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The evolution of a closed two-dimensional surface driven by both mean curvature flow and a1

reaction–diffusion process on the surface is formulated as a system that couples the velocity law2

not only to the surface partial differential equation but also to the evolution equations for the normal3

vector and the mean curvature on the surface. Two algorithms are considered for the obtained system.4

Both methods combine surface finite elements for space discretization and linearly implicit backward5

difference formulae for time integration. Based on our recent results for mean curvature flow, one of6

the algorithms directly admits a convergence proof for its full discretization in the case of finite7

elements of polynomial degree at least two and backward difference formulae of orders two to8

five, with optimal-order error bounds. Numerical examples are provided to support and complement9

the theoretical convergence results (illustrating the convergence behaviour of both algorithms) and10

demonstrate the effectiveness of the methods in simulating a three-dimensional tumour growth11

model.12
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Keywords: Forced mean curvature flow, reaction–diffusion on surfaces, evolving finite element14

method, linearly implicit, backward difference formula, convergence, tumour growth.15

1. Introduction16

We consider the numerical approximation of an unknown evolving two-dimensional closed surface17

� .t/ that is driven by both mean curvature flow and a reaction–diffusion process on the surface,18

starting from a given smooth initial surface � 0. The outer normal velocity V of the surface is19

determined by the velocity law20

V D �H C u; (1.1)21
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where H is the mean curvature of the evolving surface, and where u.x; t/ (x 2 � .t/, t 2 Œ0; T �) is22

the solution of a reaction–diffusion equation on the evolving surface,23

@�uC ur� � v ��� u D F.u;r� u/; (1.2)24

with given initial data u0. Here, F W R � R3 ! R is a given smooth function, and v is the surface25

velocity: v D V� with V of (1.1) and the outer normal �. Problem (1.1)–(1.2) can be viewed as26

forced mean curvature flow driven by the solution of the parabolic equation (1.2) on the evolving27

surface.28

While we study the numerical approximation of Problem (1.1)–(1.2) with a scalar parabolic29

equation for notational simplicity, we remark that the numerical method and its convergence30

properties extend readily to the case of a system of reaction-diffusion equations (1.2) with solution31

u D .u1; : : : ; um/ and the velocity law V D �H C ˛1u1 C : : : C ˛mum with constant real32

coefficients ˛i . We will encounter such a more general problem in our numerical experiments with33

a tumour growth model.34

Many practical applications concern mean curvature flow coupled with surface partial35

differential equations (PDEs), for example tumour growth [2, 7–9, 22];surface dissolution [18, 21]36

(also see [16, Section 10.4]); diffusion induced grain boundary motion [11, 23, 35]. These models37

all use a velocity law that is linear in u, as in (1.1) or as in the previous paragraph, except for38

diffusion induced grain boundary motion where V D �H C u2.39

Numerical approximations to forced mean curvature flow coupled with surface partial40

differential equations have been considered in some of these papers. For curves, convergence of41

numerical methods for such coupled problems of forced curve shortening flow was proved in [3, 34].42

Numerical approximation to pure mean curvature flow of surfaces – i.e., the case u � 0 in43

(1.1) – was first addressed by Dziuk [14], based on a formulation of mean curvature flow as a44

formally heat-like equation on a surface. He proposed an evolving surface finite element method45

in which the moving nodes of the finite element mesh determine the approximate evolving surface.46

Different surface finite element based methods were proposed by Barrett, Garcke & Nürnberg [5]47

based on different variational formulations, and by Elliott & Fritz [19] based on DeTurck’s trick of48

reparametrizing the surface. However, proving convergence of any of these methods has remained49

an open problem for the mean curvature flow of closed two-dimensional surfaces.50

