ANALYSIS OF FULLY DISCRETE FINITE ELEMENT METHODS FOR
2D NAVIER-STOKES EQUATIONS WITH CRITICAL INITIAL DATA
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ABSTRACT. First-order convergence in time and space is proved for a fully discrete semi-
implicit finite element method for the two-dimensional Navier—Stokes equations with L? ini-
tial data in convex polygonal domains, without extra regularity assumptions or grid-ratio
conditions. The proof utilises the smoothing properties of the Navier—Stokes equations in the
analysis of the consistency errors, an appropriate duality argument, and the smallness of the
numerical solution in the discrete L2(07 tm; H 1) norm when ¢,, is smaller than some constant.
Numerical examples are provided to support the theoretical analysis.

1. Introduction

We consider the initial and boundary value problem of the incompressible Navier—Stokes
(NS) equations
Owu+u-Vu-Au+Vp=0 in 2x (0,77,
V-u=0 in 2x(0,T],
(1.1)
u=0 on 0£2x(0,T],
u=u’ at 2x{0},

in a convex polygon {2 c R? with boundary 042, up to a given time T > 0. It is known that
for any given initial value

wWel?={vel?(Q)*:V-v=0and v-v=0 on 9N}

(where v denotes the unit normal vector on 0f2), problem (1.1) has a unique weak solution
we L2(0,T; H) n HY(0,T; H') - C([0,T7; L?), where

H& ={ve H& (Q)2 :V-v=0} and H™1 denotes the dual space of H&;

see [45, Theorem 3.2 of Chapter 3].

Stability and convergence of the numerical solution to the NS equations were studied
based on different regularity assumptions on the solution and initial data. In particular, if the
initial data are sufficiently smooth, i.e. u® € H& n H?(Q)? or above, then the numerical solu-
tion was proved to be convergent with optimal order for finite element and spectral Galerkin
methods with different time-stepping schemes, including the Crank—Nicolson method [24],
the implicit-explicit Crank—Nicolson/Adams—Bashforth method [21}34,47], the semi-implicit
Crank-Nicolson extrapolation method [5}(15,27,/44], the stabilization methods based on the
Crank-Nicolson method [12], the Crank-Nicolson extrapolation method [31], the backward
Euler method [10] and the BDF2 method [32], the projection methods [1,/41,42], the projection-
based variational multiscale methods based on the Crank-Nicolson method [40], the fractional-
step methods [4], the three-step implicit-explicit backward extrapolating scheme [6}48], the
backward differentiation formulae [3,/7,9], a second order energy- and helicity-preserving
method [36], the implicit-explicit Euler method [34], and the implicit Euler methods with
different spatial discretizations [8}9,14,28]. The error estimates in the above-mentioned arti-
cles do not apply to nonsmooth initial data.
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If the initial value v is only in H&, the accuracy of second- or higher-order time-stepping

schemes for the NS equations is often reduced. For the semidiscrete finite element method
(FEM), it was shown in [25] that the L?norm error bound at time t is of O(t"/2h?), where
h denotes the mesh size of the finite elements. For fully discrete FEMs, the linearized Crank—
Nicolson scheme was proved 1.5th-order convergent in time [20], and the semi-implicit Euler
scheme with spectral Galerkin method was proved first-order convergent under a CFL condi-
tion 7In(Ap, /A1) < K in [18], where 7 is the time stepsize and A, is the maximal eigenvalue of
the Stokes operator used by the spectral method (and & is a positive constant).

The error estimates in the above-mentioned articles all require the initial value to be strictly
smoother than L?, which is known to be a critical space for the 2D NS equations, a maximal
Sobolev space on which well-posedness of the 2D NS equations is proved; see [13]. As a result,
the error analysis in this case turns out to be much more challenging than that for smoother
initial data. To the best of our knowledge, for L? initial data, the only error estimate for the
NS equations is in [19] for a semi-implicit Euler scheme with a spectral Galerkin method in
space using the eigenfunctions and eigenvalues of the continuous Stokes operator. Under a
CFL condition 7 < kA1, it is shown in [19] that the backward Euler spectral Galerkin method
with time stepsize 7 and maximal eigenvalue A\j; has an error bound O()\R}/ 247l 2) on a
bounded time interval. For the backward Euler scheme with finite element methods (FEMs)
in space, several stability results were proved in [22] without error estimates. Overall, first-
order convergence of the implicit or semi-implicit Euler methods and error estimates of fully
discrete FEMs for the NS equations with L? initial data still remains open.

In this article, we prove the first-order convergence of a fully discrete FEM for the 2D NS
equations with L2 initial data, using semi-implicit Euler method in time and an inf-sup stable
pair of finite element spaces with divergence-free velocity field, i.e.,

_1
|l = u(tn)] g2 < C(t;, 7 + tn2h)  for t, € (0,77,

where uj denotes the numerical solution at time level ¢ = ¢,,. The main difficulty in analysing
numerical methods for the NS equations with L2 initial data is to control the nonlinear terms
appearing in the error analysis by very weak bounds of the numerical solution, in the presence
of singular consistency errors (see Lemma . We overcome these difficulties by utilising
the O(t™)-weighted L? estimates of the mth-order time derivative and 2mth-order spatial
derivatives (as shown in Lemma and a duality argument with variable temporal stepsizes
to resolve the initial singularity in the consistency errors (as shown in Section. It is known
that variable stepsizes can help resolve the singularity in proving convergence of exponential
integrators for semilinear parabolic equations with nonsmooth initial data; see [33]. However,
the error analysis for the NS equations turns out to be completely different from the error
analysis for the semilinear parabolic equation due to the lack of Lipschitz continuity of the
nonlinearity and the critical nature of the L? space. This leads to the critical difficulty in the
use of duality argument — the lack of stronger norms than L?(0,7; H') to help control the
nonlinear terms, as shown in , where the the first term on the right-hand side of
has to be absorbed by the left-hand side. This difficulty is overcome by proving the smallness
of the numerical solution in the discrete L?(0,¢,,; H') norm when t,, is smaller than some
constant independent of the stepsize 7 and mesh size h, as shown in Lemma

The rest of this article is organised as follows. In Section [2| we describe the finite element
method and time-stepping scheme to be analysed in this article, and present the main theorem
of this article. The proof of the main theorem is presented in Section The proof of two
technical lemmas, including the temporally weighted regularity results and the strong and
weak convergence of the numerical solution, are presented in Appendix.



2. The main result

For s e R and 1 < p < oo, we denote by W*P({2) the conventional Sobolev spaces of functions
defined on §2, with abbreviation H*(£2) = W*2(£2) and LP(£2) = WP(£2). For the simplicity
of notation, we denote by |- |ys.» the norm of the spaces WP (§2), W*P(£2)? and W*P(£2)>2,
omitting the dependence on {2 and dimension.

The natural function spaces associated to incompressible flow are the divergence-free sub-
spaces of L?(£2)% and H}(£2)?, denoted by

X =L and V=H],
respectively, as defined in the introduction section. We denote by Px the L?-orthogonal
projection from L?(£2)? onto L?, and denote by
A=PxA

the Stokes operator on L? with domain D(A) = H} n H2(§2)2, which is a self-adjoint operator
on L? and bounded above by 0 (negative definite). The Stokes operator has an extension as
a bounded operator A : H& — H~! defined by

(Av,w):—/QVv-dex Vv, we Hy. (2.1)

Correspondingly, the NS equations ([1.1)) can be equivalently written into the abstract form:
{&u(t) + Px(u(t)-vu(t)) — Au(t) =0 for te (0,7T],

u(0) = u°. (2:2)

Henceforth we use the common notation (-,-) to denote the inner products of the Hilbert
spaces L2(£2), L?(£2)? and L?(£2)*?, and define
L3(2) ={ve L*(2): [yvdx=0}.

For the simplicity of notation, we denote by C' a generic positive constant that may be different
at different occurrences and may depend on u?, Q and T, but is independent of the stepsize 7
and mesh size h (to be introduced below).

Let Vi, x Qp, ¢ HY(£2)? x L2(£2) be a pair of finite element spaces defined with respect to a
shape-regular and quasi-uniform triangulation of mesh size h, with the following properties:

(P1) There exists a linear projection operator IIj : H}(§2)* —» V}, such that
i) v-IIv = Py, Vv for v e HL(£2)?, where Py, : L2(2) » Qp, denotes the L?-orthogonal
Qn 0 Qn 0
projection.
(ii) The following approximation property holds for v € Hi(2)%n H™(£2)*:
”U—Hh’UHHs(Q) SChm_s”’U”Hm(_Q), 0<s<l, 1<m<2. (2.3)
(P2) V-vp € Qp, for vy, € V.
The two properties above guarantee the inf-sup condition for the pair Vj, x @ (see [16]),
ie.,

C(V - vn, qn)

lanlr2(oy € sup —————> Vqn€Qn. (2.4)
’l}hGVh\{O} th”]‘[1

Since V - vy € Qp for vy € V}, it follows that the discrete divergence-free subspace of Vj,

coincides with its pointwise divergence-free subspace, i.e.,
Xp = {vn € Vi1 (V- 0h,qn) =0 Vqn € Qn} = {vn € Vi : V-vp, = 0} (2.5)
Hence, ‘ ‘ '
VicHy(Q)? and X,cHjcL?’=X, but V¢ H;.
There exists several finite element spaces V}, x Qy, satisfying properties (P1)—(P2). An exam-

ple was constructed in [16], where V}, consists of piecewise linear polynomials plus quadratic
bubble functions, and @), is simply the space of piecewise constants with vanishing integral
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over {2. Another example is the Scott—Vogelius element space proposed in [38], where V}, is the
space of continuous piecewise polynomials of degree k > 4, and ()}, is the space of discontinuous
piecewise polynomials of degree k — 1. The Scott—Vogelius element space was proved to be
inf-sup stable in [17] (under certain additional mesh requirement), and therefore property (P1)
is satisfied if IIj, is simply chosen to be the Stokes—Ritz projection; see [11, Proposition 4.18].

