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For a class of compatible profiles of initial data describing bulk phase regions separated by
transition zones, we approximate the Cauchy problem of the Allen–Cahn phase field equation
by an initial-boundary value problem in a bounded domain with the Dirichlet boundary con-
dition. The initial-boundary value problem is discretized in time by the backward difference
formulae (BDF) of order 1 ⩽ q ⩽ 5 and in space by the Galerkin finite element method of poly-
nomial degree r−1, with r ⩾ 2. We establish an error estimate of O(τqε−q− 1

2 +hrε−r− 1
2 +e−c/ε )

with explicit dependence on the small parameter ε describing the thickness of the phase tran-
sition layer. The analysis utilizes the maximum-norm stability of BDF and finite element
methods with respect to the boundary data, the discrete maximal Lp-regularity of BDF meth-
ods for parabolic equations, and the Nevanlinna–Odeh multiplier technique combined with a
time-dependent inner product motivated by a spectrum estimate of the linearized Allen–Cahn
operator.

Keywords: Allen–Cahn equation; phase transition layer; BDF methods; finite element method;
maximum-norm stability; time-dependent norm; multiplier; G-stability; discrete maximal Lp-
regularity.

1. Introduction
The Allen–Cahn (AC) equation

ut −∆u+
1
ε2 f (u) = 0 in Rd × (0,T ),

u(·,0) = u0 in Rd ,

(1.1)

with d ∈ {2,3}, is a model describing phase separation of a binary alloy at a fixed temperature
[6], where f (υ) = υ3 − υ is the derivative of the Ginzburg–Landau energy function F(υ) =
(υ2−1)2/4. The solution of (1.1) is equal to −1 and 1 in the two phases of the alloy, respectively,
separated by a phase transition zone of width O(ε), in which the solution changes rapidly from
−1 to 1. The Cauchy problem of the AC equation is connected to the mean curvature flow of
closed surfaces, see [20], i.e., as the small parameter ε tends to zero, the surface determined
by the level set Γε(t) = {x ∈ Rd : u(x, t) = 0} tends to a surface Γ (t) that evolves with velocity
υυυ = Hννν (called mean curvature flow), where H and ννν denote the mean curvature and unit
normal vector, respectively, on the surface Γ (t).
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In view of its application as a phase field model and its connection to mean curvature
flow, many numerical methods and analyses have been developed for approximating the mean
curvature flow through AC related diffusive phase field models as ε → 0. Error analysis for the
AC equation and related phase field models (instead of the limit of the interface Γε(t) as ε → 0)
has also been conducted in many articles. As pointed out in [12, 23], error estimation using
a straightforward Gronwall inequality argument would yield a constant factor eCT/ε2 , which
grows exponentially as ε → 0. Such error estimates are not useful when the width ε of the
phase transition zone in the phase field model is small. To overcome this difficulty, Feng and
Prohl [23] established an error estimate for the AC equation in a bounded domain with only
polynomial dependence on ε−1 by utilizing the spectrum estimate of the linearized AC operator
in a bounded domain [17], i.e.,

∥∇υ∥2
L2(Ω)+

1
ε2 ( f ′(u(·, t))υ ,υ)⩾−λ∥υ∥2

L2(Ω) ∀υ ∈ H1(Ω) ∀ t ∈ [0,T ], (1.2)

with λ a positive constant, independent of ε and t ∈ [0,T ], and u(·, t) the solution of the AC
equation. This spectral estimate is valid for smooth interfaces away from singularities such as
the collapse of an interface.

The spectrum estimate (1.2) was also used to remove the exponential dependence on ε−1

in error analyses for other numerical methods and related phase-field equations, including the
implicit Euler method for the non-isothermal AC phase field equations [25], stabilized semi-
implicit schemes for the AC equation [45], and a posteriori error estimates for the AC equation
[9–11, 29]. These articles concern either implicit or semi-implicit Euler methods for the AC
equation and error estimates of O((τ +hr)ε−σ ), where σ is some positive number.

Spectrum estimates similar to (1.2) were also used in establishing error estimates for the
Ginzburg–Landau equations [8], the Cahn–Hilliard equation and Hele–Shaw flow [9,22,24,44],
as well as for phase field models with nonlinear constitutive laws [19].

Since ε is often very small, there is also a vast literature on constructing energy-decaying
time-stepping methods for phase field models with large time stepsizes (compared with ε),
including stabilized semi-implicit schemes [15,16,35,42], invariant energy quadratization meth-
ods [46–48], and the scalar auxiliary variable approach [41] and [3].

In the literature, practical computations are often in a bounded domain, while many of
the properties of the AC equation were established for the Cauchy problem (1.1), including
the convergence to mean curvature flow and the regularity of the solution for very small ε;
see [20] and [38]. These properties were proved when the initial value u0 is a compatible profile
describing bulk phase regions separated by transition zones of width O(ε), i.e.,

u0(x) =Θ(Λ0(x)/(
√

2ε)) (1.3)
with Λ0(x) denoting the signed distance to a closed smooth interface Γ0 (separating the two
phases at initial time) and Θ : R→ [−1,1] denoting the unique increasing solution of the bound-
ary value problem {

−Θ ′′(r)+2 f (Θ(r)) = 0, r ∈ R,
lim

r→±∞
Θ(r) =±1. (1.4)

Figure 1 illustrates an example of such initial data, with values changing from −1 to 1 in the
phase transition zone (shadow region).

It was shown in [38, §2.4] that, for an initial value u0 ∈ L∞(Rd), the Cauchy problem has a
unique mild solution in L∞(Rd × [0,T ]). Moreover, if the initial value u0 is a compatible profile
in the form of (1.3), then the mild solution of the Cauchy problem (1.1) is a classical solution
with the following properties ([38, §4 and §5]):
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(P1) The following spectrum estimate holds:

∥∇υ∥2
L2(Rd)

+
1
ε2 ( f ′(u(·, t))υ ,υ)Rd ⩾−λ∥υ∥2

L2(Rd)
∀υ ∈ H1(Rd) ∀ t ∈ [0,T ].

(P2) The following regularity estimates hold in any bounded domain Ω :
∥∂ k

t u∥L∞(0,T ;W m,∞(Ω)) ⩽Cε−k−m, 0 ⩽ k ⩽ q+1, 0 ⩽ m ⩽ r,

∥∂ k
t u∥L∞(0,T ;Hm(Ω)) ⩽Cε−k−m+ 1

2 , 0 ⩽ k ⩽ q+1, 0 ⩽ m ⩽ r,

for the solution u of the AC equation (1.1).

In fact, (P1) was proved in [38, Theorem 5.1 and p. 1585]; (P2) is a consequence of the asymp-
totic expansion [38, (1.17)] (our t corresponds to h2t therein), which implies ∥∇m∂ k

t u∥L∞(Ω) =

O(ε−k−m). Since the function ∂ k+1
t u is concentrated in a phase transition zone of width O(ε) (this

can also be seen from the asymptotic expansion), it follows that ∥∇m∂ k
t u∥H1(Ω) = O(ε−k−m+ 1

2 ).

u0 ≈−1

u0 ≈ 1

Ω

Fig. 1. An initial data that describes bulk phase regions separated by a phase transition zone of width O(ε).

In view of the discrepancy between theoretical analysis (in the whole space) and practical
computation (in a bounded domain), we consider the discretization of the Cauchy problem
(1.1) with initial value u0 a compatible profile of the form (1.3) as follows: we solve an initial-
boundary value problem 

ut −∆u+
1
ε2 f (u) = 0 in Ω × (0,T ],

u = ϕ on ∂Ω × (0,T ],
u(·,0) = u0 in Ω ,

(1.5)

in a bounded convex polygonal/polyhedral domain Ω ⊂ Rd , d ∈ {2,3}, with an unknown func-
tion ϕ on the boundary ∂Ω , based on the following assumption on the solution of the Cauchy
problem (1.1) restricted to Ω :

∥ϕ −1∥L∞(∂Ω) ⩽Ce−c/ε . (?)