In [27] we proved the first convergence result for semi- and full discretizations of mean curvature51

flow of closed surfaces with evolving surface finite elements. Discretizing the coupled system for52

the velocity law together with evolution equations for the normal vector field and mean curvature,53

we obtained a method with provable error bounds of optimal order.54

To our knowledge, no convergence results have yet been proved for forced mean curvature flow55

of closed surfaces (1.1)–(1.2). For a regularized version of forced mean curvature flow of closed56

surfaces, optimal-order convergence results for semi- and full discretizations were obtained in [28]57

and [29], respectively.58

In this paper, we extend the approach and techniques of our previous paper [27] to the forced59

mean curvature flow problem (1.1)–(1.2) as a coupled problem together with evolution equations for60

the normal vector and mean curvature. These evolution equations, as compared with those for pure61

mean curvature flow given in [25], contain additional forcing terms depending on u. We present62

two fully discrete evolving finite element algorithms for the obtained coupled system. The first63

algorithm discretizes the two terms @�u C ur� ŒX� � v separately in the spatial discretization by64

using the velocity law for v and the approach in [27]. The second algorithm combines the two terms65
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in the spatial discretization by an idea of [15] for treating conservation laws on an evolving surface.66

Both algorithms use evolving surface finite elements for spatial discretization and linearly implicit67

backward difference formulae for time integration, and for both algorithms the moving nodes of a68

finite element mesh determine the approximate evolving surface.69

The convergence proof for the forced mean curvature algorithm considered here is a very minor70

modification compared to the convergence proof for the pure mean curvature algorithm of [27], since71

that algorithm is already built on coupling evolution equations on the surface to the evolution of the72

surface. The first algorithm can be written in the same matrix–vector form as the method proposed73

in [27] for the mean curvature flow. The convergence analysis in [27] applies directly to the present74

algorithm for forced mean curvature flow as well, except for one term which corresponds to the term75

�� u in the evolution equation forH . The necessary changes to the stability analysis brought about76

by this term are carried out in detail. Under the assumption that the problem admits a sufficiently77

regular solution, this yields uniform in time, optimal-order H 1-norm convergence results for the78

semi- and full discretizations of forced mean curvature flow when using at least quadratic evolving79

surface FEM and linearly implicit backward difference formulae of order two to five.80

For the second algorithm, we indicate how such an optimal-order convergence estimate of the81

evolving surface finite element semi-discretization can be obtained by combining results of [28]82

and [27], but we do not carry out the details.83

For the velocity law V D �H C g.u/ with a nonlinear smooth function g, we expect that84

convergence of a direct generalization of the algorithms presented in this paper can be shown with a85

combination of the techniques of [27, 28, 31]. As this would become a nontrivial lengthy extension,86

it is not worked out here.87

Finally, we present numerical experiments to support and complement the theoretical results. We88

present convergence tests for both algorithms, and also present an experiment with the numerical89

simulation for a tumour growth model, using the parameters in [2] for the sake of easy comparison.90

2. Evolution equations for mean curvature flow driven by diffusion on the surface91

2.1 Basic notions and notation92

We consider the evolving two-dimensional closed surface � .t/ � R3 for times t 2 Œ0; T � as the93

image94

� .t/ D � ŒX.�; t /� WD
˚
X.p; t/ W p 2 � 0

	
;95

of a smooth flow map X W � 0 � Œ0; T � ! R3 such that X.�; t / is an embedding for every t . Here,96

� 0 is a smooth closed initial surface, and X.p; 0/ D p. When the time t is clear from the context,97

we drop t in the notation and write for short98

� ŒX� D � ŒX.�; t /�:99

In view of the subsequent numerical discretization, it is convenient to think ofX.p; t/ as the position100

at time t of a moving particle with label p, and of � ŒX� as a collection of such particles.101

The velocity v.x; t/ 2 R3 at a point x D X.p; t/ 2 � .t/ equals102

@tX.p; t/ D v
�
X.p; t/; t

�
: (2.1)103

For a known velocity field v, the position X.p; t/ at time t of the particle with label p is obtained104

by solving the ordinary differential equation (2.1) from 0 to t for a fixed p.105
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For a function w.x; t/ (x 2 � .t/, 0 6 t 6 T ) we denote the material derivative as106