We consider the following semidiscrete FEM for : for given u° € L2, find (up,pn) €
01([07 T]7 Vh) X C([Ov T]7 Qh) such that

(Opun, vn) + (up - Vup, vp) + (Vup, Vop) = (pr, V-vi) =0
(V- un,qn) =0 (2.6)
up(0) = uj) = Px, u’,

for all test functions (vn,qpn) € Vi x Qp, and ¢ € (0,7T], where Py, : L? > X}, denotes the
L?-orthogonal projection onto X;. This is equivalent to computing u% € Vi by the weak
formulation (with an auxiliary function 1y, € Q)

{(UO—Ugavh)—(an'vh):O @)
(V-ul,qn) =0 for all test functions (vs,qp) € Vi x Qp. '
If we denote by Ay : X — X, the discrete Stokes operator defined by
(Apvp,wp) = =(Vog, V), Y op, wp, € Xp,. (2.8)
Then the semi-discrete problem is equivalent to find uj, € C1([0,T]; X},) such that
Orup, + Px, (up, - Vup) — Apup, =0 for t e (0,71,
{ up(0) = ul. (2:9)

Let 0 = tg <t < <ty =T be a partition of the time interval [0,7"] with the following
stepsizes:

Ti~7e and T, =ty —tpo1 ~ (tho1/T)YT for 2<n < N, (2.10)

where 7 is the maximal stepsize, and « € (0,1) is a parameter which determines the local
refinement of the temporal grids towards ¢t = 0, with ‘~” denoting equivalent magnitude (up to
a constant multiple). The stepsizes defined in this way has the following properties:

(1) 7, ~ Tp-1 for two consecutive stepsizes.

(2) 7 = TTa. Hence, the starting stepsize is much smaller than the maximal stepsize.
This can resolve the solution’s singularity at ¢ = 0.

(3) The total number of time levels is O(T /7). Hence, the total computational cost is
equivalent to using a uniform stepsize 7.

With the nonuniform stepsizes defined above, we consider the following fully discrete semi-
implicit Euler FEM: Find (u},p}) € Vi x Qp, n=1,..., N, such that

un_un—l
(hT—h’vh) + (vuzv vvh) + (UZ_I ’ vuzvvh) - (pql; V- Uh) =0 Vop € Vp,
n
(V-up,qn) =0 V qn € Qn,
u?l = PXhuo.

This is equivalent to finding uj € X, n=1,..., N, such that

u™ _un—l
(u,vh) + (Vuz, V’Uh) + (uﬁfl . V'LLZ,U}L) =0 VYu,eXp,
T

n

(2.11)
u% = PXhuo,
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which can also be written into an abstract form by using the operator A, defined in (2.8)), i.e.,

u — un—l
b h o Apu + Py, (up Tt vul) =0 for 1<n < N. (2.12)
Tn

In view of , there holds V - uj = 0 and therefore (uﬁ‘1 - Vup,up) = 0 similarly as the
continuous solution. As a result of this identity, substituting vj, = uj into immediately
yields unconditional energy stability of the semidiscrete FEM.

The main result of this article is the following theorem, which provides the convergence of

the fully discrete method (2.11)).

Theorem 2.1. Let u° € L2 and assume that the finite element space Xp, x Qp has properties
(P1)—(P2). Then, when the time stepsizes satisfy (2.10) with a fized constant o € (%, 1), the
fully discrete solution given by (2.11) has the following error bound:
_1
|up —w(tn)| 2 < C(t;lTn +tp2h), (2.13)
where the constant C depends only on u®, Q and T (independent of t, € (0,T], T and h).

Remark 2.2. The error estimate in indicates that the numerical solution can be accu-
rate when t,, is away from zero (when 7,, and h are sufficiently small), but may not be accurate
when t,, is close to zero. This phenomenon is known for fully discrete finite element solutions of
linear and semilinear parabolic equations with nonsmooth initial data; see [46, Theorem 14.8].
For the NS equations with critical initial data, it is the first time such results are obtained.

The proof of Theorem [2.1] is presented in section [3

3. Proof of Theorem

3.1. Preliminary results

In this subsection, we present some technical inequalities and regularity results that will be
used in the error analysis for the NS equations.

First, the following interpolation inequalities, which hold in general convex polygons (cf. |2}
Theorem 5.8, Theorem 5.9]) and were often used in analysis of NS equations in the literature
(e.g., [45 Chapter III, §3.3]) and will also be used in this article:

1 1
[vlLe < Clol IVl 7. Vv e Hy(2), (3.1)
1 1
[Vl < Clvol | Av] 7 Vo e Hy(2)nH*(2), (3.2)

12, Ve Hy(Q)n H*(Q). (3.3)

Second, the following basic properties of finite element spaces and the finite element solution
to the NS equations will be used.

(1) Approximation of X}, to H&: for m = 1,2 there holds
in)f( (Jv =l g2 + hlv=vplgr) < CR™ v gm  Yove Hy n H™(Q)>. (3.4)
€Xp

Uh

Since II;v € X}, for v e H&, the inequality above follows from ([2.3)).
(2) H'-stability of the L%-orthogonal projection Py, : H} — Xj:

| Px, v]| g1 < C|lv| g for all ve Hy. (3.5)
Proof. By using the triangle inequality, inverse inequality and (3.4]), we have

1
[vlze= < Clo];2]v

lv=Px,vlgr < nf (Jo-ovnm +[Px, (v =va)[n)
’UhEXh

< inf (Jo-valg +Ch7 o - wplg2) < Cllof . H
’UhEXh



(3) Error bound of the L?-orthogonal projection Py, : H& - Xp:
v = Px,v| 12+ h|v— Px,v| g <Ch*|v|gs VYve HynH*(Q)? s=1,2. (3.6)
Proof. By using the triangle inequality, and , we have
v P, vl 2 + hllv = P, vl g
< nf (Jv=ovalzz +hlv=vnlm + [ Px, (v=vn)lz2 + 2| Px, (v = vn) [ )

< inf (Jo-vglze + o = val ) < B o e O
UhEXh

(4) The Stokes-Ritz projection and its error bound: Let Rx, : H& — X}, be the Stokes—
Ritz projection, defined by

(V(v—Rx,v),Vwp) =0 Yuwy e Xy, ve Hp. (3.7)
which is equivalent to finding (Rx,v,ns) € Vi x Qp, such that
(V(v=Rx,v),Vwy) = (Mh, V- wp) =0 Ywy € Vy,
(V-Rx,v,qn) =0 Vg €Qp.

The Stokes—Ritz projection has the following error bound (cf. [11, Lemma 2.44 and
Lemma 2.45] and [11}, Proposition 4.18)):

|v = Rx,v| 12+ h|v - Rx,v| g < Ch*|v|gs Vve HynH*(Q)? s=1,2. (3.8)
(5) The numerical solution given by the fully discrete FEM in (2.11)) satisfies the following

basic energy estimate:

N
max Jup |7 + 2;:1 Tl Vup |72 < Juplze- (3.9)

This can be obtained by testing (2.12) with wuj.

Third, since inequality (3.2) cannot hold for finite element functions (which do not have
second-order partial derivatives), we would need the following discrete analogy of ({3.2]).

Lemma 3.1. The following inequality holds:

1 1
[Vonlrs < ClIVonli.[Andnlrs ¥ dn e Xp. (3.10)
Proof. To obtain a bound for |V 14, we let ¢ € D(A) = Hi n H?(£2)? be the solution of
A¢ = Appn,  (where Apop € Xp ¢ X)), (3.11)

which is equivalent to the linear Stokes equation
-Ap+Vn=-Apopp in Q,
V-¢=0 in Q,
¢=0 on Of).

By the standard H? estimate of the linear Stokes equation (cf. [30, Theorem 2]), the solution
¢ € D(A) satisfies

| ¢l 2 < Cl Andnl 2. (3.12)
This inequality and (3.2]) imply that
1 1
[Velrs < CIVEIL: [ Andnl 72 (3.13)
On the one hand, testing (3.11)) with vy, = II,¢ — ¢, € X}, yields the following error estimate:
Chl @]
V(6= n)l2 <CIV(o-T1ng)| 2 <
Clol -
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Let Sy, ¢ HE() be the piecewise linear Lagrange finite element space. Since the Scott-Zhang
interpolation operator g : H(2) — S, satisfies the basic error estimate:

Chl o] 1

-1I 2 <
”V(Qb S¢)“L < {C”Qb”Hl 7

by using the triangle inequality we obtain
|V(¢n —sd)| 2 < V(o = )12 + V(¢ —IIs@)[ 12 < Ch[&] 2.
By using the inverse inequality and the two estimates above, we have
1
_1 Chz| ¢ g
[V (én —Hs¢)| s < Ch72|V(dp —gd)| 2 < 1
Ch™> |9 -

The geometric average of the two different estimates on the right-hand side yields

1 1 1 1
|V (¢n =g ps <Cl8] g 6172 < CléN G | Andnl 72 (3.14)
where the last inequality uses (3.12). Since
IV 5| 14 < C|VP| 14 (stability of TIg in WH4(Q); see [39])
1 1 (3.15)
<C|o) 711 Andnl ;.- (here we have used (3.13))
Combining the two estimates above and using the triangle inequality, we obtain
1 1
[Vénlzs < Clol | AndnllZo- (3.16)
It remains to prove the following inequality:
[ ¢l < Clldn - (3.17)

Then substituting (3.17)) into (3.16)) yields the desired result (3.10)).
In fact, testing equation (3.11) by ¢ gives

IVol72 = ~(Andn, &) = (Von, VPx,8) < ClVenl 2| Px, é | < ClV el 26 arr-

where the last inequality uses the H' stability of the L? projection Px, , as shown in .
Since ¢ € H}()?, it follows that ||¢]z1 < C|V¢| 2. Hence, the inequality above furthermore
implies . This completes the proof of Lemma U

It is well known that the unique weak solution of the NS equations satisfies the energy
equality

1 1
ST + 1Vul 20410 = 5160132, VE>0. (3.18)

This can be obtained by testing ([1.1)) with u. In addition to this basic estimate, the following
regularity result for the NS equations will be used in the error analysis.

Lemma 3.2. For any given u° € L2, the solution of (1.1)) satisfies the following estimate:
[0 u(t)| 2 + ¢z |0 w(t) | g1 + )07 uw(t) |z < Crt™ VE>0, m=0,1,2... (3.19)
where the constant Cyy, depends on m and |u°|| 2.

