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Abstract

A fully discrete finite element method, based on a new weak formulation and a

new time-stepping scheme, is proposed for the surface diffusion flow of closed

curves in the two-dimensional plane. It is proved that the proposed method can

preserve two geometric structures simultaneously in the discrete level, i.e., the

perimeter of the curve decreases in time while the area enclosed by the curve is

conserved. Numerical examples are provided to demonstrate the convergence of

the proposed method and the effectiveness of the method in preserving the two

geometric structures.
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1. Introduction

This article concerns the numerical approximation to the surface diffusion

flow of closed curves in the two-dimensional plane, i.e., the evolution of a curve

Γ[X(·, t)] = {X(ξ, t) : ξ ∈ I}, t ∈ [0, T ],

IThis work is supported by the National Natural Science Foundation of China (project no.
11871384) and the Hong Kong Research Grants Council (GRF project no. 15300920).
∗Corresponding author
Email addresses: jiangwei1007@whu.edu.cn (Wei Jiang), buyang.li@polyu.edu.hk

(Buyang Li)

Preprint submitted to Journal of Computational Physics June 20, 2021



determined by a parametrization X(·, t) : I → R2, where I = [0, 1] is the

periodic unit interval (one-dimensional torus which identifies 0 and 1), satisfying

the fourth-order geometric evolution equation∂tX = −[∂2
Γ(κ · ν)]ν,

κ = ∂Γτ ,
on I × [0, T ], (1)

where κ = κ(ξ, t), ν = ν(ξ, t) and τ = τ (ξ, t) are the curvature vector, inward

unit normal vector and unit tangential vector of the curve Γ[X(·, t)] at the point

X(ξ, t). The notation ∂Γ represents tangential differentiation along the curve Γ,

defined by

∂Γv(ξ, t) :=
∂ξv(ξ, t)

|∂ξX(ξ, t)|
for a function v defined on I × [0, T ].

The parametric equation (1) for surface diffusion flow was proposed by

Mullins in 1957 for modeling the evolution of microstructure in polycrystalline

materials [28]. The existence of solutions to the surface diffusion flow was shown

in [20]. The surface diffusion equation was generalized to include anisotropic

effects of crystalline films in [12, 21, 27, 31]. These models play important

roles in various applications in materials science and solid-state dewetting; see

[3, 22–26, 30, 32] and the references therein.

It is well-known that the surface diffusion flow described by (1) is the H−1

gradient flow of the perimeter functional (see [12, 29])

|Γ[X(·, t)]| =
∫
I

|∂ξX(ξ, t)|dξ.

As a result, the surface diffusion flow has two geometric structures:

(i) The perimeter of the evolving curve decreases in time;

(ii) The area enclosed by the curve is conserved in the evolution.

These geometric structures are also desired in the numerical approximation of

surface diffusion flow.

Many numerical schemes have been developed for simulating the evolution

of a curve/surface in 2D/3D governed by surface diffusion flow. For example,
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Bänsch et al. proposed finite element methods (FEMs) for the non-parametric

equations describing surface diffusion flow of graphs [1] and for the parametric

equations describing surface diffusion flow of closed curves [2]. In the graph

case, the area of the numerically computed surface decreases in time while the

volume enclosed by the surface is conserved for both semi-discrete and fully dis-

crete schemes; in the parametric case, however, the area of the surface decreases

(see Theorem 2.1 in [2]) while the volume enclosed by the surface may change in

time. Parametric FEMs based on novel variational formulations were developed

in [5, 7, 9, 11]. These methods yield good mesh distribution and unconditional

stability. The generalization to anisotropic surface diffusion flows and axisym-

metric geometry cases was made in [6, 8, 10]. These methods can preserve the

perimeter decrease in 2D (or area decrease in 3D) in the fully-discrete finite

element scheme, and the area conservation in 2D (or volume conservation in

3D) only in the semi-discrete FEM. More recently, Jiang et al. developed para-

metric FEMs for simulating solid-state dewetting problems described by surface

diffusion flow and contact line migration in 2D [4] and 3D [33], without consid-

ering the perimeter/area decrease and area/volume conservation properties in

the discrete level.

Overall, existing numerical methods for parametric surface diffusion flow of-

ten yield curves/surfaces with decreasing perimeter/area, while the area/volume

enclosed by the curve/surface is conserved only in the semi-discrete FEMs. In

this paper, we construct a fully discrete parametric FEM for surface diffusion

flow of closed curves, based on a new weak formulation and a new time-stepping

scheme, to preserve the two geometric structures simultaneously.