@�w.x; t/ D
d
dt
w
�
X.p; t/; t

�
for x D X.p; t/:107

On any regular surface � � R3, we denote by r�w W � ! R3 the tangential gradient of a108

function w W � ! R, and in the case of a vector field f D .f1; f2; f3/
T W � ! R3, we let109

r� f D .r� f1;r� f2;r� f3/. We thus use the convention that the gradient of f has the gradient110

of the components as column vectors. We denote by r� � f the surface divergence of a vector field111

f on � , and by��w D r� �r�w the Laplace–Beltrami operator applied tow; see the review [10]112

or [17, Appendix A] or any textbook on differential geometry for these notions.113

We denote the unit outer normal vector field to � by � W � ! R3. Its surface gradient114

contains the (extrinsic) curvature data of the surface � . At every x 2 � , the matrix of the extended115

Weingarten map,116

A.x/ D r� �.x/;117

is a symmetric 3 � 3 matrix (see, e.g., [36, Proposition 20]). Apart from the eigenvalue 0 with118

eigenvector �, its other two eigenvalues are the principal curvatures �1 and �2. They determine the119

fundamental quantities120

H WD tr.A/ D �1 C �2; jAj2 D �21 C �
2
2 ; (2.2)121

122

where jAj denotes the Frobenius norm of the matrix A. Here, H is called the mean curvature (as in123

most of the literature, we do not put a factor 1/2).124

2.2 Evolution equations for normal vector and mean curvature125

Forced mean curvature flow driven by diffusion on the surface sets the velocity (2.1) of the surface126

� ŒX� to127

v D V� with the normal velocity V D �H C u; (2.3)128

where u is the solution of the non-linear reaction–diffusion equation on the surface � ŒX�with given129

initial value u0,130

@�uC ur� ŒX� � v ��� ŒX�u D F.u;r� ŒX�u/ on � ŒX�; (2.4)131

with a given smooth function F W R � R3 ! R.132

The geometric quantitiesH and � on the right-hand side of (2.3) satisfy the following evolution133

equations, which are modifications of the evolution equations for pure mean curvature flow134

(i.e., V D �H ) as derived by Huisken [25].135

Lemma 2.1 For a regular surface � ŒX�moving under forced mean curvature flow (2.3), the normal136

vector and the mean curvature satisfy137

@�� D �� ŒX�� C jAj
2 � � r� ŒX�u; (2.5)138

@�H D �� ŒX�H C jAj
2H ��� ŒX�u � jAj

2u: (2.6)139
140
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Proof. Using the normal velocity V in the proof of [25, Lemma 3.3], or see also [6, Lemma 2.37],141

the following evolution equation for the normal vector holds:142

@�� D �r� ŒX�V:143

On any surface � , it holds true that (see [17, (A.9)] or [36, Proposition 24])144

r� ŒX�H D �� ŒX�� C jAj
2�;145

which, in combination with V D �H C u from (2.3), gives the stated evolution equation for �.146

By revising the proof of [25, Theorem 3.4 and Corollary 3.5], or see [6, Lemma 2.39], with the147

normal velocity V we obtain148

@�H D ��� ŒX�V � jAj
2V;149

which, again with V D �H C u from (2.3), yields the evolution equation for H .150

2.3 The system of equations used for discretization151

Similarly to [27], collecting the above equations, we have reformulated forced mean curvature flow152

as the system of semi-linear parabolic equations (2.5)–(2.6) on the surface coupled to the velocity153

law (2.3) and the surface PDE (2.4). The numerical discretization is based on a weak formulation154

of (2.3)–(2.6), together with the velocity equation (2.1). For the velocity law (2.3) we use a weak155

formulation that turns into the standard Ritz projection when restricted to a subspace. The weak156

