15| = [(V(G = Gh), V(w — Thw))g |
< Oh(o)*[[wllgro+1() | V(G = Gi)ll 2
< Chl(@o)* ¢l -1 IV (G = Ga)l 125,
< O(Al(x0)**d;*)dih(z0) M IV(G = Gi)ll 25,

Case (2'): If [j—i| > 3, then O’ MO} = (. In this case, h; ~ hj ~ h(xp), and for p € (2, po)
as in Lemma [4.2] we have

1&5] = (V(G = Gh), V(w — Ihw))g,|
< Ch(@o)[wlly2,00 V(G = Gu)ll 5,

(B.8)
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2

< Ch(ao)|[wlly 2050 df vie - Gill 26

)
< 0(@0)2a? " wlyan gy ) dilz) IV (G — Gl 2o,

By using the local W?2P estimate in Lemma we have

||wHW2 p(O/) < Sup ||F( )HWZP(@;)HwHLl(é])
yEO

—2+2
< C'max(d;, dy) pded’HL?(éj)

< C'max(d;, d;) ¥ d,

which implies that

2

~ - _2 _
81 < C(n(o)a " max(di,dy)™7 d; ) dit(wo) V(G = Gl a5, (B.9)

)

Substituting the estimates of |g'J|, j =1,...,5 into (B.2), we obtain (via the duality
argument)

||(G - Gh”L2(6j)
< C(K'7ha)%d;
+ > Ot ) dih IV (G - G20y

OiGOzo
+ Y Cmortd e V(G — Gh)llaan

2,€0

W(Z -V \Z T
+ Ch(zo)(9;, ch0 + 05 Jug+1) £ OV (o) P dy (1= 4.0, — 6j,0u+1)
+C Z S+1d )dihi_lHV(G — Gh)”L2(5i)(5ivj +8ij—1+ i j41 + 0ij—2 + 0ijr2)
0:€04,

+ Y ( 20)2d, * max(d;, d;) "7 dj)dih(xo)’lHV(G — Gl 2

li—j[>3

(B.10)
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Hence, we have

Z h($0)_1”G - GhHL2(6 )

0,€0,,

<C Y h(wg) (kTR

0;€0;,

+C Y Y (o) 't dih V(G = G)llr o

O EOzO O EOI
+C Y (o) i A e V(G = G ge

€0 0,e0;,

s(2_ 2_4 1-2
+C+C Z K (p/ l)h(IEo) 7 ldj P
0;€0;,

+C > (n 5 *)dih(z0) M V(G = Gi)ll 25,

0;€0x,

+C Z Z (dp ( 0)d; )dz‘ﬁ(ﬂﬂo)lv(GGh)L?(G)

\\w

0:€04y 0,0, di, dj)?

=: By + B2 + B3+ By + E5 + Eg.

Since v < s < 3, as shown in 1) we have

=C > hao) (kTR

0,04,
< C(hlzo — 20|' ™) N (KR ) 2o — 20t 0
< Ch™H (K T ha) g — 20) 77

< Ch7V (K hy)% (khy) =G~

< o119,

B,y < (h —1h5+1df1d1.*5)
PSOM g, 2 (e
e/

< h N e e O AT St I _
_CMO%%};)(( [mo — z0|" ") (hd;7)* T d; w0 — 20

< s _ —(s—) f[l_(l—ﬁf)(l'*‘s)]
S CM Oriré%)io <h ’.%'0 Zo’ dz )

< CMRY (khy)~ ) (g, )~ 10 0+5)]
< Cr™7°M,
Es < CM max Z <h(§c0)*1hf+1pi_1d]1-_s>

2;,€0 _
O EOIO

(B.11)
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)

< CM max ((hlzo — 20" ™") ™ (o} )07 o — 20/ )

[1—(1—7)(1-5-8)])

(2

Slza — 2ol =) 57
SCMggg(h o — 20|~ p;

< C./\/lhzs(/ﬁh*)_(s_w (,{h*)—[l—(l—v)(lﬁ)]
< Cr™T°M,

(2
E;<C+C Y ﬁ*lh(mo)ﬁfld.(f” !

0;€0},
< O+ CR T Vo) r ~ (8 h(ao))~
<C,
Es; < CM max h(fno)sdj_s < C/i_A’SQ./\/l,
0;€0y,
h(zg)d;
Eg < CM max 5 (20)d; .
©i€0%0 5,co,, \df max(d;,d;)?
< CM max (h(x0)>
OiEOwO dl
< Crx™ " M.
Substituting the estimates of Fy, k = 1,...,6, into (B.11)), we obtain
> Awo) G = Gillpo,) < CwI + ORI M. (B.12)
53‘6010

Appendix C: Proof of (4.56)

The proof of is similar as the proof of in Appendix A. The main difference
here is that the subdomains {2; are away from both the reentrant corner zy and the singular
point zg, and therefore the analysis would become simpler. For the convenience of readers,
we include the complete proof here.