In particular, the solution of the Cauchy problem (1.1) satisfies (1.5) for some function ϕ (i.e.,
the value of u on ∂Ω) satisfying condition (?) when the domain Ω encloses the phase transition
zone with dist(∂Ω ,Γε(t)) uniformly bounded from below by a positive constant. This is due to
the asymptotic expansion [38, (1.17)] and the exponential decay property [38, Theorem 4.2],
which imply that the solution tends to 1 exponentially with respect to dist(x,Γε(t))/ε. Since



4 of 23 GEORGIOS AKRIVIS AND BUYANG LI

the solution of (1.5) is exactly the solution of (1.1) restricted to Ω , property (P1) yields

∥∇υ∥2
L2(Ω)+

1
ε2 ( f ′(u(·, t))υ ,υ)⩾−λ∥υ∥2

L2(Ω) ∀υ ∈ H1
0 (Ω) ∀ t ∈ [0,T ], (1.6)

since the extension Eυ of a υ ∈ H1
0 (Ω) as a zero function outside Ω is an element of H1(Rd).

Let tn = nτ, n = 0,1, . . . ,N, be a uniform partition of the time interval [0,T ] with stepsize
τ = T/N. Let Sh be the Lagrange finite element subspace of H1(Ω) consisting of piecewise
polynomials of degree r−1 associated to a regular and quasi-uniform triangulation of the domain
Ω with mesh size h. Let S̊h consist of the elements of Sh that vanish on the boundary ∂Ω .

The exact boundary value ϕ of the solution is unknown, but it is known that the solution
differs from 1 only by a small function of O(e−c/ε) on the boundary ∂Ω × [0,T ]. Therefore, for
given starting approximations u0

h,u
1
h, . . . ,u

q−1
h ∈ Sh to the nodal values u(·, t j), j = 0,1, . . . ,q− 1,

we discretize (1.5) in time by the q-step BDF method (with 1 ⩽ q ⩽ 5), with the finite element
method in space: find un

h ∈ Sh such that
(1

τ

q

∑
j=0

δ ju
n− j
h ,υh

)
+(∇un

h,∇υh)+
( 1

ε2 f (un
h),υh

)
= 0 ∀υh ∈ S̊h,

un
h = 1 on ∂Ω ,

(1.7)

with an approximate boundary condition on ∂Ω , where δ j, j = 0, . . . ,q, are the coefficients of
the generating polynomial of the q-step BDF method,

δ (ζ ) =
q

∑
j=1

1
j
(1−ζ ) j =

q

∑
j=0

δ jζ j; (1.8)

see [27, §V.2] (where αi = δq−i). The starting approximations u1
h, . . . ,u

q−1
h should be computed

by other methods (or with smaller stepsizes and mesh sizes); this will not be analyzed in this
article.

For sufficiently accurate given starting approximations, we establish an error estimate of
O(τqε−q− 1

2 +hrε−r− 1
2 + e−c/ε) under the stepsize and mesh conditions τ = O(ε1+ 5

q ) and h =

O(ε1+ 5
r ), with a simple expression on the dependence on ε. Our analysis combines the following

three techniques, among which the first yields an L∞-stability result of the BDF methods, which
is of independent interest.

First, to estimate the influence of the boundary error, we introduce θ n
h ∈ Sh to be the solution

of the linear equation
(1

τ

q

∑
j=0

δ jθ n− j
h ,υ

)
+(∇θ n

h ,∇υ) = 0 ∀υ ∈ S̊h,

θ n
h = Ihu(·, tn)−un

h on ∂Ω ,

n = q, . . . ,N, (1.9)

with starting values

θ j
h = Rhu(·, t j)−u j

h, j = 0, . . . ,q−1,

where Ih and Rh denote the Lagrange interpolation and Ritz projection operators onto Sh (see
§2.3 for their definition and properties).

We need to estimate ∥θ n
h ∥L∞(Ω) in terms of the boundary values Ihu(·, tn)−un

h. However, the
maximum principle does not hold for high-order BDF methods (1.9) (see [13]). To overcome
this difficulty, we prove L∞-stability of the BDF methods with respect to the boundary data in
Lemma 3.2 (a weaker version of the maximum principle).

Second, the analysis of the q-step BDF method requires testing the error equation by en
h −

ηqen−1
h , with en

h = Rhu(·, tn)−un
h−θ n

h ∈ S̊h, where η1 = η2 = 0 and ηq ∈ (0,1) for q ⩾ 3. In order to
use the spectrum estimate (1.6) with such multipliers ηq, we introduce and utilize the following
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time-dependent inner product and norm on H1
0 (Ω):

⟨υ ,w⟩t := (∇υ ,∇w)+
1
ε2 ( f ′(u(·, t))υ ,w)+2λ (υ ,w) ∀υ ,w ∈ H1

0 (Ω), (1.10)

∥υ∥t :=
√
⟨υ ,υ⟩t ∀υ ∈ H1

0 (Ω), (1.11)
in the error analysis of the BDF methods. The spectral estimate (1.6) implies that

∥υ∥2
t ⩾ λ∥υ∥2 ∀υ ∈ H1

0 (Ω) ∀t ∈ [0,T ]. (1.12)
Time-dependent inner products and norms are used in [36] and [5] to establish stability es-
timates of BDF methods for evolving surface PDEs and for quasi-linear parabolic equations,
respectively. In this article, we use time-dependent inner products to remove the exponential
dependency on 1/ε by utilizing (1.12), which is a consequence of property (P1).

Third, existence and uniqueness of numerical solutions as well as error estimates are proved
by constructing a modified numerical scheme coinciding with the original numerical scheme
when the error of the numerical solution is o(ε2) in the L∞-norm. Then, we derive L∞ error
estimates by using discrete maximal Lp-regularity for sufficiently large p. This shows that the
L∞ error is indeed o(ε2) under a certain stepsize condition. These results are proved for general
ε ∈ [0,1] without smallness assumption on ε; see Remark 5.2.

2. Notation and preliminary results
2.1 BDF methods
For φ ∈ (0,π), we denote by Σφ the closed sector of half-angle φ,Σφ := {z ∈C : |arg(z)|⩽ φ}. It is
well known that the BDF methods are strongly A(αq)-stable with α1 = α2 = 0.5π, α3 ≈ 0.4779π,
α4 ≈ 0.4075π, and α5 ≈ 0.2880π; see [27, §V.2]. The A(αq)-stability means that δ (ζ ) ∈ Σπ−αq

for ζ ∈C and |ζ |= 1, with δ (ζ ) defined in (1.8). The order of the q-step BDF method is q, i.e.,
q

∑
i=0

(q− i)`δi = `q`−1, `= 0,1, . . . ,q. (2.1)

These properties will be used in the analysis of method (1.7).

2.2 Generating function of a sequence
The generating function υ̃ of a given bounded sequence of functions υn,n = 0,1, . . . , is defined
by

υ̃(ζ ) =
∞

∑
n=0

υnζ n.

The generating function is analytic in the unit disk D = {z ∈ C : |z|< 1}.

2.3 Interpolation and L2 and Ritz projections
We denote by (·, ·) and ∥·∥ the inner product and norm on L2(Ω), respectively. The Lagrangian
interpolation operator Ih : C(Ω)→ Sh is defined by requiring Ihu to be equal to u at the nodes
of finite elements [14, §3.2–3.3]. This interpolation satisfies

∥Ihw−w∥⩽Chr∥w∥Hr(Ω) ∀w ∈ Hr(Ω) for r ⩾ 2, (2.2)
∥Ihw−w∥L∞(Ω) ⩽Chk∥w∥W k,∞(Ω) ∀w ∈C(Ω)∩W k,∞(Ω), 0 ⩽ k ⩽ r. (2.3)

Let Ph : L2(Ω)→ S̊h be the L2-orthogonal projection onto the subspace S̊h, defined by
(Phw,υh) = (w,υh) ∀υh ∈ S̊h,
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and Rh : H1(Ω)→ Sh be the Ritz projection onto the finite element space, defined by{
(∇Rhw,∇υh) = (∇w,∇υh) ∀υh ∈ S̊h,

Rhw = Ihw on ∂Ω .