Since we have not found a proof of Lemma in the literature (the regularity results
in [23,24] are for H} n H? and H{ initial data, instead of L? initial data), we present a proof
of this lemma in Appendix.
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3.2. Estimates for the consistency errors
We denote 1} = Px,u(t,). By testing equation with vy, € X;, ¢ X = L? and using the
Stokes—Ritz projection operator defined in , we have
(0¢Px,u(t),vn) + (u(t) - Vu(t),vy) + (VRx,u(t), Vop) =0 Yoy € Xp,.
which can be written into the abstract form
Ot Px, u(t) + Px, (u(t) - Vu(t)) - ApRx, u(t) = 0.

By considering this equation at ¢ = ¢,,, we can write down the equation satisfied by 4y, i.e.,

an _ﬁnfl
h - h__ PXh(ﬂZ_l -vauy) - Apty =E"+Fy for n>1, (3.20)
n

where the truncation errors £ and F;' are given by

AT ,&nfl
En =(uh7—h - 8tah(tn)) + Py, [(u(tn-1) —u(tn)) - Vu(ty)] = &' + &, (3.21)
Fip == Ap(iy = Rx,u(tn)) + Px, [ - v (ag - u(tn))] (3.22)

+ PXh[(aZ_l - u(tn—l)) ’ vu(tn)]
= ‘7:}?71 +f}?72 +f;:l,3

Lemma 3.3 (Consistency errors). If u" e L? and the stepsize in (2.10)) is used, then for all
test functions vy € Xy, the consistency errors defined in (3.21)—(3.22)) satisfy the following
estimates:

_3
|(E™",vn)| < C1ptn? | Vol for n>1, (3.23)

Cht | Vop 12 for n>2,

|[(Fsom) < (3.24)

3
C(ht,' + 711t 2)|Vop| 2 for n=1.

Proof. Testing (2.2) by vj, € X, and integrating the result over the time interval (t,-1,t,), we
obtain

(u(tn) —u(tn-1),vp) = - .[t:nl (Vu(t), Vup) dt - ‘/t:nl (u(t) - Vu(t),vp)dt. (3.25)

For n =1, the truncation errors can be estimated by using (3.25) and (2.2), and the triangle
inequality:

(&1, vn)] <1 |(u(te) = ulto), on)| + [(Beu(ty), on)|
:r;1|f0t1(w(t),wh)dt—fotl(u(t),u(t)-wh)dt‘
+[(Vu(ty), Vor) = (u(t1), u(tr) - Von)|
<or [ (1) 90012+ [ 34 17 2]
+ C(fut)a + [ult) 7)1V on] 2
<or [ [l 19l e + 1Ol ) T2
+ C([uC) g + [uCt) [ 2luC) [g) [Vorl 2 (here is used)

1 1
<CO7y 2 |uf p2g0,;m1) (1 + [ul o 0,61,22)) IVOR] 22 + C7y 2 [ VR | 22
(here Lemma [3.2| is used)

_1 _3
SCTI 2 HV'UhHLQ = CTltl 2 ”v’UhHLQ,



and

(&5, v)] =[(u(ty), (u(to) - u(t)) - Vop)|
<Cllu(ty)]zellu(ts) —u(to) | L2 | Vo 2

1 1
<Ofu(t)] 72 lut)| 2 (luto) [ 22 + lu(t) | 2) [Vonll 2 (here (3.3) is used)
1
<CT *||Vup| 2 (here Lemma is used)
_3
:CTltl 2 H V’Uh||L2.

_3
By combining the two estimates above, we obtain |(E"™,vy)| < Crptn? | Vopl 2 for n = 1.
In the case n > 2, by differentiating equation (2.2)) in time and testing the result by vy, € X},
we obtain

(Ouu(t),vn) + (9, Vu(t), Vo) + (Opu(t) - Vu(t), va) + (u(t) - VOu(t),vn) =0 Vup € Xp,
which implies that

u(ty) — u(tn_ tn t— 1,
[(EF,vn)| = (M —atu(tn),vh) = ’( /t . 18ttu(t)dt,vh)
n n—1 n
th
= / t tn—l (8ttu(t),’l)h)dt‘
tn—l Tn
<C7, max |(Opu(t),vp)]
te[tn_1,tn]
ZCTnt [inaxt [(0yVu(t), Vop) — (u(t), Opu(t) - Vur) = (Opu(t), u(t) - Vup)|
€lln-1,ln
<Oy X ][||f9tu(t)||H1 + lun ()| L4 lOu(t) | 14 ][ Von | 2
1 1 1 1
<Ctn, max [10vu(®) g + a2, ()2, 100u() |12, 10u(t) | 2, ]I Von 22
_3
<Ctyt, % ||Vun|p2  (here Lemma [3.2]is used),
and

(&5 on)l = [(u(tn), (ultn-1) = u(tn)) - Vor)|
< Clludtn) | autn-1) = u(tn)] 4| Von] L2
<Oty imax [l e lowu(®) 2] IV on] 2

€[ln-1, n]

1 1 1 1
<Cry  max ()72 w17 10wt 75 10cu() | 72 JI Von 22

n-1,tn

_3
<Oyt %[ Vop| 2 (here Lemma 3.2 is used).
3 _3 _3
Since t,,%, ~ tp? for n > 2, the two estimates above imply |(£",v)| < CTytn? |V L2 for n > 2.
This completes the proof of (3.23]).

To prove (3.24)), we consider the expressions of F}’ 5 J=1,2,3, defined in (3.22)). By using
the approximation properties of the projection operators Px, and Ry, in (3.6 and (3.8]), we
have

|(Fhes vn)l =[(V(Px, u(tn) = Rx,u(tn)), Vup)|
<(IV(Px,u(tn) = u(tn)) 22 + [V (u(tn) = Rx, u(tn))] 2 ) | Von] L2
<Chlu(tn)|mz|Von| 2
<Cht Y |Vup| 2 for vy e Xp and n>1,

where Lemma [3.2] in deriving the last inequality.
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By applying the inverse inequality |vp[y1,4 < Chs lval w2 and (3.1), we obtain
[(Fh2 vn)| =l(Px, ultn-1) - V(Px, u(tn) = u(tn)), vn)|
=|(Px, u(ty) = u(tn), Px,u(tn-1) - Vop)|
<O Px, u(tn) = ultn)| s Px, u(tn-1) 22 [ Von| 4

1 1 1
<O Px,u(tn) = u(tn)l| 2o Px, utn) = u(tn) | Fo lu(tn-1) [ 2272 |Von | 2

1 1 1
<O(R2 fu(ta) | 122) F (Bt =) LaCn )] 2h~H [ Tn o
<Chllu(tn)| 2 w(tn-1) | L2 Von 22
<Cht;|Vop| 2 for vy € Xy and n > 1,

where Lemma |[3.2| is used in deriving the last inequality.
Similarly as the estimate for |(f,? 9,Un)|, we have

|(Fhozs on)| =I((Px u(tn-1) = w(tn-1)) - Vultn), vn)|
:|(u(tn)7 (PXhu(tnfl) - u(tnfl)) ) V'Uh)|
<Cllultn)| 2| P, utn-1) = u(tn-1) 4] Von| s

1 O |
<Cllultn) |2 | P, ultn-1) = w(tn-1)| 72 Px, utn-1) = ultn-1)[ g 272 | Von| 2
1 1.1
<Cllu(tn) 2 (h*[ultn-1)52) % (Bllu(tn-1) | g2) 2 h~2 | Von ] 2
<Chllultn)| 2 utn-1) |z [ Von] 2
<Cht,|Vop|z2 for vy e X and n > 2,
where Lemma [3.2] and ¢,,_1 ~ t,, are used for n > 2. For n =1 there holds
|(Figsvn)l =l(u(tr), (Px,u” —u’) - Vop))|

<Cllu(ty) | =l Px,u’ = u’| 2| Von 2
1 1
3 3,0
<Clu(t)[ 72 luCt)] 72wl L2 [ Von] L2
1
<Ct,*|Vop|r2 (here Lemma [3.2]is used)

3
<Crity?|Vop |2 for vy € Xp, and n=1.

Collecting the above estimates of .7-""]-, 7=1,2,3, for n>2 and n = 1, we obtain (3.24]). O

3.3. Error estimates in a sufficiently small time interval [0, 7]

By subtracting (2.12)) from (3.20]), we obtain the following equation for the error function
ey = Uy —up:
el — en—l
% — Apef + Px, (ay7 ! vay —up v = M+ Fi (3.26)
n
We first estimate Y1) 7,[ef']|2, by a duality argument. To this end, we denote by ¢} € Xj,
the solution of the backward problem

n _ 4n—1
—M—Ahqﬁ_l =ez_1 for n=2,...,m+1,
Tn-1 (327)
¢;Ln+1 — 0,
which satisfies the following standard energy estimate:
m m
2 2 2
masx 63 + 3 7l Anhl3e <€ 3 malehla. (3.28)

n=1 n=1
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This estimate can be obtained from testing (3.27)) by —AthZ‘l and summing up the results

form=2,...,m+1.
Testing (3.27)) by Tn_leZ‘l and summing up the results for n = 2,..., m+1, and using discrete

integration by parts in time (with e} = ¢7"*! = 0), we obtain

m+1 119 m+1 1 ¢h ¢n— L
> Tetllen ™ Nge = Y ot (e - Anoi)
n=2 n=2 Tn-1

- SR o) = () + 3 m (vl veR)

n=1
n— 1

h h
= E Tn(— —Aheﬁ,d,;‘)
n=1 Tn

By substituting (3.26]) into the inequality above, we obtain

m+1

3 ruleh 1

<= 3 Vi Vo) + 3 (€ ) + 3 ()

- S (e g v ) + i € ) + 3 7R 07)

= S (et Vo) + (V| ¢ X €00+ Dl GR), (329)

where we have used integration by parts in deriving the last equality. The last term on the
right-hand side of the above equation can be estimated as follows: In the case of n > 2 we use

the decomposition F;* = ﬁl + ,7-7;2 + .7-";’;’3 with

|(Fi1 )] =P ultn) = R, u(tn), Angy)|
<[ Py, ultn) = Rx, u(tn) | 2| Andp, HL2
<Chllu(tn) | g |Andy 2 (here (3.6) and ( are used)

|(Fhzr 01| =l (P, ultn) = u(tn), Px, u(tn-1) - V¢h)|
<C|Px, u(tn) = ultn)| 2| Px, u(tn-1) | L4 [ VoR | L4