For £2; € O, we estimate |G — Gp||2(g,) Via the duality

J

|G = GrllL2() = sup (G —Gp,2p).
YeCEe (2))
19120 ) <1

For any given ¢ € C§°(£2;) satisfying ||| 12 ;) <1, we define w as the solution of

—Aw=1—1 in £2,
{ Opw =0 on 02, (C.1)
where 1) := ﬁ Jo (x)dzx is the average of ¢ in the domain £2. The solution w exists and

is unique under the condition || ow(z)dz = 0. Moreover, inequality (A.3) holds similarly
here.
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By using the normalization condition [, Gpdz = [, Gdz, we have (G — Gj,,v) = 0 and
therefore

(G = Gn ) = (G =G, — ) = (G = Gp, —Aw) = (V(G = Gy), Vw)

= (V(G = Gr), V(v — Ihw))
= (V(G = Gp),V(w = Iyw))o,
+ ) (V(G=Gr),V(w - Lw))o,
0;€0.,\{00}
+ > (VG =Gh), V(w—Tw))e,
2,e0U{N2;42} (C2)
+ (V(G = Gp), V(w — Iyw))s,
+ Y (VG =G),V(w = Lw)g,
0;€02,\{00}
5
=> &
j=1
The term |£f| can be estimated in the same way as (A.5)), i.e.
€1 =I(V(G = Gp), V(w — Iyw))o.| < (k' Th)*p;~. (C.3)

|€5| and |&5| can be estimated by
5] = [(V(G = Gh), V(w — Iyw))o,| < Chi|wllzs+10n V(G = Gi)ll2(0,)
< Chi|[Y | s ) IV(G = Gh)llz2(0) (C.4)
< Chipi~°IV(G — Gi)ll 120,
and
€3] = |(V(G = Gh), V(w — Ihw))g,| < Chillw|| g1 V(G = Gr)ll12(2)
< Chuj[[Yllgs—1)IV(G = Gi)ll 202, (C.5)
< Chip;*V(G = Gu)ll 12y
|€;| can be estimated by
1] = [(V(G — G, F(w — Tnw)) | < Chao) [l a0 |9(G — Gl
< Ch($0)‘|w||H2(6;)

where we have used (4.46]) in the last inequality. By using (4.22]), we get

0z < 50 1GC) a0y 1223
sup

S0
L 1
< Clzo — 201" * 19252 [9]] L2
< Clzg — Zo|silﬂjl‘_sa

which implies
€3] < Clao — 20 h(xo)p} . (C.7)
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By using (4.22) we can estimate |EZ| similarly as |Ef], i.e.,
&5 = [(V(G = Gh), V(v — Tyw))g |

C.8
< Olfoo = 2ol (ao2d pditao) VG = Gy

Then, substituting the estimates of [£7] into (C.2)), we obtain (via the duality argument)
|G = GhllL2(a;,) < C(x h, )°p; e

+C Y (B o) )ik V(G = G20,
0,€0.,
+C Z (05 o i) pib V(G — Gl 2 oo
2EOU{2) 42} (C.9)
+ Clxo — 20|%” 171(3:0) s
h(x )2,0} ’ .
+C > . mdiﬁ(%) IV(G = Gl 25,
0:€045\{O0}
As a result, we have
> 0YG = Ghllrze,) < C (k' 7ha)pih; !
2;€0 2;€0
+C Z > (W oy ng iy V(G = G20,
€0., 2,€0

+C Z > @ o e h e T IVIG = Gl 2o
2;€0U{2;42} 2;€0

+C Z ’1‘0 —20‘5 1h(x0) Sh

2;€0
(0%} 1
e 2 ‘xo_zdl g i) IV (G = Gz,
0:€0,, %€

= F| + Fy+ F3+ Fy + F,
(C.10)

where

CZ lfyh spl shf

2,€0
SC 1 'yh s 1 S(hp ) 1
£2; EO
< C(Kl—'yh*)sh—l Z pj—(S—’Y)
Qjeo

< O h T g — 2|77
< C(K " hy)*h ™ (khy )~
< CH’Y(l—S),
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Fy, < C max Z h5+1d—1 1 Sh_l)/\/l
0:€0 L,

< C max Z (hd} ")+ Ld pl S(hpjl.*'y)—lM
€0, o

< Corl_n%x Z hsdz(l—w)(s+1)—1p;(s_7)M

< Com%x hsd [y (s+1)—s]‘x0 B Zo|_(5_'7)j\/l
€0;,

< Chzs(/{h*)_h(s"rl)—s](/{h*)_(s_,y)M

< Cr™TM,

Fy <C  max B Lol M
P = 0ie00{02) 1) > @ oty b

2;€0
< C max hl’Ys—H 118}11-77_1_/\/[
T 2,€0U{2545} Qze(’)( pi ) P; ( P )
<C  max Z hs 1—7)(s+1)—1 _(5 M Aq
2,€0U{2y42} 420
<C max hp; )=l =) g
2;€0U{02; 12}
< CHP ()0 )~ o

< Cr™TM,

Fy<C Y |zo— 20" 'h(zo)p) *hy"!

2,€0
<C Y fro— 20l (hlao — 2o/ 7)pl )
2,€0
<C Y Jao—zol ;Y
2,€0
<C,
Bl )2
F5 < C max (16—0)1_59]1'7811;1)/\/1
OiEOIO 2;€0 |x0 - ZO| dz
Bl )2
= C gnax (36—0)13 *(hp; )M
0i€0s 20 |z — 20|1—5d;
h 2 o
= ¢ nax (36—0)1—371_1;)]- =1 pm
0i€0zq o co |zo — z0[1~5d;
hlzo — 20|t~ 7R
< C max |20 — 2o (1’0>h—1\£€0—zo|_(5—w)/\/l

0:€04, |20 — 20|1—5d;
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< C max h(zo)d; ' M
OiEOzo

< Cr™ " M.

Substituting the estimates of Fy, Fs, F3, Fy and F5 into (C.10)), we obtain

[1]

D G - Gallpzgy) < OO + CrTIM. (C.11)
Q]'EO
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