It is easy to see that Rh maps H1
0 (Ω) into S̊h (preserving the zero boundary condition).

Both the L2 and Ritz projections are bounded in L∞(Ω), i.e.,
∥Phw∥L∞(Ω) ⩽C∥w∥L∞(Ω) ∀w ∈ L∞(Ω), (2.4)
∥Rhw∥L∞(Ω) ⩽C`h∥w∥L∞(Ω) ∀w ∈ H1(Ω)∩L∞(Ω), (2.5)

where

`h =

{
ln(2+1/h), r = 1,
1, r ⩾ 2.

(2.6)

For these estimates we refer to [43, Lemma 6.1] and [33,40], and [32, Theorem 5.1], respectively
(for both 2D and 3D cases). The L∞-stability of the Ritz projection implies also the L∞ error
estimate:

∥Rhw−w∥L∞(Ω) ⩽C`hhα∥w∥Cα (Ω) ∀w ∈ H1(Ω)∩Cα(Ω) ∀α ∈ [0,1]. (2.7)

2.4 Maximum-norm estimates
Let ∆h : S̊h → S̊h be the discrete Laplacian operator defined by

(∆hwh,υh) =−(∇wh,∇υh) ∀wh,υh ∈ S̊h.

Then, for any given φ ∈ (π
2 ,π), the following resolvent estimate holds for all complex numbers

z in the sector Σφ :
∥z(z−∆h)

−1Ph∥L∞(Ω)→L∞(Ω) ⩽Cφ . (2.8)

This results was proved in [33, Theorem 15] (with a logarithmic factor) and [34, Theorem 3.1].

2.5 Sobolev and Besov spaces
For 1 ⩽ p ⩽ ∞ and an integer k ⩾ 0, we denote by W k,p(Ω) the conventional Sobolev space of
functions defined in Ω ; see [1]. For k ⩾ 1,W k,p

0 (Ω) denotes the completion of C∞
0 (Ω) in W k,p(Ω).

In particular, W 1,p
0 (Ω) consists of functions in W 1,p(Ω) with zero traces on the boundary ∂Ω .

The abbreviations Hk(Ω) =W k,2(Ω) and Hk
0(Ω) =W k,2

0 (Ω) will be used as usual.
For s ∈ [0,2], we let Ḣs(Ω)⊂ L2(Ω) denote the Hilbert space induced by the norm

∥φ∥Ḣs(Ω) :=
( ∞

∑
j=1

λ 2s
j |(φ,ϕ j)|2

)1/2
,

where ϕ j and λ j, j = 1,2, . . . , are the L2(Ω)-orthonormal eigenfunctions and eigenvalues of the
Dirichlet Laplacian operator −∆D, arranged in nondecreasing order, λ j ⩽ λ j+1. In particular,
Ḣ0(Ω) = L2(Ω), Ḣ1(Ω) = H1

0 (Ω) and Ḣ2(Ω) = H2(Ω)∩H1
0 (Ω); see [43, chapter 3].

For s ∈ (0,2), the Besov space
Bs;2,p(Ω) = (Ḣ−2(Ω), Ḣ2(Ω)) s+2

4 ,p

is defined as the real interpolation space between two Sobolev spaces; see [1, §7.32]. If 0 ⩽ s1 <
s < s2 ⩽ 2 and (1−α)s1 +αs2 = s, then the following reiteration property holds:

Bs;2,p(Ω) = (Ḣs1(Ω), Ḣs2(Ω))α,p.

If s2 > s1, then Bs2;2,p(Ω) ↪→ Bs1;2,q(Ω) for all 1 ⩽ p,q ⩽ ∞. In particular, we will use the property
Bs;2,p(Ω) ↪→ L2(Ω) for s > 0 and 1 ⩽ p ⩽ ∞.
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2.6 Some abbreviations
For the solution u(x, t) defined in Ω × [0,T ], we shall use the abbreviation u(t) = u(·, t). Through-
out this article, we denote by C a generic positive constant independent of ε,τ and h (not
necessarily the same at different occurrences).

3. Maximum-norm estimate for θ n
h

In this section, we present an estimate for the solutions θ n
h of (1.9). The result will be used in

the next two sections to prove existence, uniqueness and convergence of the numerical solutions.
We need the following estimate for finite element solutions of an elliptic equation with a

complex coefficient.

Lemma 3.1 For z ∈ Σφ with φ ∈ (π
2 ,π), the complex-valued finite element solution uh ∈ Sh of

the boundary value problem{
(zuh,υh)+(∇uh,∇υh) = 0 ∀υh ∈ S̊h,

uh = Ihg on ∂Ω ,
(3.1)

with g ∈C(∂Ω → C), satisfies
∥uh∥⩽Cφ∥g∥L∞(∂Ω),

where the constant Cφ is independent of z and h.

Proof. It is known that the finite element solution ug,h ∈ Sh of the boundary value problem{
(∇ug,h,∇υh) = 0 ∀υh ∈ S̊h,

ug,h = Ihg on ∂Ω ,
(3.2)

satisfies a weak maximum principle (cf. [40] and [32] for 2D and 3D cases, respectively), i.e.,
∥ug,h∥L∞(Ω) ⩽C∥Ihg∥L∞(∂Ω) ⩽C∥g∥L∞(∂Ω). (3.3)

Now, uh − ug,h ∈ S̊h is the finite element solution of a homogeneous Dirichlet boundary value
problem, i.e.,

(z(uh −ug,h),υh)+(∇(uh −ug,h),∇υh) =−(zug,h,υh) ∀υh ∈ S̊h.

This can be equivalently written as
(z−∆h)(uh −ug,h) =−zPhug,h,

where Ph is the L2 projection operator onto S̊h, and ∆h : S̊h → S̊h is the discrete Laplacian operator;
see §2.4. Hence, we have

∥uh −ug,h∥L∞(Ω) = ∥z(z−∆h)
−1Phug,h∥L∞(Ω) ⩽C∥ug,h∥L∞(Ω),

where the last inequality is due to (2.8). In view of (3.3), this estimate implies
∥uh∥L∞(Ω) ⩽C∥ug,h∥L∞(Ω) ⩽C∥g∥L∞(∂Ω),

which is the desired result. □
Lemma 3.2 The solution of (1.9) satisfies the following estimate:

max
0⩽n⩽N

∥θ n
h ∥⩽C`τ max

q⩽n⩽N
∥u(tn)−un

h

∥∥
L∞(∂Ω)

+C`h max
0⩽n⩽q−1

∥u(tn)−un
h

∥∥
L∞(Ω)

,

where `h is defined in (2.6) and `τ = log(2+1/τ).

Proof. We decompose the solution of (1.9) into
θ n

h = ϑ n
h +Θ n

h ,

where Θ n
h ∈ S̊h and ϑ n

h ∈ Sh, n = q, . . . ,N, are the finite element solutions of the following varia-
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tional problems: (1
τ

q

∑
j=0

δ jΘ n− j
h ,υh

)
+(∇Θ n

h ,∇υh) = 0 ∀υh ∈ S̊h, (3.4)

and 
(1

τ

q

∑
j=0

δ jϑ n− j
h ,υh

)
+(∇ϑ n

h ,∇υh) = 0 ∀υh ∈ S̊h,

ϑ n
h = gn

h on ∂Ω ,

(3.5)

respectively, with the starting values
Θ j

h = Rhu(·, t j)−u j
h, ϑ j

h = 0 and g j
h := 0 for j = 0, . . . ,q−1,

and boundary values
gn

h := Ihu(·, tn)−un
h for n ⩾ q.

We note that Θ n
h account for the starting errors, while ϑ n

h account for the errors on the boundary
∂Ω .