1 1 1 1

<O Px ultn) = w(tn) | 2 [ Px, w(tn-2) | 22 | P, uCtn-0) | 5 [V 05 12 [ Andpl 72

(here (3.1) and Lemma [3.1| are used)
1 1 1 1
<Chlu(tn) | g luCtn-0)l 72 lulta-) 1 F VORI L2 | Andhl L. (here (3.5) is used)
|(Frzs O] =[(w(tn), (Px,ultn-1) = u(tn-1)) - Vop,)|
<Clu(tn) | s Px, utn-1) = ultn-1)| L2 [VER | s
1 1 1 1
<Clutn) | L2 luCta) g MluCtn-D) [V O 2 [ Andpll -
Since ||u(t,)| 2 < C, the three estimates above imply that
(2 S| <Chlutn) g | An
3 3 1 1
+ Ch([lu(tn)] g + lultn-) ) VORI 72 | Andh 2
<el A 12 + C 2 (ultn) |20 + [ulta-1)I30)
v efult)lm + et ) IVOEl 2l Andil e for n>2, (3.30)

where € can be an arbitrary positive constant (arising from using Young’s inequality). In the
case n =1, Lemma implies that

(L 8] < O 96kl 12 < Celmr + e Vah [ < Ce 02 + €| Vol |2, (3.31)
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where the last inequality is due to the stepsize choice in ([2.10]), which implies that

1 1 9. _ L9190, 19y e
7 <C11-a < C71-0 27511ﬂ 2“(15727? 172) <C7T-a Qt,ln 2a(tmngl) < Or(=a—2e tmng1

<Ct 112 for ae (%, 1). (3.32)

By summing 7,|(F}, o7 )| for n=1,...,m, and using the estimates in (3.30)—(3.31]), we obtain

m m

S Tl (Fr s =m1l(Fh, ) + Y. Tl (F 630))

n=1 n=2

<n|(Fp, Sl + € 3 Tl Angp 72 + Ot h? 3 m(ultn-1) 7 + [ulta)7)

n=2 n=2

+e 2 m(lul) i + [ultn-O)lm) VSRl L2 | And | 2

n=2
m

m
<Ot T + €| VORIT2 + € 3 Tl Andp 72 + O h? 3 multn) [ 7

m

n=1 n=1
- 2 % n < n|2 2
vl B rute) ) ol (3 ol anei 22
m m
SCe_lt;angl +Ce Z Tn Hem\%g +Ce'h? Z 'rnHu(tn)”%{l
n=1 n=1
m 5 m
+ Ce( Z Tn Hu(tn)ﬁp) ( Z Tn ”62%2) (here (3.28) is used).
n=1 n=1

By using (3.23]) we have

(V]IS

n
) sl

S (. om)] < c( $ o2

n=1 n=1
moam
< C( Z TnTln 2)( Z TnHeﬁm)
n=1 n=1
a-3 [ & iz V2 1
<Ctw 27| Y. malen e since a > 5
n=1

1
_1 m 2
<Oty Tm( > Tn||eZ||%2) here we used ([2.10)

n=1

m
< Ce_lt;angl +e€ Z TnHeZH%Q.
n=1

Note that

m m m
~n 4 N2 | an|2 ~n |2 2
Tallig 74 < C Y maliplzelinlzn < C Y mliple < C Y mlulta) [,

n=1

Mz

n=1 n=1

3
1l
—

m m
Tallup " za <O X mlup ™ zallun™ 7 < C 3 mllun™ I,

Mz

n=1 n=1 n=1

L 4 L 2 2 2 2

Z Tn HV(ﬁ’fiHm <C Z Tn”‘ﬁz ”Hl ”Ah¢Z”L2 <C 1%52% ”‘MLL HHl Z Tn”Ah¢ZHL2
== n=1

n=1

3
I
—

m 2
sc( zm|e’,1||%2) |

n=1

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)
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which are consequences of (3.1)) and Lemma Substituting (3.33)—(3.34]) into (3.29)) and

using the three estimates above, we obtain

& 2
> mulegls
n=1

< 4 % & -112 %
sc(Zrnuuzm) (zmez ||L2) (

{- 4
Tn HV<Z>ZL4)

n=1 n=1 n=1
1 1 1
S -14 * < n|2 ? < n |4
+C ZTn”UZ |74 ZTnueh”p ZTn”VQbh”yl
n=2 n=2 n=2
1.0 1 - -
+ 71| (ep, up - VoR)| + D mal(ER el + D mal(Fr s 63)]
-1 -1
" " 1 1 1
< 2 < n-12 * < nij2 2 < n (4 *
<Cl X malVu(ta) |z + D malVuy 72 ) | 20 mllenliz ] | 20 mmlVenlza
n=1 n=2 n=1 n=1
1.0 1 L <
+71|(en, up - VoR)| + X Tl (& o)+ X Tl (Fr 01)]
n=1 n=1
& 2 < 12 i 2
<o S mbuttlie « b ) (S lehite)  (here @30 s woa)
n=1 n=2 n=1
m
+71|(ep,up - Vo) + Cetlmh + Ce Y mallep|72 + Ce ' h? Y malu(ta) 7
1 -1
l n n
m ) 5/ m )
red S ntuti ) ( Enle:) (3.39)
n=1 n=1
The remaining term 71|(e},, uY - Vo1 )| in (3-38) can be estimated by using the basic energy
estimate:
(3.39)

lehlZz + 7l verlzz < C,

which is a combination of (3.9) and the regularity estimate (see Lemma [3.2))

Ju(t) 72 + 7 Vu(ts) |7 < C

through the triangle inequality. By using we have
ril(eh u) - Vol <Crilebl sl 219 6h | 1
<Crilleb| 2 Veb | 2l | 2| Vob 1 22 1 Angh 2,
<Cri leb |21V 0hI 2.1 Anohl 2, (using (@39 and Jul]p= < C)

1
<Celrilenl e + e |0p] | And | 12
m 1
<Ceri+e ) llen]7s + =e
n=1 2
m
(3.40)

<Ce ) i +Ce Y. maller| 7,
n=1

where we have used (3.28)) and (3.32)) in deriving the last inequality. Substituting the last in-
equality into (3.38) and choosing a sufficiently small constant € (so that the term Ce ¥, 7 [ €}t [7

can be absorbed by the left-hand side), we obtain that

(Inl3n + 71l Andpl72)

1
m m 1 m 2 m
S ralep s < c[( $ ([ uta)2 + ||wzriQ)) ; ( $ Tnnu(tn);) ]( $° Tnezn%z)
n=1 n=1 n=1

n=1
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+Ctol e + Ch? Y T ults) |50 (3.41)
n=1
The first and last terms on the right-hand side of (3.41]) can be dealt with using the following

lemma.

Lemma 3.4. For any given u° € L? the following result holds:

N
> Tl Vulta) 72 + | Vup]72) < C.
n=1
Furthermore, for any € > 0 there exists positive constants Ty, he and 7. (depending on u®, but
independent of T and h) such that for h < h. and T < 7. the following result holds:
m
> n(IVuta)lz + [Vup]72) <& Vitm e (0,T2).
n=1
The proof of Lemma [3.4]is deferred to Section [3.5
By using Lemma there exist constants T, h, and 7, such that for h < h,, 7 < 7, and
tm < T, the quantity

m

> ([ Vulta) 72 + [Vuh]72)

n=1
is sufficiently small so that the first term on the right-hand side of (3.41)) can be absorbed
by the left hand side, and the last term on the right-hand side of (3.41]) is bounded by Ch2.
Then we obtain

m

S Taler|3s < Ot + h?)  for ty, € (0,T.]. (3.42)

m
n=1

Hence, if we consider the problem in the time interval [0,7.], we obtain an error estimate
in the discrete L%(0,T}; L?) norm.
The error bound in can be furthermore improved to an L? norm at a fixed time. To
this end, we denote by x(¢) the nonnegative smooth cut-off function such that
0 for te (0,tm,/4],
x(t ={

d [oFx@)|<CtF for k=0,1,2,... 3.43
1 for tE[tm/2,00), an | tX( )| m 10T ( )
which satisfies |9;x(t)| < Ct,,.. Then, testing (3.26)) by x(t,)e}, we obtain

X)) epl7s = xn-)en ™ 172 + x(tn) e = ep 7
27,

= X(tn) (@, ep " - VeR) + x(tn) (E7, ) + X (tn) (Fi i) +

<x(tn) @il zaller " I all ver 2

_3
£ CX () (rut® + ) [Tef |+ mase [O(Dllef 3 (Lemma B3is used)

te[tn-1,tn

+x(tn) Ve 72

(x(tn) = x(tn-1)) ”62_1 Hi2
2Ty

< x| 2 a1 2 len |22 1 Vel 2, e 1o
+ Ox(tn) (Tl + )[Rl + Ot e 2
< Ot [ s e~ 2 + Ox () (72855 + 252) + CH ep |2
F xR s + [9eR13)
< Cllult) | Zx(t)lep™ 12 + Ox(ta) (72652 + h22) + CE L ep |2,

1 .
+ X () ([ Ve, e+ Iverlze), (3.44)
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where in the last inequality we have used |4}| g1 = | Px, u(tn) || g1 < Cllu(ty)| g as a result of
(3.5). Absorbing the last term of (3.44) by its left-hand side and applying the discrete version
of Gronwall’s inequality (cf. [24, Lemma 5.1]), we obtain

max x(tn)| e} |72

1<n<m
m m m

< eXp( Z Tn “u(tn)ﬁll)(c Z X(tn)(TStr_LS + Tnh%r_?) + Z TnCt;zl ||€Z_1”2L2)
n=1 n=1 n=1

m m m
<exp( Y Tnu(tn>||zl)(c<7it;f FIPE) D Tl e+ Ol Y Tnnez—lr%z)
n=1

n=1 n=1
<CTit2+ Ch2t L, (3.45)

where the last inequality uses Lemma and (3.42). Since this inequality holds for all m > 1
such that ¢,, € (0,7%], it follows that

led z2 < C(t;272 +t,'h?)  for t, € (0,T.]. (3.46)

This proves the desired error bound in a time interval (0,7, ], where T is a sufficiently small
constant (depending on u” but independent of 7 and k). In the next subsection, we extend
the error estimate to the whole time interval [0,T].