formulation reads, with V D �H C u and A D r� ŒX��,157 Z
� ŒX�

r� ŒX�v � r� ŒX�'
v
C

Z
� ŒX�

v � 'v D

Z
� ŒX�

r� ŒX�.V�/ � r� ŒX�'
v
C

Z
� ŒX�

V� � 'v (2.7a)158 Z
� ŒX�

@�� � '� C

Z
� ŒX�

r� ŒX�� � r� ŒX�'
�
D

Z
� ŒX�

jAj2 � � '� �

Z
� ŒX�

r� ŒX�u � '
� (2.7b)159 Z

� ŒX�

@�H 'HC

Z
� ŒX�

r� ŒX�H � r� ŒX�'
H
D�

Z
� ŒX�

jAj2 V 'H C

Z
� ŒX�

r� ŒX�u � r� ŒX�'
H ; (2.7c)160

161

162

d
dt

Z
� ŒX�

u'u C

Z
� ŒX�

r� ŒX�u � r� ŒX�'
u
D

Z
� ŒX�

F.u;r� ŒX�u/'
u; (2.8)163

for all test functions 'v 2 H 1.� ŒX�/3 and '� 2 H 1.� ŒX�/3, 'H 2 H 1.� ŒX�/, and 'u 2164

H 1.� ŒX�/ with @�'u D 0. Here, we use the Sobolev space H 1.� / D fu 2 L2.� / W r� u 2165

L2.� /g. Throughout the paper both the usual Euclidean scalar product for vectors and the Frobenius166

inner product for matrices (which equals to the Euclidean product using an arbitrary vectorization)167

are denoted by a dot. This system is complemented with the initial data X0, �0, H 0 and u0.168

An alternative weak formulation of (2.8), which is similar to (2.7b)–(2.7c), is based on169 Z
� ŒX�

@�u'u C

Z
� ŒX�

r� ŒX�u � r� ŒX�'
u
D

Z
� ŒX�

F.u;r� ŒX�u/'
u
�

Z
� ŒX�

�
r� ŒX� � v

�
u'u;170

171

for 'u 2 H 1.� ŒX�/. Using that r� V � � D 0 and H D r� ŒX� � � and inserting the velocity172

law (2.3), we obtain173

r� ŒX� � v D r� ŒX� � .V�/ D .r� ŒX�V / � � C V.r� ŒX� � �/ D V.r� ŒX� � �/174

D.�H C u/H:175
176



448 B. KOVÁCS, B. LI AND C. LUBICH

This yields a weak formulation of a similar form as (2.7b) and (2.7c),177 Z
� ŒX�

@�u'u C

Z
� ŒX�

r� ŒX�u � r� ŒX�'
u
D

Z
� ŒX�

f .H; u;r� ŒX�u/'
u (2.9)178

for all 'u 2 H 1.� ŒX�/, where we set179

f .H; u;r� ŒX�u/ D F.u;r� ŒX�u/ � .�H C u/Hu:180

3. Evolving finite element semi-discretization181

3.1 Evolving surface finite elements182

We formulate the evolving surface finite element (ESFEM) discretization for the velocity law183

coupled with evolution equations on the evolving surface, following the description in [27, 28],184

which is based on [13] and [12]. We use a surface approximation consisting of curved elements185

of polynomial degree k over a flat triangular reference element, which are therefore simply called186

triangles (even if they are curved), and use continuous piecewise polynomial basis functions of187

degree k, as defined in [12, Section 2.5].188

We triangulate the given smooth initial surface � 0 by an admissible family of triangulations Th189

of decreasing maximal element diameter h; see [15] for the notion of an admissible triangulation,190

which includes quasi-uniformity and shape regularity. For a momentarily fixed h, we denote by191

x0 the vector in R3N that collects all nodes pj .j D 1; : : : ; N / of the initial triangulation. By192

piecewise polynomial interpolation of degree k, the nodal vector defines an approximate surface193

� 0
h

that interpolates � 0 in the nodes pj of the (curved) triangles of Th. We will evolve the j th node194

in time according to an approximation of the ODE (2.1), denoted xj .t/with xj .0/ D pj , and collect195

the nodes at time t in a column vector196

x.t/ 2 R3N :197

We just write x for x.t/ when the dependence on t is not important.198

By piecewise polynomial interpolation on the plane reference triangle that corresponds to every199

curved triangle of the triangulation, the nodal vector x defines a closed surface denoted by �hŒx�.200