We express the solution of (3.4) in terms of the starting values (cf. [43, (10.10)])

Θ n
h =

q−1

∑
m=0

βββ n,m(Rhu(·, tm)−um
h ), for n ⩾ q, (3.6)

where βββ n,m
h =−∑q

j=q−m δ jβββ n−m− j
h with the operators βββ n

h determined by the power series expan-
sion

(δ (ζ )− τ∆h)
−1 =

∞

∑
n=0

βββ n
hζ n. (3.7)

There exists a κ ∈ (0, π
2 ) (independent of τ, cf. [28, Lemma B.1]) such that
δ (ezτ) ∈ Σπ− 1

2 αq
∀z ∈ Σκ+ π

2
, (3.8)

C1|z|⩽ |δ (ezτ)|⩽C2|z| ∀z ∈ Σκ+ π
2
, (3.9)

|z− τ−1δ (ezτ)|⩽C|z|2τ ∀z ∈ Σκ+ π
2
. (3.10)

Using Cauchy’s integral formula, we have

βββ n
h =

1
2πi

∫
|ζ |= 1

2

(δ (ζ )− τ∆h)
−1ζ−n−1dζ

=
1

2πi

∫
Γ τ

etnz(δ (e−zτ)− τ∆h)
−1dz (by a change of variable ζ = e−zτ),

where Γ τ = { 1
τ ln2+ is : |s| ⩽ π

τ }. Since etnz(δ (e−zτ)− τ∆D)
−1 is analytic in the region enclosed

by Γ τ , Γ τ
κ+ π

2
and z = R± i π

τ , with

Γ τ
κ+ π

2
=

{
z ∈ C : arg(z) = κ +

π
2
,

1
2τ

ln2 ⩽ |z|⩽ π
τ cos(κ)

}
⋃{

z ∈ C : |arg(z)|< κ +
π
2
, |z|= 1

2τ
ln2

}
,

and the integration on the two lines z =R± i π
τ cancels each other, it follows that the integration

contour Γ τ can be further deformed to Γ τ
κ+ π

2
. In other words,

βββ n
h =

1
2πi

∫
Γ τ

κ+ π
2

etnz(δ (e−zτ)− τ∆h)
−1dz. (3.11)

Now (2.8) and (3.9) imply
∥
(
τ−1δ (e−zτ)−∆h

)−1∥L∞(Ω)→L∞(Ω) ⩽C|τ−1δ (e−zτ)|−1 ⩽Cτ|z|−1. (3.12)
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Therefore,

∥βββ n
h∥L∞(Ω)→L∞(Ω) =

∥∥∥∥ 1
2πi

∫
Γ τ

κ+ π
2

etnz(δ (e−zτ)− τ∆h)
−1dz

∥∥∥∥
L∞(Ω)→L∞(Ω)

⩽C
∫

Γ τ
κ+ π

2

|z|−1e−τ Re(z)|dz|⩽C.

This estimate and expression (3.6) imply that

∥Θ n
h ∥L∞(Ω) ⩽C

q−1

∑
m=0

∥Rhu(tm)−um
h ∥L∞(Ω)

⩽C`h

q−1

∑
m=0

∥u(tm)−um
h ∥L∞(Ω), for n ⩾ q,

(3.13)

where we have used the L∞ stability (2.5) in deriving the last inequality.
It remains to estimate ∥ϑ n

h ∥L2(Ω). To this end, we multiply (3.5) by ζ n and sum up the
resulting relations for n = q,q+1, . . . . With the notation ϑ̃h(ζ ) = ∑∞

n=q ϑ n
h ζ n, this yields{

(τ−1δ (ζ )ϑ̃h(ζ ),υh)+(∇ϑ̃h(ζ ),∇υh) = 0 ∀υh ∈ S̊h,

ϑ̃(ζ ) = g̃h(ζ ) on ∂Ω .
(3.14)

Let Mh
(
τ−1δ (ζ )

)
denote the operator which maps g̃h(ζ ) to ϑ̃h(ζ ), defined by (3.14),

ϑ̃h(ζ ) = Mh
(
τ−1δ (ζ )

)
g̃h(ζ ).

Then,

ϑ n
h =

1
2πi

∫
|ζ |=1

ϑ̃h(ζ )ζ−n−1dζ =
1

2πi

∫
|ζ |=1

Mh
(
τ−1δ (ζ )

)
g̃h(ζ )ζ−n−1dζ =

n

∑
j=0

Mn− jg
j
h,

with
Mn =

1
2πi

∫
|ζ |=1

Mh
(
τ−1δ (ζ )

)
ζ−n−1dζ =

τ
2πi

∫
Γ τ

κ+ π
2

Mh
(
τ−1δ (e−τz)

)
etnzdz.

Since τ−1δ (e−τz) ∈ Σπ−αq , Lemma 3.1 implies
∥Mh

(
τ−1δ (e−τz)

)
∥L∞(∂Ω)→L∞(Ω) ⩽C.

This further implies
∥Mn∥L∞(∂Ω)→L∞(Ω)

⩽
∫

Γ τ
κ+ π

2

Cτ
∥∥Mh

(
τ−1δ (e−τz)

)∥∥
L∞(∂Ω)→L∞(Ω)

etn Re(z)|dz|

⩽Cn−1.

Hence, we have

∥ϑ n
h ∥L∞(Ω) =

∥∥∥∥ n

∑
j=0

Mn− jg
j
h

∥∥∥∥
L∞(Ω)

⩽
n

∑
j=0

∥Mn− j∥L∞(∂Ω)→L∞(Ω)∥g j
h∥L∞(∂Ω)

⩽C`τ max
0⩽ j⩽n

∥g j
h∥L∞(∂Ω).

(3.15)

The desired result of Lemma 3.2 follows from the estimates (3.13) and (3.15). □
Lemma 3.2 and (?) immediately imply the following result.
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Proposition 3.1 If τ ⩾ c? e−γ/ε and h ⩾ c? e−γ/ε for some positive numbers γ and c?, then the
solutions of (1.9) satisfy the following estimate:

max
0⩽n⩽N

∥θ n
h ∥L∞(Ω) ⩽Ce−c/ε +C`h max

0⩽ j⩽q−1
∥u(t j)−u j

h∥L∞(Ω). (3.16)

4. Existence and uniqueness of solutions of a modified equation
Let χ : R→ R be a smooth cut-off function such that

χ(s) =

{
s for |s|⩽ 1,
0 for |s|⩾ 3,

|χ(s)|⩽ 1 and |χ ′(s)|⩽ 1 ∀s ∈ R,

and define a nonlinear functional fχ(·, tn) : L2(Ω)→ L2(Ω) by

fχ(υ , tn) = f (u(tn))+ f ′(u(tn))(υ −u(tn))+gχ(v, tn)ε4
[

χ
(

υ −u(tn)
ε2

)]2

(4.1)

with

gχ(υ , tn) =
∫ 1

0
f ′′
(

u(tn)+ϑε2χ
(υ −u(tn)

ε2

))
dϑ .

Then, we have the following estimates
∥gχ(υ , tn)∥L∞(Ω) ⩽ 6(1+ ε2) ∀υ ∈ L2(Ω)

and, for υ1,υ2 ∈ L2(Ω),
| fχ(υ1, tn)− fχ(υ2, tn)|⩽ (2+18ε4 +12ε2)|υ1 −υ2| a.e. in Ω . (4.2)

Indeed, the former estimate is a consequence of f ′′(s) = 6s and ∥u(tn)∥L∞(Ω) ⩽ 1, while the latter
follows from

| fχ(υ1, tn)− fχ(υ2, tn)|

⩽ | f ′(u(tn))| |υ1 −υ2|+
(

max
ξ∈R

|∂ξ gχ(ξ , tn)|ε4 +2max
ξ∈R

|gχ(ξ , tn)|ε2
)
|υ1 −υ2|

⩽ 2|υ1 −υ2|+
(

max
|s|⩽|u|+ε2

| f ′′′(s)|ε4 +2 max
|s|⩽|u|+ε2

| f ′′(s)|ε2
)
|υ1 −υ2|

⩽ (2+6ε4 +12(1+ ε2)ε2)|υ1 −υ2|;
note that in the last two inequalities we used the facts that f ′′′(s)= 6, f ′′(s)= 6s and ∥u(tn)∥L∞(Ω)⩽
1.