3.4. Error analysis in [0,7]

Let k be the maximal integer such that t; € (0,7%]. When 7 < T\ /4 there holds t; > T /2
and therefore t;l < C. In this case, (3.46) implies

ekl 2 < Cre + b, (3.47)
and Lemma [3.2] implies that
107 u| 2 + |0 w| g1 + |07 ul| g2 € Cpy Ve [tg, T], m=0,1,... (3.48)
Since t;l < C, the estimates in Lemma reduce to
[(E™ vp)| + [(Fr op)| < C(m + B)||[Vop| 2 for k+1<n< N, wvpeXp.
Then, testing the error equation by e}, we obtain

el 2 en—l 2 + en_enfl 2

27,
= (g, ep - Vep) + (E",ep) + (Fief)
<l zaler sl Verlze + C(rn + h) | VeR| 2

1 1 1 1
A2 (AT 2 -1y2 -1y2
< Claglzelanl gallen 172 1Ven 172 1Vepl e + C(mn + h)[Vey | L2

. - 1 -
< Clig 7 leh 72 + Clr+ B%) + 2 (1ve 72 + [VerlL2)

_ 1 _
<Clep 7 +C(Ti+h2)+Z(HV62 Hie+1veplia)  for m>k+1,

where we have used the regularity estimate

[kl = 1Pxu(tn) [ g < Ju(tn)[ g <C as aresult of (3.5) and (3.48).

By applying the discrete version of Gronwall’s inequality, we obtain

max |er] 2 < Cllef| 2 + C(7 + h). (3.49)
k+1<n<N
which together with (3.47)) yields the desired result of Theorem O

In the proof of Theorem [2.1] we have used the key technical Lemma which is proved in
the next subsection.
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3.5. Proof of Lemma

Lemma 3.4)is a combination of (3.9) and the following two lemmas (Lemma[3.5|and Lemma
3.6).
Lemma 3.5. Let u° € L? be given. Then for any € > 0 there exist positive constants Ty, he

and 7. such that for h < h. and T < 7. there holds

> Tl Vuil7a <€ Vit € (0,72], (3.50)

n=1

The constants Ty, he and 7. may depend on u° but are independent of T and h.

Proof. Let u,p(t) be a piecewise linear function in time, defined by

to=t 1, t=tn1 g

urp(t) = up uy  for t e (tp-1,tn].
n Tn
We claim that
ur,, converges to the unique weak solution u weakly in L*(0,T; H'); (3.51)
u, , converges to u strongly in C([Ty,T]; L?) for any fixed Ty € (0,T); (3.52)
u, , converges to u strongly in C'([0,T]; H™1). (3.53)

The proof of (3.51)—(3.53]) is presented in Appendix
In addition to (3.51)—(3.53)), we claim that the following result holds:

-0 as 7,h = 0. (3.54)

mavs [ s )1 = )12

We prove (3.54) by using the method of contradiction. If (3.54) does not hold then (3.52))
implies that there exists a sequence t; - 0 and 7, h; — 0 such that

[ty o) 2 = e [ 2] 2 0 for 1.

Since u € C([0,T7]; L?) it follows that |u(-,¢;)|z2 = [u°] ;2 and therefore

d
> 3 for sufficiently large j.

[ty o) 22 = 1]

The efnergy inequality (3.9) implies that [[ur, n; (- 2;)] 2 < ||u2j lr2 = ||Pth u¥ 2 < |ul] 12, and
therefore

)
ez, Coti) 2 = |u®] L2 < -3 for sufficiently large j. (3.55)

Since ur, 5, (+,t;) converges to u® in H™! (as a result of (3.53)), and |7, p; (5 25) ] 2 is uniformly
bounded as j — oo, it follows that uTrhj(-,tj) also converges to u” weakly in L? and therefore

w2 < Yiminf ur, ()] 12 (3.56)
Substituting this into (3.55)) yields that
)
Ju®l 2 < u®] 2 - 7

The contradiction implies that (3.54) holds.
We use the standard energy equality for the numerical solution:
w2, = [lun1)2 2
iz =l e, 7o + | vup)7. =0, (3.57)
2Ty 2 12
which can be obtained through testing (2.12) by uj. By summing up (3.57) for n=1,...,m,

we have

n n-1
Up, —up

n

m

1 1
> Tl Vup |7 < 5||U2Hiz - §IIUZ”H%2
n=1
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L ultan) 122 - 122

1
02
= §||uhHL2 - 2||U( m)HL2 + 5

1 1 1
< SIe17e = S luCtm) 72 + 5 (lutn) 172 = lui'172)

- /Otm | Vu(t)||3.dt + §(||u(tm)\|L2 — ug3). (3.58)

First, (3.54) implies that there exist constants 7. and h. such that when 7 < 7. and h < h. the
following inequality holds:
2 2

JuCtm) 72 = Jup'l72 <&

Second, u € L?(0,T; H'(Q)?) implies that there exists a constant 7. such that
T,
15 2 £

[ Ivu® et < .

As a result, we have

m tm 1
> Tl Va7 < fo [Vu(t)|72dt + §(HU(tm)II%z ~ uil72) <e. (3.59)
n=1

This proves the desired result of Lemma O

Lemma 3.6. Let u° ¢ L? be given. Then Z Tl Vu(tn) |32 < C. Moreover, for any e >0 there

exist positive constants T, h. and 7. such that for h < he and T < 1. there holds

m

> Tl Vu(tn) iz <& Vitm € (0,T2].

n=1
The constants T., h. and 7. may depend on u® but are independent of T and h.

Proof. By using the triangle inequality we have

2 2
m m 2 tn m 2 tn
Sl V()22 <C S 7| = f V(u(ty) —u®)dt]| +C 3 7| = [ Vu(t)dt
n=1 n=1 Tn Jt, 1 Lz n=1 Tn Jt, 1 L2
m tn
<€ f f Vou(s)dsdt| +C Z f [Vu(t)|2.dt
n=1 Tn n—
m tn
<X [ Ivou®ldre 0 f [Fu() |2t

1
2
<CtBeu(t) 72 (0,105 *+ ClulLa (0 1,c1)- (3.60)

where we have used 7, < 2t for t € [t,_1.,t,]. From (3.I8) we see that u ¢ L*(0,T; H*(2)?),
2
which implies that

HuHQLQ(OJm;Hl) <e when t,, is smaller than some constant 7. (3.61)

In view of (3.60), it suffices to prove the following result

||tatu||%2(0 ity < Cll3 0 ) (3.62)
Then substituting (3.61} into ( - yields the desired result of Lemma
In order to prove 1_' we dlfferentlate and consider the equation of dsu, i.e.,
Otu— Adyu = —Px (Oyu - Vu) — Px (u- V) for te(0,T). (3.63)
Testing by t20;u, we have

1,d
§t2&“8tUH%2 + 12| Vo2, = - (Bru- Vu, 20u)

=t2(u,0u- VOu) (integration by parts)
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1
<Ct|uf 74| 0pul7a + ZtQ Vo7
2 1 2 2
<Ct™|lul 2 lul g O] 2| VOpul| 12 + 2 IVOu|7.

1 1
< Celvulat 10wl s + 521 vowl3s,

where we have used |ul;2 < C in deriving the last inequality, as shown in (3.18]). Since the
second term on the right-hand side of the inequality above can be absorbed by its left-hand
side, it follows from t2% X %(t2 |0pul|3,) - 2t|Opu]3, that

d
(59 ratuu%g) + 29020 < O Vul 2t Opu| 2 + 20t Byul 2. (3.64)

Hence, it remains to estimate fotm t|Oyul2 ,dt (the last term of the inequality above). To this
end, we test (2.2) by tOu and use (3.19)). This yields that
1.d

§tEH VulFs + |07 = - (u- Vu, tou)

1
<Ctul Ol 7o + 5[Vl
1
<Ctlul 2| Vul 2t ] Orul 2| VOl 2 + S [ Vul 72
1 .
<Ct|Vul2| VOl 2 + 5[ Vul2  (here B.I9) is used)
- 1

<Co™|Vul7z + ot*|VOpul72 + 5|W“||i2,
where o € (0,1) is a constant arising from Young’s inequality and therefore can be arbitrarily
small. By using the identity 4 |vu|2, = $(L|vul?,) - 2| Vu|?, we furthermore derive that

d(t _
0l + (5170l ) < (Cot IRl + o w01l (3.65)

Combining the two estimates above, i.e., 2C, x(3.65))+(3.64]), we have
d
Pl - catvutz.) s 2leo:.
<C HVUHQ t2H6 2 -1 2 2 2
<Cy 1ot Opu| 72 + (2C.Co™ +2C,) | Vu| 72 + 2C.ot”| VOuu| ;2. (3.66)

By choosing ¢ sufficiently small, the last term on the right-hand side can be absorbed by the
left-hand side. Then we obtain

d
S (P1owls + CatlTula) + 2190ul3 < Clvultarlowl}s + Olvalle.  (3:67)
By applying Gronwall’s inequality and using (3.18) we obtain

S
max (1210l3s + CotlVul3a) + [ 72|Vt
S

te[0,s]
s 2 s 2
< exp(fo C|vul?.dt) [0 C|vul2.dt
<C fo | V|3 ,dt. (3.68)
This proves (3.62) and completes the proof of Lemma O

Remark 3.7. In (3.29) we have used the following integration by parts:

m

m
=S malep Tt vag, ap) = > T, ep o), (3.69)
n=1

n=1
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and then have estimated this term in (3.38)) in terms of the discrete L*(0,T; W'*) norm of
¢. We need to put a sufficiently strong norm on ¢y, as strong as the LA0,T; W'*) norm,
so that a sufficiently weak norm can be put on ﬂZeZ‘l, i.e., the discrete L*(0,T; L*) norm on
@) and the discrete L?(0,T;L?) norm on e} '. The integration by parts in (3.69) uses the

divergence-free property of eZ’l and uZ’l. Without the divergence-free property, the extra

term (V - eﬁ_l,ﬂZgbf{) will appear, which contains V - ez_l and therefore cannot be estimated
in terms of the L?(0,7; L?) norm on e’"!. This is the main technical reason that we consider

divergence-free finite elements in the analysis of the NS equations with critical initial data.