The rest of paper is organized as follows. In section 2, we propose a new

weak formulation for solving problem (1), then a parametric FEM is used to

discretize the weak formulation and results in a nonlinear system of equations.

In section 3, we rigorously prove that the numerical scheme is area-preserving

and perimeter-decreaseing. In section 4, we present some numerical simulations

to demonstrate the accuracy and efficiency of the proposed method. Finally, we

draw some conclusions in section 5.
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2. The numerical method

In this section, we introduce a new variational formulation of the surface

diffusion flow equation (1) and then propose fully discrete FEMs corresponding

to the variational forms.

2.1. Notation of spatial and temporal discretizations

Let 0 = ξ0 < ξ1 · · · < ξM = 1 be a quasi-uniform partition of the interval I

(where we identify ξ0 and ξM ), which is divided into M subintervals labeled as

Ij := [ξj−1, ξj ], j = 1, · · · ,M . We define the following finite element spaces of

piecewise linear functions subject to the partition, i.e.,

Vh =
{
ϕ ∈ C(I;R) : ϕ(0) = ϕ(1), ϕ|Ij ∈ P1, j = 1, 2, · · · ,M

}
, (2)

Vh =
{
ψ ∈ C(I;R2) : ψ(0) = ψ(1), ψ|Ij ∈ P1 × P1, j = 1, 2, · · · ,M

}
, (3)

where P1 denotes the space of polynomials of degree ≤ 1.

Let tn = nτ , n = 0, 1, 2, . . . , N , be a uniform partition of the time interval

[0, T ] with stepsize τ = T/N . For each n = 1, . . . , N , we denote by Γnh a

piecewise linear curve determined by a sequence of non-coincident nodes xnj ∈

R2, j = 1, · · · ,M in the counter clockwise order, approximating the closed curve

Γ[X(·, tn)]. Correspondingly, the nodal vector xn = (xn1 , · · · ,xnM ) uniquely

determines a finite element function Xn
h ∈ Vh which parametrizes Γnh, satisfying

Xn
h(ξj) = xnj , j = 1, · · · ,M.

We assume that Xn−1
h ∈ Vh is given and look for Xn

h ∈ Vh by an implicit

time-stepping scheme defined below.

In the time interval [tn−1, tn], we define the intermediate curves

Γh(t) = {Xh(ξ, t) : ξ ∈ [0, 1]}

with parametrization

Xh(ξ, t) =
tn − t
τ

Xn−1
h (ξ) +

t− tn−1

τ
Xn
h(ξ), t ∈ [tn−1, tn]. (4)
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Then for a fixed ξ ∈ I the material point X(ξ, t) on the intermediate curve Γh(t)

moves with velocity

vnh(ξ) =
Xn
h(ξ)−Xn−1

h (ξ)

τ
, (5)

which is a finite element function in Vh independent of time.

The unit normal and tangential vectors at the Xh(ξ, t) ∈ Γh(t) are given by

νh(ξ, t) =
∂ξXh(ξ, t)⊥

|∂ξXh(ξ, t)|
and τh(ξ, t) =

∂ξXh(ξ, t)

|∂ξXh(ξ, t)|
, (6)

respectively, where ⊥ denotes rotation of a vector by an angle π/2 in the counter

clockwise direction. These notations will be used in the following two subsec-

tions to define numerical schemes for (1).

2.2. A structure preserving FEM

We decompose the curvature vector into its normal and tangential compo-

nents, separately, i.e.,

κ = pν + q τ ,

where p and q are scalar functions (in fact, q = 0 for the continuous problem).

With these notations, we rewrite equation (1) as

∂tX · ν = −∂2
Γp, (7a)

∂tX · τ = 0, (7b)

pν + q τ = ∂Γτ . (7c)

Let H1(I) = {φ ∈ H1(0, 1) : φ(0) = φ(1)} and consider the following weak

formulation of (7): find X(·, t) ∈ H1(I)×H1(I) and p(·, t), q(·, t) ∈ H1(I) such

that the equations∫
I

∂tX(·, t) · (φν) dΓ(t) =

∫
I

∂Γp ∂ΓφdΓ(t), ∀φ ∈ H1(I), (8a)∫
I

∂tX(·, t) · (ϕτ ) dΓ(t) = 0, ∀ϕ ∈ H1(I), (8b)∫
I

(pν + q τ ) ·ψ dΓ(t) = −
∫
I

τ · ∂Γψ dΓ(t), ∀ψ ∈ H1(I)×H1(I), (8c)

5



hold for all t ∈ (0, T ] under an initial condition X(ξ, 0) = X0(ξ), where X0 is a

given parametrization of the curve at time t = 0, and

dΓ(t) := |∂ξX(ξ, t)|dξ.