If ∥υ −u(tn)∥L∞(Ω) ⩽ ε2, then ε2χ
(υ−u(tn)

ε2

)
= υ −u(tn) and therefore

fχ(υ , tn) = f (u(tn))+ f ′(u(tn))(υ −u(tn))

+(υ −u(tn))2
∫ 1

0
f ′′
(
u(tn)+ϑ(υ −u(tn))

)
dϑ

= f (υ),
where the last equality is Taylor’s formula.

For given un− j
h ∈ Sh, j = 1, . . . ,q, we denote by M : Sh → Sh the map from υh ∈ Sh to wh ∈ Sh

defined by
(

1
τ

δ0wh,ϕh

)
+(∇wh,∇ϕh)+

(
1
ε2 fχ(υh, tn),ϕh

)
=−

(
1
τ

q

∑
j=1

δ ju
n− j
h ,ϕh

)
∀ϕh ∈ S̊h,

wh = 1 on ∂Ω .
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If Mυ(1)
h = w(1)

h and Mυ(2)
h = w(2)

h , then
δ0

τ
(w(1)

h −w(2)
h )−∆h(w

(1)
h −w(2)

h ) =− 1
ε2 Ph

(
fχ(υ

(1)
h , tn)− fχ(υ

(2)
h , tn)

)
in Ω ,

w(1)
h −w(2)

h = 0 on ∂Ω .

Testing this equation by w(1)
h −w(2)

h and using (4.2), we obtain
δ0

τ
∥w(1)

h −w(2)
h ∥2 +∥∇(w(1)

h −w(2)
h )∥2 ⩽ 2+18ε4 +12ε2

ε2 ∥υ(1)
h −υ(2)

h ∥∥w(1)
h −w(2)

h ∥.

If τ ⩽ δ0
4(1+9ε4+6ε2)

ε2, then

∥w(1)
h −w(2)

h ∥⩽ 1
2
∥υ(1)

h −υ(2)
h ∥,

which implies that the map M is a contraction on Sh. By the Banach fixed point theorem, M
has a unique fixed point. Therefore, we have the following lemma.

Lemma 4.1 Let τ ⩽ δ0
4(1+9ε4+6ε2)

ε2. Then, given un− j
h ∈ Sh, j = 1, . . . ,q, the modified equation

1
τ

q

∑
j=0

δ ju
n− j
h −∆un

h +
1
ε2 fχ(un

h, tn) = 0 in Ω ,

un
h = 1 on ∂Ω ,

(4.3)

has a unique solution un
h ∈ Sh.

Existence and uniqueness of solutions to the original scheme (1.7) are proved in the next
section based on Lemma 4.1 and a maximum norm error estimate for the modified equation
(4.3).

5. Error estimate
In this section, we prove the following theorem, which is the main result of this article.

Theorem 5.1 Let ε ∈ (0,1] and let the initial value u0 be a compatible profile of the form
(1.3), so that properties (P1)–(P2) hold. Let γ and c? be any fixed positive constants, and let
1 ⩽ q ⩽ 5.

Assume that the given starting values u j
h, j = 0, . . . ,q−1, are sufficiently accurate, i.e.,

max
0⩽ j⩽q−1

∥u(t j)−u j
h∥L∞(Ω) ⩽C(τqε−q +hrε−r). (5.1)

Then, under assumption (?) and the condition

c? e−γ/ε ⩽ τ ⩽ δ0

4(1+9ε4 +6ε2)
ε1+ 5

q , c? e−γ/ε ⩽ h ⩽ δ0

4(1+9ε4 +6ε2)
ε1+ 5

r , (5.2)

equation (1.7) has a unique solution un
h ∈ Sh for n = q, . . . ,N, and un

h satisfies the following error
estimate:

max
q⩽n⩽N

∥u(tn)−un
h∥⩽C(e−c/ε + τqε−q− 1

2 +hrε−r− 1
2 ). (5.3)

Remark 5.1 If r = q = 5, then 1+ 5
q = 1+ 5

r = 2, and therefore (5.2) is satisfied when τ,h ⩽
δ0ε2/64. In particular, our result implies that the five-step BDF method can have an error
bound of O(ε4.5) under the stepsize condition τ = O(ε2).

Remark 5.2 To prove Theorem 5.1, we shall show that there exists a constant ε? > 0 such
that (5.3) holds for ε ∈ (0,ε?]. If ε ∈ [ε?,1], then the parameter ε in problem (1.5) is not
small. In this case, the proof of Theorem 5.1 is standard and the details are omitted. In
particular, if ε ∈ [ε?,1], then the numerical scheme (1.7) possesses a unique solution un

h ∈ Sh for
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τ < δ0ε2
? (because ε−2 f ′(ξ ) = ε−2(3ξ 2 −1)⩾−ε−2

? ). Testing (1.7) by un
h −ηqun−1

h and using the
Nevanlinna–Odeh multiplier technique immediately yields

max
q⩽n⩽N

∥un
h∥⩽C,

which implies
max

q⩽n⩽N
∥u(tn)−un

h∥⩽C ⩽ (Cec/ε?)e−c/ε +Cτqε−q− 1
2 +Chrε−r− 1

2 .

Hence, estimate (5.3) is valid for all ε ∈ (0,1].

We will use the following result from Dahlquist’s G-stability theory in the proof of Theorem
5.1.

Lemma 5.1 (Dahlquist [18]; see also [7] and [27, §V.6]) Let δ (ζ ) = δqζ q + · · ·+δ0 and µ(ζ ) =
µqζ q + · · ·+µ0 be polynomials of degree at most q (and at least one of them of degree q) that
have no common divisor. Let (·, ·) be a real inner product. If

Re
δ (ζ )
µ(ζ )

> 0 for |ζ |< 1,

then there exists a positive definite symmetric matrix G = (gi j) ∈ Rq,q such that for υ0, . . . ,υq

in the real inner product space,( q

∑
i=0

δiυq−i,
q

∑
j=0

µ jυq− j
)
⩾

q

∑
i, j=1

gi j(υ i,υ j)−
q

∑
i, j=1

gi j(υ i−1,υ j−1).

In combination with the preceding result for the multiplier µ(ζ ) = 1−ηqζ , the following
property of BDF methods up to order 5 becomes important.

Lemma 5.2 (Nevanlinna & Odeh [39]) For q ⩽ 5, there exists a multiplier 0 ⩽ ηq < 1 such that
for δ (ζ ) = ∑q

`=1
1
` (1−ζ )`,

Re
δ (ζ )

1−ηqζ
> 0 for |ζ |< 1.

The smallest possible values of ηq are
η1 = η2 = 0, η3 = 0.0836, η4 = 0.2878, η5 = 0.8160.

Precise expressions for the optimal multipliers for the BDF methods of orders 3,4, and 5
are given in [2].

5.1 Consistency errors
The consistency error dn of the semi-discrete BDF method is given by

dn =
1
τ

q

∑
j=0

δ ju(tn− j)−∂tu(tn). (5.4)

By Taylor expanding about tn−q and using the order conditions (2.1), we have

dn =
1
q!

[
1
τ

q

∑
j=0

δ j

∫ tn− j

tn−q

(tn− j − s)q∂ q+1
t u(s)ds−q

∫ tn

tn−q

(tn − s)q−1∂ q+1
t u(s)ds

]
;

thus, under obvious regularity requirements, we obtain the desired optimal order consistency
estimate (

τ
N

∑
n=q

∥dn∥2
) 1

2
⩽Cτq∥∂ q+1

t u(t)∥L2(0,T ;L2(Ω)) ⩽Cτqε−q− 1
2 ; (5.5)

we used assumption (P2) in the last inequality.
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In addition to dn, the following consistency error (due to spatial discretization) will also
appear in our error estimation:

qn = (Rh −Ph)
1
τ

q

∑
j=0

δ ju(tn).