4. Numerical experiments

In this section we present numerical examples to support the theoretical result in Theorem
Both examples concern the incompressible NS problem

ou+u-Vu—pAu+Vp=0 in 2x(0,T],
V-u=0 in 2x(0,T],
u=0 on 9£2x(0,7T],
uw=u" at 2x{0},
in the unit square Q = (0,1) x (0,1) with 7'= 0.1 and p = 0.05. The Scott—Vogelius (Py, P;1)
finite elements are used for spatial discretization; see [38]. This finite element space has the

required properties (P1)—(P2) mentioned in Section All the computations are performed
using the software package FEniCS (https://fenicsproject.org).

(4.1)

e+0.5 €+0.5

sin(7y) with € =0.01, and consider the initial value

uO = (u?(w,y),ug(w,y)) = (wy7_w:v)7

Example 4.1. Let w = sin(7x)

which satisfies that

uweL? but u’ ¢ H(Q)2
We solve problem by the proposed method and compare the numerical solutions
with the reference solution given by sufficiently small stepsize and mesh size.

The time discretization errors |uf —uly .| £2(q) are presented in Table where the reference
solution uhN wof 15 chosen to be the numerical solution with maximal stepsize T.f = 1/1280. We

have used four sufficiently small spatial mesh sizes h = 27477, j = 0,1,2, 3, to investigate the
influence of spatial discretization on the temporal discretization errors |u)’ —uhN7 retll 22(0)- From
Table [1| we can see that the influence of spatial discretization is negligibly small in observing
the first-order convergence in time, which is consistent with the result proved in Theorem

TABLE 1. Example Time discretization errors using variable stepsize with

a =0.55.
T h=1/16 h=1/32 h=1/64 h=1/128
1/40 3.8127E-02 3.7780E-02 3.7664E-02 3.7624E-02
1/80 1.5696E-02 1.5545E-02 1.5493E-02 1.5475E-02
1/160 7.6949E-03 7.6225E-03 7.5968E—03 7.5879E-03
Convergence rate O(r1:03) O(7103) O(7103) O(r1:03)

The spatial discretization errors |ul — uf .| r2(o) are presented in Table 2, where the
reference solution uhN Lo 18 chosen to be the numerical solution with mesh size hyf = 1/128.
We have chosen several sufficiently small time stepsizes 7 = 27377/10, j = 0,1, 2, 3 to investigate


https://fenicsproject.org
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the influence of temporal discretization on the spatial discretization errors |u}y - uhN retll22(9)-
From Table [2| we see that the influence of temporal discretization can be neglected compared
with the spatial discretization errors, which are O(h*?) in the L? norm. This is half-order
better than the result proved in Theorem [2.1] The rigorous proof of this sharper convergence
rate for L? initial data still remains open.

TABLE 2. Example Spatial discretization errors using variable stepsize

with a = 0.55.
h 7=1/80 7 =1/160 7 =1/320 T = 1/640
1/8 5.0365E-03 4.7074E-03 4.5093E-03 4.4308E-03
1/16 1.6844E-03 1.5711E-03 1.5019E-03 1.4744E-03
1/32 5.4146E-04 5.0663E-04 4.8451E-04 4.7546E-04
Convergence rate O(h16%) O(h!'-%3) O(h!-63) O(h!'-93)

Example 4.2. In the second example, we consider an initial value u° = Pxw with
w = (wi(z,y), wa(z,y)) = (¥, 2%%)  with e=0.01,

which is a function in L?(Q2)? but not in H¢(2)2. Since Py is the L?-orthogonal projection
from L%(2)? onto L2, it follows that u’ € L2. But the analytical expression of u° is unknown.
We solve problem by the proposed method with ug = Px, ul = Px, w, which can be
computed from with u replaced by w therein. Then we compare the numerical solutions
with a reference solution given by sufficiently small mesh size.

The temporal discretization errors |uf — uév retl22(0) are presented in Table |3, where the
reference solution uhN rof 18 chosen to be the numerical solution with maximal stepsize 7ot =
1/1280, and we have used several sufficiently small spatial mesh sizes h = 27477,5 = 0,1,2,3
to investigate the spatial discretization errors and to guarantees that the influence of spatial
discretization error is negligibly small in observing the temporal convergence rates. From

Table [3| we see that the temporal discretization errors are about O(7), which is consistent
with the result proved in Theorem

TABLE 3. Example Time discretization errors using variable stepsize with

o =0.55.
T h=1/16 h=1/32 h=1/64 h=1/128
1/40 4.3461E-03 4.0663E-03 3.9460E-03 3.9014E-03
1/80 1.8754E-03 1.7471E-03 1.6919E-03 1.6711E-03
1/160 9.1079E-04 8.4811E-04 8.1938E-04 8.0861E-04
Convergence rate O(r19) O(119) O(719%) O(719%)

The spatial discretization errors |ul — uf | r2(o) are presented in Table |4, where the

reference solution uhN Lof 18 chosen to be the numerical solution with mesh size hyof = 1/128. We
have chosen several time stepsizes to investigate the influence of temporal discretization on the
spatial discretization errors. From Table [d] we see that the influence of temporal discretization
can be neglected compared with the spatial discretization errors, which are O(h'®) in the L2
norm. This is better than the result proved in Theorem (similarly as the results shown in
the previous example).



TABLE 4. Example Spatial discretization errors using variable stepsize

with a = 0.55.
h T=1/80 7= 1/160 7=1/320 7= 1/640
1/8 1.0833E-03 8.6397E-04 7.4118E-04 6.8490E-04
1/16 4.1932E-04 3.1724E-04 2.5928E-04 2.3009E-04
1/32 1.4837E-04 1.1103E-04 8.9531E-05 7.8055E-05
Convergence rate O(h'5%) O(h'-51) O(h!'-53) O(h!'-5%)
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5. Conclusions

We have presented an error estimate for a fully discrete semi-implicit Euler finite element
method for the NS equations with L? initial data based on the natural regularity of the
solution with singularity at ¢ = 0. The numerical solution is proved to be at least first-order
convergent in both time and space without any CFL condition. The analysis makes use of
the smoothing property of the NS equations under L? initial data and appropriate duality
arguments to obtain a discrete L2(0,T; L?) error bound for a sufficiently small constant T,
(which depends on the initial data u?, but independent of 7 and h). This is proved by utilizing
Lemma which says that the discrete L2(0,7,;L?) norm of the numerical solution is not
only bounded but also small for sufficiently small T,. The discrete error bound in L?(0, Ty; L?)
is furthermore improved to L2(0,T; L?) (for a general T > 0) and a pointwise-in-time L? error
bound away from ¢ = 0. The extension of the analysis to the Taylor-Hood finite elements
(which do not satisfy property (P2)) is also possible.

Several questions still remain open for the NS equations with nonsmooth initial data.

First, the numerical results show that 1.5th-order convergence is achieved in the space
discretization. This is slightly better than the result proved in this article. The proof of this
sharper convergence rate still remain open.

Second, the current numerical method and its error analysis requires variable stepsize and
yields an error bound which holds only away from ¢ = 0. The development of efficient numerical
methods that may have some uniform temporal convergence up to t = 0 is still challenging. In
view of the low-regularity integrators recently developed for dispersive equations [2635,37]
and semilinear parabolic equations [33] this is possible and worth to be considered (at least
for semi-discretization in time).

Third, the development of numerical methods with higher-order convergence (e.g., away
from t = 0) for the NS equations with initial data in critical spaces is still challenging and
worth to be studied.

Fourth, the error analysis of numerical methods for the three-dimensional NS equations

with critical initial data in H2 or L3 still remains open.

A. Proof of Lemma

We only need to prove by assuming that the initial value is in H2(2)2, provided that
all the constant C,, below depends only on m and |[u’|;2 (independent of higher regularity
of uo). Then, for a nonsmooth initial value u° € L2, we can choose a sequence of functions
ud € H& NnH*(Q)? n=1,2,..., converging to u® in L?. The solution u, corresponding to the
smooth initial value u® satisfies

107w (8| 12 + 12 |0 un () | 1 + [0 (B) | 2 < Cont™ V>0, m>0, (A1)

with a constant C,, depending only on m and |u? |2 (thus independent of n). By a standard
compactness argument and passing to the limit n — oo, one obtains that wu,(¢) converges to

u(t) for ¢t > 0 and therefore (A.1)) implies (3.19).



22

It remains to prove (3.19)) for H 2 initial value (thus the solution is qualitatively smooth in
time and H? in space; see [45, Remark 3.7]).
From (3.18]) we immediately obtain
Il oo (0,00;2.2) + ”U||L2(0,oo;H1) <C. (A.2)

To obtain higher-order estimates, we fix an arbitrary s > 0 and let x(¢) be a nonnegative
smooth cut-off function of time (independent of z) satisfying that

0 for te(0,s/4),
x(®) = {1 for t e [s/2,00),

Testing (1.1 by x?0su yields

and |0Fx(t) < Cs™" for k=0,1,2,... (A.3)

ol + xS Ivul?;

= —(u-Vu, x20u)

< O u- V0|72 + 5 Ixdrul e (A1)
< O ul |V e) 74+ 5 vl

< O ul g2 lful i[9 )l 2| AGan) g + 5 [xdraul 7z (here (BT)-(BD) ave used)

-3 2 2 2 €
<O ulzeful [VOxw) 72 + 5

AG) 32 + 5 Ixdrul 7,

where € is an arbitrary positive constant arising from using Young’s inequality. Since
K 1vulls = S IV 0 - 2xaxIvul?;

and |0y x| < Cs™1, it follows from that

Ld

2dt

<O Julaluln [V ) 2 + SIAG@) s + Slxduls + Cs 7 9ull. (A5)

IxOul72 + 5 — [V (xw)lze

To estimate the term e|A(yu)[3, on the right-hand side of (A.5), we multiply (L.I) by x
and consider the resulting equation

~A(xu) + V(xp) = -XxOu-u-V(xu) in £,
V- (xu)=0 in £,
xu =0 on 0f2.