We can then define globally continuous finite element basis functions201

�i Œx� W �hŒx�! R; i D 1; : : : ; N;202

which have the property that on every triangle their pullback to the reference triangle is polynomial203

of degree k, and which satisfy at the nodes �i Œx�.xj / D ıij for all i; j D 1; : : : ; N . These functions204

span the finite element space on �hŒx�,205

ShŒx� D Sh.�hŒx�/ D span
˚
�1Œx�; �2Œx�; : : : ; �N Œx�

	
:206

For a finite element function uh 2 ShŒx�, the tangential gradient r�hŒx�uh is defined piecewise on207

each element.208

The discrete surface at time t is parametrized by the initial discrete surface via the mapXh.�; t / W209

� 0
h
! �hŒx.t/� defined by210

Xh.ph; t / D

NX
jD1

xj .t/ �j Œx.0/�.ph/; ph 2 �
0
h ;211
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which has the properties that Xh.pj ; t / D xj .t/ for j D 1; : : : ; N , that Xh.ph; 0/ D ph for all212

ph 2 �
0
h

, and213

�hŒx.t/� D � ŒXh.�; t /� D
˚
Xh.ph; t / W ph 2 �

0
h

	
:214

The discrete velocity vh.x; t/ 2 R3 at a point x D Xh.ph; t / 2 � ŒXh.�; t /� is given by215

@tXh.ph; t / D vh
�
Xh.ph; t /; t

�
:216

In view of the transport property of the basis functions [15], d
dt

�
�j Œx.t/�.Xh.ph; t //

�
D 0, the217

discrete velocity equals, for x 2 �hŒx.t/�,218

vh.x; t/ D

NX
jD1

vj .t/ �j Œx.t/�.x/ with vj .t/ D Pxj .t/;219

where the dot denotes the time derivative d=dt . Hence, the discrete velocity vh.�; t / is in the finite220

element space ShŒx.t/�, with nodal vector v.t/ D Px.t/.221

The discrete material derivative of a finite element function uh.x; t/ with nodal values uj .t/ is222

@�huh.x; t/ D
d
dt
uh
�
Xh.ph; t /

�
D

NX
jD1

Puj .t/�j Œx.t/�.x/ at x D Xh.ph; t /:223

3.2 ESFEM spatial semi-discretizations224

Now we will describe the semi-discretization of the coupled system using both formulations of the225

surface PDE.226

The finite element spatial semi-discretization of the weak coupled parabolic system (2.7)227

and (2.9) reads as follows: Find the unknown nodal vector x.t/ 2 R3N and the unknown finite228

element functions vh.�; t / 2 ShŒx.t/�3 and �h.�; t / 2 ShŒx.t/�3, Hh.�; t / 2 ShŒx.t/�, and uh.�; t / 2229

ShŒx.t/� such that, by denoting ˛2
h
D jr�hŒx��hj

2 and Vh D �Hh C uh,230 Z
�hŒx�
r�hŒx�vh � r�hŒx�'

v
h C

Z
�hŒx�
vh � '

v
h D

Z
�hŒx�
r�hŒx�.Vh�h/ � r�hŒx�'

v
h C

Z
�hŒx�
Vh�h � '

v
h (3.1a)231 Z

�hŒx�
@�h�h � '

�
h C

Z
�hŒx�
r�hŒx��h � r�hŒx�'

�
h D

Z
�hŒx�
˛2h �h � '

�
h �

Z
�hŒx�
r�hŒx�uh � '

�
h (3.1b)232 Z

�hŒx�
@�hHh '

H
h C

Z
�hŒx�
r�hŒx�Hh � r�hŒx�'

H
h D �

Z
�hŒx�
˛2h Vh '

H
h C

Z
�hŒx�
r�hŒx�uh � r�hŒx�'

H
h

(3.1c)