Thanks to the regularity property (P2), we have
∥qn∥L2(Ω) ⩽Chr∥∂tu(t)∥L2(0,T ;Hr(Ω)) ⩽Chrε−r− 1

2 . (5.6)
Similarly, the Ritz projection error ρn

h = u(tn)−Rhu(tn) satisfies

∥ρn
h∥L2(Ω) ⩽Chr∥u(t)∥L2(0,T ;Hr(Ω)) ⩽Chrε−r+ 1

2 . (5.7)

5.2 Proof of Theorem 5.1
Let un

h ∈ Sh be the unique solution of the modified equation (4.3). We shall prove that
un

h ∈ Bε(tn) := {υh ∈ Sh : ∥υh −u(tn)∥L∞(Ω) ⩽ ε2};
therefore, fχ(un

h, tn) = f (un
h) and thus un

h is actually a solution of (1.7). Then, the uniqueness
result in Lemma 4.1 implies that (1.7) has a unique solution in Bε(tn).

Lemma 3.2 and assumptions (?) and (5.1) imply
max

0⩽n⩽N
∥θ n

h ∥⩽C(e−c/ε + τqε−q− 1
2 +h−r− 1

2 ). (5.8)

Let en
h := Rhu(tn)− un

h −θ n
h ,n = q, . . . ,N, denote the error of the numerical solutions, with e j

h =

0, j = 0, . . . ,q−1, and en
h ∈ S̊h,n = q, . . . ,N. Then, we have the decomposition

u(tn)−un
h = en

h +θ n
h +ρn

h . (5.9)
Adding (4.3) and (1.9), and subtracting the result from the consistency equation(

1
τ

q

∑
j=0

δ ju(tn− j),υh

)
+
(
∇u(tn),∇υh

)
+

(
1
ε2 fχ(u(tn), tn),υh

)
=
(
dn,υh

)
,

cf. (5.4), we obtain the error equation
1
τ

q

∑
j=0

δ je
n− j
h −∆hen

h +
1
ε2 Ph

[
fχ(u(tn), tn)− fχ(un

h, tn)
]
= Phdn +qn,

with dn and qn defined in §5.1. In view of (4.1) and the error decomposition (5.9), we have
1
τ

q

∑
j=0

δ je
n− j
h −∆hen

h

+Ph
f ′(u(tn))

ε2 (en
h +θ n

h +ρn
h )+Ph

gχ(un
h, tn)

ε2 ε4
[

χ
(

en
h +θ n

h +ρn
h

ε2

)]2

= Phdn +qn, n = q, . . . ,N.

(5.10)

An immediate consequence of Lemma 5.2 and Lemma 5.1 is the relation( q

∑
i=0

δiυq−i,υq −ηqυq−1
)
⩾

q

∑
i, j=1

gi j(υ i,υ j)−
q

∑
i, j=1

gi j(υ i−1,υ j−1) (5.11)

with a positive definite symmetric matrix G = (gi j) ∈ Rq,q; this inequality will play a crucial
role in our energy estimates.

With the Nevanlinna–Odeh multipliers ηq ∈ [0,1), we take in (5.10) the L2 inner product
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with en
h −ηqen−1

h , and obtain(1
τ

q

∑
j=0

δ je
n− j
h ,en

h −ηqen−1
h

)
+(∇en

h,∇(en
h −ηqen−1

h ))

+
1
ε2 ( f ′(u(tn))(en

h +θ n
h +ρn

h ),e
n
h −ηqen−1

h )

+

(
gχ(un

h, tn)
ε2 ε4

[
χ
(

en
h +θ n

h +ρn
h

ε2

)]2

,en
h −ηqen−1

h

)
= (dn +qn,en

h −ηqen−1
h ), n = q, . . . ,N.

(5.12)

Using the inner product defined in (1.10), we rewrite (5.12) in the form(1
τ

q

∑
j=0

δ je
n− j
h ,en

h −ηqen−1
h

)
+ ⟨en

h,e
n
h −ηqen−1

h ⟩tn

+
1
ε2 ( f ′(u(tn))(θ n

h +ρn
h ),e

n
h −ηqen−1

h )

+

(
gχ(un

h, tn)
ε2 ε4

[
χ
(

en
h +θ n

h +ρn
h

ε2

)]2

,en
h −ηqen−1

h

)
= 2λ (en

h,e
n
h −ηqen−1

h )+(dn +qn,en
h −ηqen−1

h ).

(5.13)

The spectral estimate (1.6) (as a result of property (P1)) guarantees that ⟨·, ·⟩tn in (5.13) is a
time-dependent inner product. It is this time-dependent inner product that helps us to obtain
an error estimate without exponential dependence on 1/ε.

The first term on the left-hand side of (5.13) can be taken care of exactly as in [39], [36]
and [5]: from (5.11), with the notation En

h := (en−q+1
h , . . . ,en

h)
T and

∥En
h∥2

G =
q

∑
i, j=1

gi j(e
n−q+i
h ,en−q+ j

h ),

we have

( q

∑
j=0

δ je
n− j
h ,en

h −ηqen−1
h

)
⩾ ∥En

h∥2
G −∥En−1

h ∥2
G. (5.14)

Using the Cauchy–Schwarz and arithmetic–geometric mean inequalities, we can estimate the
second term on the left-hand side of (5.13) as follows

⟨en
h,e

n
h −ηqen−1

h ⟩tn ⩾ ∥en
h∥2

tn −
1
2

ηq
(
∥en

h∥2
tn +∥en−1

h ∥2
tn

)
. (5.15)

Now, to relate ∥en−1
h ∥2

tn back to ∥en−1
h ∥2

tn−1
, we note that, in view of (1.10) and (1.11),

∥en−1
h ∥2

tn = ∥en−1
h ∥2

tn−1
+

1
ε2 ([ f

′(u(tn))− f ′(u(tn−1))]en−1
h ,en−1

h )

⩽ ∥en−1
h ∥2

tn−1
+

cτ
ε2 ∥en−1

h ∥2.

Therefore, from (5.15) we obtain

⟨en
h,e

n
h −ηqen−1

h ⟩tn ⩾
(

1− 1
2

ηq

)
∥en

h∥2
tn −

1
2

ηq∥en−1
h ∥2

tn−1
− Cτ

ε2 ∥en−1
h ∥2. (5.16)
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In view of (5.14) and (5.16), relation (5.13) yields
(2∥En

h∥2
G + τηq∥en

h∥2
tn)− (2∥En−1

h ∥2
G + τηq∥en−1

h ∥2
tn−1

)+2τ
(
1−ηq

)
∥en

h∥2
tn

⩽ 2τ
ε2 |( f ′(u(tn))(θ n

h +ρn
h ),e

n
h −ηqen−1

h )|

+Cτ
∣∣∣∣(gχ(un

h, tn)
ε2 ε4

[
χ
(

en
h +θ n

h +ρn
h

ε2

)]2

,en
h −ηqen−1

h

)∣∣∣∣
+2τ|(2λen

h,e
n
h −ηqen−1

h )|+2τ|(dn +qn,en
h −ηqen−1

h )|+2τ
Cτ
ε2 ∥en−1

h ∥2

⩽ Cτ
ε2 ∥θ n

h +ρn
h∥2 +Cτ(1+ τ/ε2)(∥en

h∥2 +∥en−1
h ∥2)+Cτ∥dn +qn∥2.

Summing here from n = q to n = m ⩽ N, and using (5.8), we obtain (note that ∥Eq−1
h ∥G =

∥eq−1
h ∥= 0)

(2∥Em
h ∥2

G + τηq∥em
h ∥2

tm)+
m

∑
n=q

2τ
(
1−ηq

)
∥en

h∥2
tn

⩽C(1+ ε−2)e−2c/ε +Cτ2qε−2q−1 +Ch2rε−2r−1 +Cτ(1+ τ/ε2)
m

∑
n=q

∥en
h∥2.