Through the standard H? estimate of the linear Stokes equation (cf. [30, Theorem 2]) we
obtain

IxulFz < Cf = xOu—u- V(xu)|7-
< Clx0pul32 + Clul 74V (xw)|74
< Cx0pul2 + Cllull g2 ] g |V (xw) | 22 | A (xw)| 12

1
< Clxdul gz + Clulzauln[vOanlze + S1AGw) 72, (A.6)

where we have estimated the term [u[?,]|V(xu)|34 similarly as in (A.4). The last term of
(A.6]) can be absorbed by the left-hand side. Then adding ex(A.6|) to (A.5)) yields

1d

2 dt
_ € _

< O ule full [V O 72 + S 1A G 72 + CelxOuulLe + Cs™ | Vull 7. (A7)

IxOeulZz + 5 — 1V O 72 + el xul7pe
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By choosing sufficiently small €, the two terms involving |A(xu)|?. and |xdiu|3. can be
absorbed by the left-hand side. Then, by using estimate [u] (g c0;z2) < C from (A.2)), we
obtain

1 1d 1 _
SIxduuls + 5 LIV e + S Ixule < Clulfn IV Gal3e + O vulfe: (A8)
Now, applying Gronwall’s inequality, we have
HV(XU)”%""(O,S;LZ) + HXatu”%?(O,s;LQ) + HXUH2L2(0,5;H2) (A.9)

<exp (CHUH%/Q(O,S;Hl)) 0871 HVUH%Q(O,S;LQ)
<CsH,
where we have used the estimate |u12(g ;1) < C from (A.2). Since s > 0 is arbitrary and
x(t) =1 for t > s/2, choosing s =t in the inequality above yields that
1
[l Lo t2,4m1) + 10kull L2 1j2,:02) + Ul L2(tj2,6:m2) < CE2, VE>0. (A.10)
We consider the mathematical induction on m, assuming that
[P (@) g2 + 2 (JuD @) |1 + 056D D) r2tj2:22) + 169 O L2ej2i2y) <CE, - (A1)
VE>0, j=0,....m—1,

which holds for m =1 in view of (A.2)) and (A.10)).
We denote u(™) = 3w and differentiate (T.1)) m times. This yields

Au™ + > (Zn) w9 - gum) — Ay 4 gp(™ =0 in 2% (0,T],
=0

A12
v-u™ =0 in 2x(0,T], (A-12)

w™ =0 on 892 x (0,T].
Testing this equation by u(™) yields

1d m m & j m-—j m
5&”“( e+ 1vu™ 32 < 3 [0 - Tul™ D) o ul™ | 10
5=0

- ] m-—j 1 m
<CY a4 ]ul ”II%HZHW( 132
7=0

m . . . . 1 -
< C 3 [0 2 [ 7u o [ 2 | e 4 [
§=0

(A.13)
where we have used the following fact to get the second to last inequality:
) )| o = sup (w9 yu(m) p)
veH, [l 1=1
= sup —(u(m_j),u(j) V)

veH{, o] ;1=1
<[u | a9 .

Substituting (A.11)) into (A.13]) for 1 < j <m -1, we obtain

1d |
5 e + 192 < Clul [ Vul 2 u™ 2 [ul™ | g2 + CE2 4 vul™ |,

o 1
< ClulZz | Vul e u™ 32 + CE2 7 + 5\\Vu(m)H2L2-
Then, multiplying the inequality above by x? and using |u(t)] 2 < C, we have

1 d m 1 m m —zm— m—
5§||xu( 72 + §||V(XU( NIz < CIvaulZaxu™ |72 + Cx ()t + Cloxx 0™ 7.
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By using Gronwall’s inequality, estimate (A.2)) and property (A.3)), we derive that
It ™ 7 e 0,502y + 1V O™ ) 720 012
< C 2 s 2p-2m-1 119 ™12, )d
< eIl g 02)) [ O™ 4 Clop () |0V 2 )
S
< exp(CVul22(g 412) f (121 4 O A D |2, )t
1
<Cs2m,
As a result, choosing s =t in the inequality above, we have
1™ o (tgo,2) + VU™ | 2202y < CE™, ¥ E> 0. (A.14)
From (A.12) we know that
m

— At 4 7pm = _gutm - 3 (M) 4@ gD, in 0,
§=0

v-ul™ =0 in £, (A.15)
u™ =0 on 0f2.
Through the standard H? estimate of linear Stokes equations (cf. [30, Theorem 2]) we obtain
[u™ 12 <Clow™ |22+ C 3 [ul? - val™D | 2. (A.16)
=0

Testing equation (A.12) by dyul™ gives

1d m . .
™) 72 + 5 17 [ < € 32 [uD - Tul Do)

<Ot [uD - vulm D)2, 4 €| dpu™2,. (A.17)
§=0

Summing up (A.17) and Ax(A.16) yields

1d
196 2 + 5 VU™ T2 + X AuC™ 7,

<Ce! Z ”u(j) yuma) H%z +(e+ C)\)”at“(m) Hi?
=0

<Ct Y [P 3 Tu D [+ (e + ON)0u™ 3,
j=0

<Ce Y [ulD 12 | U | 2| Va2 | A | o + (64 CA) [0ut™ 2,
=0
where we have used (3.1)—(3.2) in deriving the last inequality. By choosing sufficiently small e
and ), the term (e+C\)||9put™ |32 can be absorbed by the left-hand side. Then, substituting

(A.11]) and (A.14) into the inequality above, we obtain

1 m 1d m m
0™ 3 + 22 vu™ | + A Aat™ 2,

m-1 ) )
< Cllul 2| Vul g2 V™ | 2| Aut™ | 2 + € 3 #7977 Aul™ D
7=1

+ O™ 2| Va™ | g2 | V] 2| A 2

by m~-1 ) )
< O ul 22 | Vul 32 [Vul™ |52 + S1Au™ 3, + C 3 (#7272 + 7 | Au D 7,)
J=1
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+ O vulF | vu'™ |22 + Clul™ |2 Aul 22

B A mzl . Y i
<CN Y Va7 va™ 7. + §||Au(m)HiQ +C Y (P2 et Au D 1)
j=1

+ Cvul 72 | vu™ |72 + Ot [ AuZ,.

After absorbing 2 |Au(™) |2, by the left-hand side, multiplying the last inequality by x? yields
2 L
d m m m
31 VO + 10, 0™ ) [ + A A ™) [

m-1 . .
< Cx2(t)[ P AT + t’QmHAuH%z]
j=1

+ C|Vul 72V (™) 72 + Cloapx () (8) [ vu™ 72 +[0x|* [ut™ 7.

Then we apply Gronwall’s inequality in the time interval [0, s] and using the estimate |9y x(¢)] <
Cs™!. This yields that

190U 2w 022y + 196 0™) Pz 2y + 1A ™) 2 0 01z

s m-1 . .
SeXp(C”VUH%Q(Ojs;Lz)) ﬁ C[ Z (t—Zm—Q T t_2JHAU(m_J)H%2) +t—2m ”AU”%z]dt
1 7=1

+exp(CVul220.012)) f Cs Y Tul™ |2, dt
4

SC«S—Qm—l

)

where the last inequality uses (A.14]). Since s > 0 is arbitrary, choosing s =t in the inequality
above yields that

ol
IV o igo,i:2) + 1006 | L2 ugo o2y + | AW 2o g2y < CE™ 2. (A.18)

Combining (A.14) and (A.18]), we have

1 m m m -m
[ul™ (@) 2 + 2 (10 | 2epnzy + [ @)+ 10" (O] 2j2m2)) < CE™, ¥ E> 0.
(A.19)

This completes the mathematical induction on (A.11f). Hence, ({A.18]) holds for all m.
By substituting estimates (|A.10)) and (A.19) into h(A.6) and considering m = 1, we further-
more derive that

lu()l 2 < Clowu(®)] 2 + Clu®)] () |7 < CtTF, - viE>0. (A.20)
From ([A.16) we also obtain that

[Au™ |2 <Clal™ D 2+ C Y [ul? - gul™ D]
=0

<Ct™ 1 O [l | pa [V | L
j=0

cme L S D E o D3 o (M=) [3 [ Ay, (m=i) ||
<CEM 4+ C Y Ju) 2, [ vul? | 2 [ vu™ ) 2, | Aut™T) 2,
J=0

Jj+tm

oL
Rl

m
<Ct" e oYt
§=0

Jj+m

+1 L _m+l 1
AU D, + 0 A,

m
<Ct LYt
=1
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Assuming that |AuU) |2 < Ct77 for j = 0,...,m -1 (which holds for m = 1 in view of
(A.20)), the last inequality furthermore implies that

|AW ™ |2 <Ot (A.21)
By mathematical induction, (A.21)) holds for all m > 0.
Combining (A.19)) and (A.21)), we obtain the desired result of Lemma O

B. Proof of —

From (2.12)) we see that
ul — un—l ~
[Anuplze < || =—" + lup ™ el Vg o
n .2
ul — ! 1 1 1 1
<" gy 2 g 2 a1 2 Ana 12
n 2
(here (B.1) and Lemma [3.1] are used)
ul — ! 1, _ 1
<" 5 len (™ U+l ) + 5 1 Anu ] 2.
Tn .2

As a result, we have

n_ ,n-1
| Apup| 2 < 2| 220

™ e (lah™ g + luhl ) (B.1)

n L2

Testing (2:12) by (u} —u}™")/7, yields

112 - _ 2

uy, — up ' N HVUZ||%2 - | vuy, 1”%2 L Tn V(up —up 1

n L2 27—n 2 Tn 12

u® — un—l
= —(uﬁ_1 v, A )
Tn
1 n _ uz—l
< b Ipal vuy | pe
n L2

1. i I 1 1 un_un—l

S e A L A B R R e
n L2

(again, (3.1)) and Lemma [3.1] are used)

3
2

IETT SR, 1 lu? —unt - 3 1| - upt
<Clup M Zalup Nz I 3 || =L+ Cllup g2 lug ™ 12 i 3 || 22—
n L2 n .2
n-1 n-1 1 n 2 “Z’_UZ_I .
+ Cllup™ 2 lup™ | lup | i || ——— (here (B.1) is used)
n 12
1 u? = un—l 2
< Clluy™ 72 Uy ™ g + lup ) + 5 |[2—2—] -
2" L