On the intermediate curve Γh(t), we approximate the curvature at the point

Xh(ξ, t) by a function

κh(ξ, t) = ph(ξ)νh(ξ, t) + qh(ξ) τh(ξ, t), (9)

with some finite element functions ph, qh ∈ Vh independent of time when t ∈

[tn−1, tn].

By using the discrete velocity and curvature defined by (5) and (9), we look

for Xn
h ∈ Vh and pnh, q

n
h ∈ Vh satisfying the following equations:∫ tn

tn−1

∫
I

vnh · (φh νh) dΓh(t)dt =

∫ tn

tn−1

∫
I

∂Γp
n
h ∂Γφh dΓh(t)dt, ∀φh ∈ Vh,

(10a)∫ tn

tn−1

∫
I

vnh · (ϕh τh) dΓh(t)dt = 0, ∀ϕh ∈ Vh,

(10b)∫ tn

tn−1

∫
I

(pnh νh + qnh τh) ·ψh dΓh(t)dt =

M∑
j=1

ψh(ξj) ·
∫ tn

tn−1

[τh]j dt, ∀ψh ∈ Vh,

(10c)

where dΓh(t) := |∂ξXh(ξ, t)|dξ and

[τh]j = lim
ε→0

(τh(ξj + ε, t)− τh(ξj − ε, t))

denotes the jump of tangential vector at the node Xh(ξj , t). The right side of

(10c) is obtained by using the identity

∂ξτh(ξ, t) =

M∑
j=1

[τh]j δ(ξ − ξj)

for the piecewise constant function τh, where δ(ξ − ξj) denotes the Dirac delta

function centered at the point ξj .
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If we denote

νnh (ξ) =

∫ tn

tn−1

νh|∂ξXh|dt =

∫ tn

tn−1

(∂ξXh)⊥ dt, (11)

τnh (ξ) =

∫ tn

tn−1

τh|∂ξXh|dt =

∫ tn

tn−1

∂ξXh dt, (12)

ρnh(ξ) =

∫ tn

tn−1

|∂ξXh|−1 dt, (13)

then (10) can be equivalently as: find Xn
h ∈ Vh and pnh, q

n
h ∈ Vh such that∫

I

Xn
h −Xn−1

h

τ
· (φh νnh ) dξ =

∫
I

∂ξp
n
h ∂ξφh ρ

n
h dξ, ∀φh ∈ Vh, (14a)∫

I

Xn
h −Xn−1

h

τ
· (ϕh τnh ) dξ = 0, ∀ϕh ∈ Vh, (14b)∫

I

(pnh ν
n
h + qnh τ

n
h ) ·ψh dξ =

M∑
j=1

ψh(ξj) ·
∫ tn

tn−1

[τh]j dt, ∀ψh ∈ Vh. (14c)

The numerical scheme (14) together with (11)-(13) is a nonlinear system of

equations, which can be solved by using the following Newton’s iteration.

2.3. Properties of the numerical method

In this subsection, we prove that the proposed numerical scheme (14), or

its equivalent form (10), can preserve the two geometric structures (i) and (ii)

mentioned in the introduction section.

Let L(tn) be the perimeter of the piecewise linear curve Γh(tn), and let A(tn)

be the area of the polygonal region enclosed by Γh(tn).

Theorem 1. The solution of (14) has the following properties:

(1) A(tn) = A(tn−1),

(2) L(tn) ≤ L(tn−1) .

Proof. We use the equivalent formulation (10) to prove these properties. By

integrating the identity

d

dt
A(t) = −

∫
I

vnh · νh dΓh(t),
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in time for t ∈ [tn−1, tn] and setting φh = 1 in (10a), we obtain

A(tn)−A(tn−1) = −
∫ tn

tn−1

∫
I

vnh · νh dΓh(t)dt

= −
∫ tn

tn−1

∫
I

∂Γp
n
h · ∂Γ1 dΓh(t)dt

= 0.

This proves that the area enclosed by the curve is conserved during the evolution.