Under condition (5.2), using the consistency error estimates (5.5)–(5.7), this estimate can be
further reduced to

∥Em
h ∥2

G + τ(1−ηq)
m

∑
n=q

∥en
h∥2

tn

⩽C(1+ ε−2)e−2c/ε +Cτ2qε−2q−1 +Ch2rε−2r−1 +Cτ
m

∑
n=q

∥en
h∥2.

Since ∥Em
h ∥2

G ⩾ cq∥em
h ∥2, with cq > 0 denoting the smallest eigenvalue of the positive definite

symmetric matrix G, we thus infer that

cq∥em
h ∥2 +(1−ηq)τ

m

∑
n=q

∥en
h∥2

tn

⩽C(1+ ε−2)e−2c/ε +Cτ2qε−2q−1 +Ch2rε−2r−1 +Cτ
m

∑
n=q

∥en
h∥2.

A straightforward application of the discrete Gronwall inequality yields
max

0⩽n⩽N
∥en

h∥⩽Cε−1e−c/ε +Cτqε−q− 1
2 +Chrε−r− 1

2 . (5.17)

Next, following the notation of [4], we introduce a rescaled norm on `p(L2(Ω)), denoted by
∥ · ∥Lp(L2(Ω)): for a sequence (υn)N

n=1 and a given stepsize τ, we denote∥∥(υn)N
n=1

∥∥
Lp(L2(Ω))

=
(

τ
N

∑
n=1

∥υn∥p
L2(Ω)

)1/p
,

which coincides with the Lp(0,T ;L2(Ω)) norm of the piecewise constant function taking the
values υn.

We rewrite (5.10) as
1
τ

q

∑
j=0

δ je
n− j
h −∆hen

h = υn
h , n = q, . . . ,N, (5.18)
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with

υn
h = −Ph

f ′(u(tn))
ε2 (en

h +θ n
h +ρn

h )−Ph
gχ(un

h, tn)
ε2 ε4

[
χ
(

en
h +θ n

h +ρn
h

ε2

)]2

+Phdn +(Rh −Ph)
1
τ

q

∑
j=0

δ ju(tn).

We apply the discrete maximal Lp-regularity to (5.18) (cf. [30, Theorem 4.2]). This yields∥∥∥∥(1
τ

q

∑
j=0

δ je
n− j
h

)N

n=q

∥∥∥∥
Lp(L2(Ω))

+∥(∆hen
h)

N
n=q∥Lp(L2(Ω))

⩽C∥(υn
h )

N
n=q∥Lp(L2(Ω))

⩽C
∥∥∥∥( f ′(u(tn))

ε2 (en
h +θ n

h +ρn
h )

)N

n=q

∥∥∥∥
Lp(L2(Ω))

+C
∥∥∥∥(gχ(un, tn)

ε2 ε4
[

χ
(

en
h +θ n

h +ρn
h

ε2

)]2)N

n=q

∥∥∥∥
Lp(L2(Ω))

+C∥(dn)N
n=q∥Lp(L2(Ω))+C

∥∥∥∥((Rh −Ph)
1
τ

q

∑
j=0

δ ju(tn)
)N

n=q

∥∥∥∥
Lp(L2(Ω))

⩽Cε−2∥∥(en
h +θ n

h +ρn
h )

N
n=q

∥∥
Lp(L2(Ω))

+C∥(dn)N
n=q∥Lp(L2(Ω))

+C
∥∥∥∥((Rh −Ph)

1
τ

q

∑
j=0

δ ju(tn)
)N

n=q

∥∥∥∥
Lp(L2(Ω))

⩽Cε−3e−c/ε +Cτqε−q−2.5 +Chrε−r−2.5 ∀1 < p < ∞.

In [4, p. 1538] it is shown that (for zero starting values e0
h = · · ·= eq−1

h = 0)∥∥∥∥(en
h − en−1

h
τ

)N

n=q

∥∥∥∥
Lp(L2(Ω))

⩽C
∥∥∥∥(1

τ

q

∑
j=0

δ je
n− j
h

)N

n=q

∥∥∥∥
Lp(L2(Ω))

.

Therefore, ∥∥∥∥(en
h − en−1

h
τ

)N

n=q

∥∥∥∥
Lp(L2(Ω))

+∥(∆hen
h)

N
n=q∥Lp(L2(Ω))

⩽C(ε−3e−c/ε + τqε−q−2.5 +hrε−r−2.5) ∀1 < p < ∞.

(5.19)

Adapting the idea of [31, Section 3.4] here, we denote by ẽh(t), t ∈ [0,T ], the piecewise linear
interpolant of the sequence (en

h)
N
n=0 at the temporal nodes tn = nτ, n = 0,1, . . . ,N. Then,

∥∂t ẽh∥Lp(0,T ;L2(Ω))+∥∆hẽh∥Lp(0,T ;L2(Ω))

⩽C
(∥∥∥∥(en

h − en−1
h

τ

)N

n=q

∥∥∥∥
Lp(L2(Ω))

+
∥∥(∆hen

h)
N
n=q

∥∥
Lp(L2(Ω))

)
.

(5.20)

Let ϕ be the solution of the boundary value problem{
∆ϕ = ∆hẽh in Ω ,

ϕ = 0 on ∂Ω .

Then
∥ϕ∥H2(Ω) ⩽C∥∆hẽh∥L2(Ω)

and
∥∂tϕ∥L2(Ω) = ∥∆−1∆h∂t ẽh∥L2(Ω) ⩽C∥∂t ẽh∥L2(Ω);
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the last inequality was proved in [26, Lemma 5.1]. Thus
∥∂tϕ∥Lp(0,T ;L2(Ω))+∥ϕ∥Lp(0,T ;H2(Ω)) ⩽ ∥∂t ẽh∥Lp(0,T ;L2(Ω))+∥∆hẽh∥Lp(0,T ;L2(Ω)). (5.21)

By using the inhomogeneous Sobolev embedding (cf. [37, Proposition 1.2.10])
W 1,p(0,T ;X)∩Lp(0,T ;Y ) ↪→ L∞(0,T ;(X ,Y )1−1/p,p),

where (X ,Y )1−1/p,p = B2− 2
p ;2,p(Ω) denotes the real interpolation space between the two Banach

spaces X = L2(Ω) and Y = Ḣ2(Ω) (cf. [1, §7.32]), we obtain
∥ϕ∥

L∞(0,T ;B2− 2
p ;2,p

(Ω))
⩽C

(
∥∂tϕ∥Lp(0,T ;L2(Ω))+∥ϕ∥Lp(0,T ;H2(Ω))

)
. (5.22)

Since B2− 2
p ;2,p(Ω) ↪→Cα(Ω) for some positive α when p > 4/(4−d), in this case we have

∥ϕ∥L∞(0,T ;Cα (Ω)) ⩽ ∥ϕ∥
L∞(0,T ;B2− 2

p ;2,p
(Ω))

. (5.23)

Since en
h is the Ritz projection of ϕ(tn), using the L∞ estimate of the Ritz projection (cf. (2.7)),

we have
∥en

h −ϕ(tn)∥L∞(Ω) ⩽C`hhα∥ϕ(tn)∥Cα (Ω) ⩽C∥ϕ(tn)∥Cα (Ω). (5.24)

Then, estimates (5.19)–(5.24) imply
max

q⩽n⩽N
∥en

h∥L∞(Ω) ⩽Cε−3e−c/ε +Cτqε−q−2.5 +Chrε−r−2.5 ∀1 < p < ∞.

If (5.2) holds, then
τqε−q−2.5 = o(ε2) and hrε−r−2.5 = o(ε2).