The last term can be absorbed by the left-hand side. Then, multiplying the result by the
smooth cut-off function x(¢,) in (3.43), and using the estimate max |up] 2 < C, we obtain
<n<

n n-12

R T GO INCA d C r 7

L2 Tn

X (tn)

n

14 4 X(tn) = x(tn-1) —12
<Ox(tn) (Jup M3 + Jupl ) + = 2| vup 7

n

< CIvup ™ Zax(ta) [Vuh ™ 72 + CIVup 72X (ta) [Vui |72 + Ot [V~ |7



for n >2 and m >4 (so x(¢1) =0). By applying Gronwall’s inequality, we obtain

y up —up ™ | 2
t —_ t n
%TnX( n) - p + rsnégfvx( w)IVug |72
N 112 2 1 N 112
cexp (c S ([ 2 + uwzp))% Sl vup s
n=2 n=2

< Ct,—nl, where we have used the basic energy estimate (3.9)).
Substituting this into (B.1)), we also obtain

N
> Tax(tn) |Apui |72 < Cty-

n=2
To summarize, the two estimates above imply that

n n-1
Up —Up

2
+ max |Vu}|3. <Ct,! for 4<m<N.
L2 [5 ]<nsm

n

Let u; 5 (t) be a piecewise linear function in time, defined by

tn—t t—1p-
wrp(t) = nT T T—"luﬁ for t e (tn_1,tn].
n n

Let u; ;,(t) and u_;(t) be piecewise constant functions in time, defined by
uy (1) =up  and g, (t) = ul™h for t e (ty_1,tn]-
Then (3.9) and (B.2)) imply that the following quantities remain bounded as 7,h — 0:

lwrp ||L°°(0,T;L2) + ||Ur,h||L2(0,T;H1) + ||U$,h ||L°°(0,T;L2) + ||U$,h||L2(0,T;H1) <C,

|0swrn L2y 10522y + [ Anvrn 2 (1) 1os22) + |rnll Lo (7 1m0y < O

||Ahu7i',h

|20y 10502y + 105 1l oo (10 sy < C,

for arbitrary fixed constants T7 and T5 such that 0 < T} <15 <T'. Since
L=(0,T; L*(Q)%) n L*(0,T; H'(Q)?) - L*(0,T; L*(2)?),

from we also derive that

H 8tuT,h

L2(0,T;H-1) S HAh“:—,h”m(o,T;Hfl) +C|Px, (uz - vu:,h)”LZ(O,T;H*U

< C”u:,h”LQ(O,T;Hl) +Clluzy, - Vu:,hHLQ(O,T;H*)

< C”u:,h”LQ(O,T;Hl) +Cluzp,
<C.

+
L4(0,T;L4) Hur,h L4(0,T;L4)
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(B.2)

CRCRE
B &

(B.6)

From and we see that u,p is uniformly (with respect to 7 and h) bounded in
L=(0,T; L*(Q)%)nL2(0,T; H)nH' (0, T; H™') - L*(0,T; L*(R)?), compactly embedded into
L3(0,T; L3(R2)?) (see the Aubin-Lions-Simon theorem in [43, Theorem 7]). In the meantime,
Uy, is uniformly bounded in H'(Ty,Ty; L*(2)?) n L™ (Ty, To; H'(Q)?), which is compactly
embedded into C([T1,T2]; L2(2)?) (cf. [43, Theorem 5]) . As a result, for any sequence
(15,hj) = (0,0) there exists a subsequence, also denoted by (7;,h;) for the simplicity of

notation, such that
Ur, p; = u  weakly” in L(0,T; L*(2)?),
Ur, p; = u  weakly in LQ(O,T;Hé),
Ur, p; = u  strong in L3(0,T; L3(Q)?),
Ur, p; = u  weakly in HY(Ty,To; L*(Q)?)  for arbitrary 0 < Ty < To < T,
Ur, p; = u  weakly” in L (Ty, To; HY(Q)?) for arbitrary 0 < Ty < To < T,
Ur, p; = u  strongly in C([T1, T»]; L*(Q)?) for arbitrary 0 < Ty < To < T,
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for some function
we L®(0,T; L*(Q)%) n L*(0,T; HY) n HY (T, Ty; L*(Q)%) n L= (Th, To; H (Q)?)
> O3 ([T, Tl L2 (9)%).
From we see that the set of functions {u,(-,t) :te€ [() T'1} is uniformly (with respect
to 7 and h) bounded in L? and therefore precompact in H . From we also know that
Ur,p, is uniformly bounded in H 10, T;H) - C ([0,T];H 1), which implies that the function

urp, 1 [0,T] = H™! is equicontinuous with respect to ¢ € [0,T]. According to the Arzela—Ascoli

theorem (29, Chapter 7, Theorem 17], the functions . j, are precompact in C([0,T]; H™) and
therefore a subsequence u,, j,; satisfies that

Uy, p,; converges to u in C([0,T']; H™Y), with u(0) = jlg(r)lo Px,, u® = in AL, (B.8)
It remains to prove that the limit function « is the unique weak solution of the NS equations
(thus the limit function is independent of the choice of the subsequence 7;, h; - 0). This would
imply that u,; converges to u as 7,h — 0 in the sense of f without necessarily
passing to a subsequence.
For t € (tp-1,tn] c [T1,T2] we have

tn 1
| s [ 1Ol 2t < O 1Our o, iy
n-1

As a result of (B.4)), we obtain

|y p, = wrpll o1y o502y =0 as 7 =0,

and similarly,
lwrn = el oo (ry 1p02) >0 as 7 0.

Hence, there exists a subsequence, also denoted by (7;,h;) for the simplicity of notation, such
that

uz p, —u  strongly in L®(Ty, Ty; L*(Q)?).
Note that
r 2 i 12
[ luzn - uraldedt <C 3 mallug - up ™ e

n=1

<COriluh —up™ G2 + O 3 mluh = wp™ g gy =™ | g
n=2

N
<Cri+C Y 7 0tr ity o g |y =~ e
n=2

1
N 2
<Cm+ cT||atuT,huLz<o,T;H-1>( A uM%p))

n=2
<C7 (here (3.9) and are used)

which immediately yields
|uzp = urplrzomrizey >0 as 7 0.
Since ur; p; — u strongly in L?(0,T;L*(22)?) as shown in (B.7), it follows that
Uz, p, ~ u strongly in L*(0,T; L*(Q)).
From and we know that, by passing to a subsequence if necessary,
L= weakly* in L®(0,T; L*(Q)?),
L. —u  weakly in L?(0,T; H(Q)?).

T],

T],
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Now, testing (2.12) by v, € C([0,T']; X;,) and integrating the result in time, we have

T T T
[ @urpeo)at+ [ (Guzsvodes [z, vuz,m)dt =0,

For any given v € C([0,T]; H} n H*(Q)?), we let vy, = Iyv (see (B-4)), which would converge
to v strongly in C([0,T]; H') as h — 0. Then the equation above implies that

T T T
| @yt [ (vt vo)des [y vudvt

T T T

- fo (Ortirp v = vp)dt + fo (Vurp, V(v =vp))dt + fo (uzp - Vi, (v—uy))dt
= JI () + JE(v) + T3 (v), (B.9)

where
" T
|J1 (U)| = ‘ ‘/0- (8tu7.7h,v - Uh)dt‘

< CH(?tuﬂh
|J5 (0)| < Clluzy,

20,111V = vrll 20,7501y = 0,

r2(o,m;mY [V = vnl 20,751y = 0,

T
7= [tz 900 o

<Cluzp

<Cluip

r2(0,7;24) [tz nll 20,7524y |V (0 = vp) | Lo 0,7, 12)

r2(0,7;HY [Wr bl 220,051y 10 = Vil Loe 0,117y = 0.
Since ur, p,,ur , — u weakly in L?(0,T; H&) and Ogur, p; = Opu weakly in L%(0,T;H™), it

SUZ
37 T,k

follows that
T T T T
fo (Bt p, v)dt + fo (Vul y, Vo)dt /O (Byu, v)dt + fo (Vu, Vo)dt.
Since u_ ;= u strongly in L?(0,T;L?(©)?) and Vu;jyhj - Vu weakly in L?(0,T; L*(2)?), it
follows that Ur -Vu;“]_’ p, convergence weakly in LY(0,T; L' (©)?) and therefore
T T :
/o (urp, - VUi, v)dt > fo (u-Vu,v)dt, ¥ veC([0,T]; Hyn H*(2)?) = C([0,T]; L= (2)?).
By using these results and passing to the limit (7,k) = (7;,h;) - (0,0) in (B.9), we obtain
that the limit function w satisfies the following weak form:
T T T .
fo (Byu, v)dt + fo (Vu, Vo)dt + [0 (u-Vu,0)dt =0 YoeC([0,T]; HE n H2(2)2).
(B.10)
Note that dyu € L2(0,T; H™'), vu € L*(0,T; L*(2)?) and
w-vue L3(0,T; L3 (Q)2) c L3(0,T; H1(Q)?) < L3 (0, T; H™Y).
Since (Px(u-Vu),v) = (u-Vu,v) for v e H', it follows that Px(u-Vu) € L%(O,T;H’l).
Therefore, Oju — Au+ Px(u-Vu) € L%(O,T; H™') and (B.10)) implies that
T .
fo (O - Au+ Px(u-vVu),v)dt=0 Vove C([0,T]; Hy).

This implies that

du—Au+ Px(u-vu) =0 in H' ae. te(0,T]. (B.11)

From (B.3]) and we conclude that, as the limit of u,, »; when j — oo, the limit function
u must satisfy

we L®(0,T;L*) n L*(0,T; HY) n H(0,T; H) - C([0,T7; L?). (B.12)
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According to |45, Problem 3.2 and Theorem 3.2 of Chapter 3], the equation and the
regularity result imply that u must be the unique weak solution of the 2D NS equation.

Since every sequence u,, 5, contains a subsequence that converges to the unique weak so-
lution w in the sense of 7, it follows that w, ) converges to u as 7,h — 0 (without
passing to a subsequence). Then f imply the desired results in (3.51)—(3.53)). U
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