We use the following expression for the perimeter of the piecewise linear

curve Γh(t):

L(t) =

M∑
j=1

∫ ξj

ξj−1

|∂ξXh(ξ, t)|dξ.

Differentiating this expression in time yields

d

dt
L(t) =

M∑
j=1

∫ ξj

ξj−1

∂t|∂ξXh(ξ, t)|dξ

=

M∑
j=1

∫ ξj

ξj−1

∂ξXh(ξ, t)

|∂ξXh(ξ, t)|
· ∂ξ∂tXh(ξ, t)dξ

=

M∑
j=1

∫ ξj

ξj−1

τh · ∂ξvh dξ

= −
M∑
j=1

[τh]j · vh(ξj),

where we have used integration by parts on each subinterval [ξj−1, ξj ]. By

integrating the equality above with respect to time from tn−1 to tn, we obtain

L(tn)− L(tn−1) = −
M∑
j=1

vnh(ξj) ·
∫ tn

tn−1

[τh]jdt

= −
∫ tn

tn−1

∫
I

κnh · vnhdΓh(t)dt,

where the last equality is obtained by substituting ψh = vmh into (10c). By

setting φh = pnh in (10a) and ϕh = qnh in (10b), we have∫ tn

tn−1

∫
I

κnh · vnhdΓh(t)dt =

∫ tn

tn−1

∫
I

|∂Γ(κnh · νh)|2dΓh(t)dt.
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Finally, by combining the two equalities above, we obtain

L(tn)− L(tn−1) = −
∫ tn

tn−1

∫
I

|∂Γ(κnh · νh)|2dΓh(t)dt ≤ 0.

This proves that the perimeter of the computed curve decreases in time. �

2.4. Newton’s iteration

The nonlinear system (14) can be solved by Newton’s iteration. We de-

note by (Xn
h,l−1, p

n
h,l−1, q

n
h,l−1) the numerical solution obtained in the (l − 1)th

iteration, and define

Xh,l−1(ξ, t) =
tn − t
τ

Xn−1
h +

t− tn−1

τ
Xn
h,l−1, (15)

τh,l−1 =
∂ξXh,l−1

|∂ξXh,l−1|
for t ∈ [tn−1, tn]. (16)

In the lth iteration, we calculate

νnh,l−1 =

∫ tn

tn−1

(∂ξXh,l−1)
⊥

dt, (17)

τnh,l−1 =

∫ tn

tn−1

∂ξXh,l−1 dt, (18)

ρnh,l−1 =

∫ tn

tn−1

|∂ξXh,l−1|−1
dt, (19)

θnj,l−1 =

∫ tn

tn−1

[τh,l−1]j dt, (20)

γnh,l−1 =

∫ tn

tn−1

|∂ξXh,l−1|−3
∂ξXh,l−1 dt, (21)

anh,l−1 =

∫ tn

tn−1

|∂ξXh,l−1|−1 t− tn−1

τ
dt, (22)

An
h,l−1 =

∫ tn

tn−1

|∂ξXh,l−1|−3
(∂ξXh,l−1)

T
(∂ξXh,l−1) dt, (23)

which can be computed explicitly to obtain explicit formulas just involving the

values of some given functions at the time instances tn−1 and tn. Then, by

using the quantities computed in (17)-(23), we solve the following linear system
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to obtain the Newton direction (Xδ, pδ, qδ) ∈ Vh × Vh × Vh,∫ 1

0

Xδ

τ
·
(
φhν

n
h,l−1

)
dξ +

∫ 1

0

Xn
h,l−1 −Xn−1

h

τ
·
(τ

2
φh(∂ξXδ)

⊥
)

dξ (24a)

−
∫ 1

0

∂ξpδ∂ξφhρ
n
h,l−1 dξ +

∫ 1

0

∂ξp
n
h,l−1∂ξφh

(
γnh,l−1 · ∂ξXδ

)
dξ

= −
∫ 1

0

Xn
h,l−1 −Xn−1

h

τ
·
(
φhν

n
h,l−1

)
dξ +

∫ 1

0

∂ξp
n
h,l−1∂ξφhρ

n
h,l−1 dξ ∀φh ∈ Vh,

∫ 1

0

Xδ

τ
·
(
ϕhτ

n
h,l−1

)
dξ +

∫ 1

0

Xn
h,l−1 −Xn−1

h

τ
·
(τ

2
ϕh∂ξXδ

)
dξ (24b)