Meanwhile, Proposition 3.1 and (5.1)–(5.2) imply
max

q⩽n⩽N
∥θ n

h ∥L∞(Ω) ⩽Ce−
1
2 c/ε +C`2

h(τ
qε−q +Chrε−r)

⩽Ce−
1
2 c/ε +Cε

1
2 `2

h(τ
qε−q− 1

2 +Chrε−r− 1
2 )

⩽Ce−
1
2 c/ε +C(τqε−q− 1

2 +Chrε−r− 1
2 )

= o(ε2),

max
q⩽n⩽N

∥ρn
h∥L∞(Ω) ⩽Chrε−r− 1

2 = o(ε2),

where we have used the estimate ε 1
2 `2

h ⩽C, which is a consequence of the mesh condition (5.2).
Since u(tn)−un

h = en
h +θ n

h +ρn
h , for sufficiently small ε the last three estimates yield

max
q⩽n⩽N

∥u(tn)−un
h∥L∞(Ω) ⩽ ε2. (5.25)

Therefore, un
h ∈ Bε(tn) and fχ(un

h, tn) = f (un
h). This means that un

h is a solution of (1.7). This
together with (5.17) imply the result of Theorem 5.1. □

6. Numerical examples
The initial and boundary value problem (1.5) with ϕ = 1 is still an L2 gradient flow of the
Cahn–Hilliard energy, i.e., testing (1.5) by ut and using integration by parts (with ut = 0 on
∂Ω) still yields the energy decay property,

d
dt

∫
Ω

(
1
2
|∇u|2 + 1

ε2 F(u)
)

dx =−
∫

Ω
|ut |2dx ⩽ 0. (6.1)

In this article, we considered high-order BDF methods (1.7). It turns out that the condition
for the error estimate is less restrictive if a high-order method in time is used. This is a desired
property of the numerical method. On the other hand, we cannot prove unconditional (uniform
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in ε) energy decay of the numerical solutions given by high-order BDF methods. We present
results of numerical experiments to illustrate the merit of high-order BDF methods.

We consider the AC equation (1.5) with the initial value
u0(x) =Θ(Λ0(x)/(

√
2ε)), (6.2)

where Λ0(x) is the signed distance to an ellipse interface

Γ0 =
{
(x1,x2) ∈ R2 :

x2
1

0.36
+

x2
2

0.04
= 1

}
,

and the function Θ(r) = tanh(r) satisfies (1.4). This example was considered in [21]. We solve
the problem by the proposed method in a domain Ω = [−1,1]2. The 3-stage (5th-order) Runge–
Kutta Radau IIA method is used at the first 4 steps to generate sufficiently accurate starting
values for the BDF5 method.

First, we present the numerical simulation of the zero-level set of the solution in Figure 2
with ε = 0.04,0.02 and 0.01. The numerical results show that the zero-level sets obtained with
several sufficiently small ε are consistent.

(a) (b)

(c) (d)

Fig. 2. Snapshots of the zero-level set of un
h at time t = 0,0.02,0.04,0.05, τ = 0.5ε2 and ε = 0.04,0.02,0.01.

The energy curves of numerical solutions corresponding to various ε are presented in Figure
3, from which we see that the energy decays as time increases. This shows that high-order BDF
methods are practically energy stable in numerical simulation for small ε. Since the initial value
depends on ε, as shown in (6.2), the initial energy is O(ε−1).

Second, we investigate the temporal convergence rates of numerical solutions with a fix
spatial mesh size h = ε/

√
2. The numerical results at T = 8ε2, ε and 0.1 are presented in Tables
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Fig. 3. Energy evolution of numerical solutions, with τ = ε2 and h = ε/
√

2.

1–3. These results show that the BDF5 method has much smaller errors than the backward
Euler method for all three cases, T = 8ε2, ε and 0.1. This shows the merit of using high-order
BDF methods for the AC equation.

Table 1. Time discretization errors ∥uN
τ −uN

τ/2∥L2(Ω) at T = 8ε2 with h = ε/
√

2.

T = 8ε2

ε
τ 2−6ε2 2−7ε2 2−8ε2 order

BDF5
Method

0.04 3.365E–10 1.458E–11 5.418E–13 4.8
0.02 4.854E–11 2.154E–12 8.796E–14 4.6
0.01 3.865E–11 1.972E–12 8.627E–14 4.5

Backward
Euler

Method

0.04 9.840E–05 4.914E–05 2.453E–05 1.0
0.02 1.443E–05 7.181E–06 3.594E–06 1.0
0.01 2.749E–06 1.379E–06 6.909E–07 1.0

Table 2. Time discretization errors ∥uN
τ −uN

τ/2∥L2(Ω) at T = ε with h = ε/
√

2.

T = ε
ε

τ 2−6ε2 2−7ε2 2−8ε2 order

BDF5
Method

0.04 5.394E–08 2.692E–09 1.095E–10 4.6
0.02 4.033E–11 1.783E–12 7.222E–14 4.6
0.01 2.540E–11 1.259E–12 5.841E–14 4.4

Backward
Euler

Method

0.04 2.251E–04 1.123E–04 5.596E–05 1.0
0.02 5.032E–05 2.511E–05 1.254E–05 1.0
0.01 1.045E–05 5.218E–06 2.607E–06 1.0

Third, we investigate the spatial convergence rates of numerical solutions with a fixed tem-
poral stepsize. The numerical results at T = 4ε2, ε and 0.1 are presented in Tables 4–6. These
results show that the error decreases as T increases, and high-order finite elements yield higher-
order accuracy than low-order finite elements when ε is small. This shows the merit of high-order
finite elements for the AC equation. The convergence rates at T = 0.1 is not accurate when ε is
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Table 3. Time discretization errors ∥uN
τ −uN

τ/2∥L2(Ω) at T = 0.1 with h = ε/
√

2.

T = 0.1
ε

τ 2−1ε2 2−2ε2 2−3ε2 order

BDF5
Method

0.04 1.717E–09 8.061E–13 4.353E–15 7.5
0.02 2.641E–13 4.097E–13 2.282E–15 7.5
0.01 1.224E–13 1.820E–13 2.280E–14 3.0

Backward
Euler

Method

0.04 2.787E–09 4.994E–09 8.518E–09 −
0.02 3.748E–09 9.105E–09 2.010E–08 −
0.01 6.431E–09 2.261E–08 3.283E–08 −

Table 4. Space discretization errors ∥uN
h −uN

h/2∥L2(Ω) at T = 4ε2, with τ = ε2/2.

ε h r = 2 order r = 3 order

0.04
2−2

√
2ε 3.052E–01 – 4.821E–02 –

2−3
√

2ε 6.974E–02 2.1 1.032E–02 2.2
2−4

√
2ε 1.718E–02 2.0 1.358E–03 2.9

0.02
22
√

2ε 1.476E–01 – 3.418E–02 –
21
√

2ε 3.800E–02 1.9 6.968E–03 2.3
20
√

2ε 1.007E–02 1.8 9.489E–04 2.9

0.01
21
√

2ε 9.392E–02 – 2.377E–02 –
20
√

2ε 2.488E–02 1.9 4.691E–03 2.3
2−1

√
2ε 6.550E–03 1.8 6.877E–04 2.8

too small, as the solution is identical to 1 almost everywhere. In this case, the error suddenly
decreases to almost zero when the mesh size reaches a threshold.

7. Conclusion
We have presented an error estimate for fully discrete FEMs with high-order BDF methods
for the AC phase field equation with explicit dependence on the parameter ε describing the
thickness of the phase transition zone, by utilizing the spectral estimate (1.6) of the linearized
AC operator. The error estimation uses the time-dependent inner product (1.10), introduced
based on the spectral estimate (1.6), and is presented for the AC equation subject to the
Dirichlet boundary condition u = 1. The error estimate can be straightforwardly extended to
the AC equation with homogeneous Neumann or periodic boundary conditions. The extension
to other phase field models, such as the Cahn–Hilliard equation, is possible if the spectral
estimate is available. Rigorous analysis for those problems requires further investigation.
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Table 5. Space discretization errors ∥uN
h −uN

h/2∥L2(Ω) at T = ε, with τ = ε2.
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0.04
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