= −
∫ 1

0

Xn
h,l−1 −Xn−1

h

τ
·
(
ϕhτ

n
h,l−1

)
dξ ∀ϕh ∈ Vh,

∫ 1

0

pδν
n
h,l−1 ·ψh dξ +

∫ 1

0

τ

2
pnh,l−1(∂ξXδ)

⊥ ·ψh dξ (24c)

+

∫ 1

0

qδτ
n
h,l−1 ·ψh dξ +

∫ 1

0

τ

2
qnh,l−1∂ξXδ ·ψh dξ

−
M∑
j=1

ψh(ξj) · [∂ξXδa
n
h,l−1]j +

M∑
j=1

[
An
h,l−1 :

(
ψh(ξj)

T∂ξXδ

)]
j

= −
∫ 1

0

(
pnh,l−1ν

n
h,l−1 + qnh,l−1τ

n
h,l−1

)
·ψh dξ +

M∑
j=1

ψh(ξj) · θnj,l−1 ∀ψh ∈ Vh.

The above linearized problem (24) is obtained by using the first-order Taylor

expansion at the point (Xn
h,l−1, p

n
h,l−1, q

n
h,l−1) of the nonlinear system (14), and

by denoting Xδ = Xn −Xn
h,l−1, pδ = pn − pnh,l−1 and qδ = qn − qnh,l−1.

The algorithm for solving (14) by Newton’s iteration is stated as follows:

• Step 1. Choose three proper tolerances TOL,TOL′,TOL′′ > 0. Take the

initial guess of Newton’s iteration to be

Xn
h,0 = Xn−1

h , pnh,0 = pn−1
h and qnh,0 = qn−1

h .

• Step 2. For given (Xn−1
h,l−1, p

n−1
h,l−1, q

n−1
h,l−1), calculate the quantities in (17)-

(23) and solve the linear system (24) to obtain (Xδ, pδ, qδ) ∈ Vh×Vh×Vh.

Then set

Xn
h,l = Xn

h,l−1 + Xδ, pnh,l = pnh,l−1 + pδ and qnh,l = qnh,l−1 + qδ.

10



• Step 3. If ‖Xn
h,l − Xn

h,l−1‖L∞ ≤ TOL, ‖pnh,l − pnh,l−1‖L∞ ≤ TOL′ and

‖qnh,l − qnh,l−1‖L∞ ≤ TOL′′, then set

Xn
h = Xn

h,l, pnh = pnh,l and qnh = qnh,l

and stop; otherwise, set l = l + 1 and goto Step 2.

3. Numerical results

In this section, we present several numerical experiments to demonstrate

the accuracy of the proposed numerical scheme (14) and the effectiveness of the

method in preserving the two geometric structures.

3.1. Convergence test

First, we consider the surface diffusion flow of a closed curve with initial

shape being an ellipse, i.e.,

{(x, y) ∈ R2 : x2 + 4y2 = 4}.

We approximate the surface diffusion flow by the proposed numerical scheme

(14) and present the relative errors in Table 1, with

eh,τ (t) = ‖Xh,τ −Xh/2,τ/4‖L∞(I), (25)

where Xh,τ is the numerical solution obtained with mesh size h := 1/M and

time stepsize τ . The order of convergence is calculated by

order of convergence = log

( ‖Xh,τ −Xh/2,τ/4‖L∞(I)

‖Xh/2,τ/4 −Xh/4,τ/16‖L∞(I)

)/
log(2),

based on the finest three meshes. The nonlinear system is solved by using

Newton’s iteration with a tolerance error of 10−10.

From Table 1 we can see that the proposed numerical scheme has second-

order convergence in space when τ = O(h2). This is the same as the semi-

implicit parametric FEM considered in [4] (see [4, Table 1 on p. 389]).

Figure 1 shows the number of Newton’s iterations in the evolution process,

with three different time stepsizes. One can see that the method needs only
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Table 1: Convergence rates in the L∞ norm, with h0 = 1/8 and τ0 = 0.04. The initial curve

is an ellipse x2 + 4y2 = 4.

h = 1/8

τ = 1/25

h = 1/16

τ = 1/100

h = 1/32

τ = 1/400

h = 1/64

τ = 1/1600
order

tN = 0.2 1.10E-2 3.69E-3 9.96E-4 2.55E-4 1.97

tN = 0.5 2.42E-2 7.15E-3 1.93E-3 5.07E-4 1.93

tN = 2 1.41E-2 4.08E-3 1.03E-3 2.57E-4 2.00

0 1 2 3 4 5
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4

6

8

10

It
e

ra
ti
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u
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b
e

r

Figure 1: The number of Newton’s iterations in each time step.

a few iterations to attain the desired accuracy, and the time stepsize does not

have much influence on the numerical of iterations.

In addition to the surface diffusion flow of a smooth ellipse, we also present

the numerical results for the surface diffusion flow of a nonsmooth rectangular

curve in Table 2; see the numerical simulation in Figure 2. The numerical results

show that the proposed method also converges in this case.

3.2. Structure preservation

For the example considered in the last subsection, we present in Figure 3

the evolution of the normalized perimeter L(tn)/L(0), the normalized enclosed
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Table 2: Convergence orders in the L∞ norm, with h0 = 1/20 and τ0 = 0.005. The initial

curve is a rectangle with length 4 and width 1.

h = 1/20

τ = 1/200

h = 1/40

τ = 1/800

h = 1/80

τ = 1/3200

h = 1/160

τ = 1/12800
order

tN = 0.2 4.58E-2 1.06E-2 2.57E-3 6.24E-04 2.04

tN = 0.5 4.02E-2 9.46E-3 2.18E-3 5.09E-04 2.10

tN = 2.0 2.61E-2 5.87E-3 1.50E-3 3.75E-04 2.00

-2 -1 0 1 2

-2

-1

0

1

2

Figure 2: The evolution of the rectangle at time t = 0, 0.01, 0.1, 0.2, 0.5, 1, 2.

area A(tn)/A(0), and a mesh distribution function Ψ(tn), defined by [4]

Ψ(t = tn) =

max
1≤j≤M

∣∣xnj − xnj−1

∣∣
min

1≤j≤M

∣∣xnj − xnj−1

∣∣ .
From Figure 3, one can see that the proposed method can preserve the

conservation of A(t)/A(0) and the decrease of L(t)/L(0), while the mesh distri-

bution function Ψ(t) grows from 1 to around 2.3. Figure 4 (a) shows that the

area enclosed by the curve is conserved with machine precision by the proposed

method; Figure 4 (b) shows that the parametric FEM considered in [4] and

Barrett et al. [5] does not strictly preserve the area conservation.
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Figure 3: Numerical solution given by the proposed method with h = 1/32 and τ = 10−4,

(a). the normalized perimeter and normalized area enclosed by the curve; (b). the mesh

distribution function Ψ(t).
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Figure 4: Comparison between the proposed method and the parametric FEM in [4].

Both methods use h = 1/32 and τ = 10−4.
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3.3. Evolution of a “flower” shape

We apply our method to the numerical simulation of surface diffusion flow

which initially is a “flower” shape, given in the polar coordinate byx = [1 + 0.65 sin(7θ)] cos θ,

y = [1 + 0.65 sin(7θ)] sin θ,
θ ∈ [0, 2π]. (26)

The shapes of the curves are presented in Figure 5 at several different time

levels. The evolution of the normalized area, normalized perimeter, and mesh

distribution function is presented in Figure 6. When Ψ(tn) is larger than a

critical value (here we choose it to be 3), we redistribute the mesh points equally

along the curve. The mesh redistribution technique is also used in [4, 32]. The

two figures show that the flower-shape curve evolves gradually to a circle with

the same area and shorter perimeter.
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Figure 5: Several steps in the evolution of an initially “flower” shape toward its equilibrium

at different times: (a) t = 0; (b) t = 10−4; (c) t = 0.001; (d) t = 0.005; (e) t = 0.006 and (f)

t = 0.01, where M = 210 and τ = 10−6.
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Figure 6: The corresponding temporal evolutions shown in Fig. 5 for: (a) the normalized total

free energy and the normalized area; (b) the mesh distribution function Ψ(t), respectively.

4. Conclusion

We have proposed a novel numerical method for simulating the isotropic

surface diffusion flow of closed curves in two dimensions. Based on a new weak

formulation of the surface diffusion equation, we have introduced a piecewise

linear finite element discretization for the weak formulation to obtain a non-

linear system of equations, which can be solved by Newton’s iteration. We

have rigorously proved that the proposed numerical method can simultaneously

preserve the two geometric structures, i.e., area conservation and perimeter de-

crease. Through numerical experiments it is shown that the proposed method is

second-order convergent in the L∞-norm, and can retain the area conservation

and perimeter decrease with machine precision. For a complex flower-shape

curve, we have obtained satisfactory numerical results by combining the pro-

posed method with a mesh redistribution technique.
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