233

234

and235 Z
�hŒx�
@�huh'

u
h C

Z
�hŒx�
r� ŒX�uh � r�hŒx�'

u
h D

Z
�hŒx�
f .Hh; uh;r�hŒx�uh/'

u
h ; (3.2)236

for all 'v
h
2 ShŒx.t/�3, '�

h
2 ShŒx.t/�3, 'H

h
2 ShŒx.t/�, and 'u

h
2 ShŒx.t/� with the surface237

�hŒx.t/� D � ŒXh.�; t /� given by the differential equation238

@tXh.ph; t / D vh
�
Xh.ph; t /; t

�
; ph 2 �

0
h : (3.3)239
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The initial values for the nodal vector x are taken as the positions of the nodes of the triangulation240

of the given initial surface � 0. The initial data for �h, Hh and uh are determined by Lagrange241

interpolation of �0, H 0 and u0, respectively.242

Alternatively, the finite element spatial semi-discretization of the weak coupled parabolic243

system (2.7) and (2.8) determines the same unknown functions, but, instead of (3.2), the244

equations (3.1) and the ODE (3.3) are coupled to245

d
dt

Z
�hŒx�
uh'

u
h C

Z
�hŒx�
r�hŒx�uh � r�hŒx�'

u
h D

Z
�hŒx�

F.uh;r�hŒx�uh/'
u
h (3.4)246

for all 'u
h
2 ShŒx.t/� with @�

h
'u
h
D 0.247

In the above approaches, the discretization of the evolution equations for �, H and u is done248

in the usual way of evolving surface finite elements. The velocity law (2.3) is enforced by a Ritz249

projection to the finite element space on �hŒx�. Note that the finite element functions �h and Hh are250

not the normal vector and the mean curvature of the discrete surface �hŒx.t/�.251

3.3 Matrix–vector formulation252

We collect the nodal values in column vectors v D .vj / 2 R3N , n D .�j / 2 R3N , H D .Hj / 2 RN253

and w D .uj / 2 RN . We define the surface-dependent mass matrix M.x/ and stiffness matrix A.x/254

on the surface determined by the nodal vector x:255

M.x/jij D
Z
�hŒx�

�i Œx��j Œx�;

A.x/jij D
Z
�hŒx�
r�hŒx��i Œx� � r�hŒx��j Œx�;

i; j D 1; : : : ; N;256

with the finite element nodal basis functions �j Œx� 2 ShŒx�. We further let, for an arbitrary dimension257

d (with the identity matrices Id 2 Rd�d ),258

MŒd�.x/ D Id ˝M.x/; AŒd�.x/ D Id ˝ A.x/; KŒd�.x/ D Id ˝
�
M.x/C A.x/

�
:259

When no confusion can arise, we write M.x/ for MŒd�.x/, A.x/ for AŒd�.x/, and K.x/ for KŒd�.x/.260

We define nonlinear functions f.x;n;H;u/ 2 R5N and g.x;n;H;u/ 2 R3N , where261

f.x;n;H;u/ D

0@ f�.x;n;H;u/
fH .x;n;H;u/

fu.x;H;u/

1A262

with f�.x;n;H;u/ 2 R3N , fH .x;n;H;u/ 2 RN and fu.x;n;H;u/ 2 RN . These functions are given263

as follows, with the notations ˛2
h
D jr�hŒx��hj

2 and Vh D �Hh C uh,264

f�.x;n;H;u/jjC.`�1/N D
Z
�hŒx�
˛2h .�h/` �j Œx� �

Z
�hŒx�

�
r�hŒx�uh

�
`
� �j Œx�;

fH .x;n;H;u/jj D �
Z
�hŒx�
˛2h Vh �j Œx�C

Z
�hŒx�
r�hŒx�uh � r�hŒx��j Œx�;

fu.x;H;u/jj D
Z
�hŒx�
f .Hh; uh;r�hŒx�uh/ �j Œx�I

g.x;n;H;u/jjC.`�1/N D
Z
�hŒx�
Vh.�h/` �j Œx�C

Z
�hŒx�
r�hŒx�.Vh.�h/`/ � r�hŒx��j Œx�;

265
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for j D 1; : : : ; N and ` D 1; 2; 3. We abbreviate266

w D

0@ n
H
u

1A 2 R5N :267

Equations (3.1) and (3.2) with (3.3) can then be written in the matrix–vector formulation268

KŒ3�.x/v D g.x;w/;

MŒ5�.x/ PwC AŒ5�.x/w D f.x;w/;
Px D v:

(3.5)269

The system (3.5) for forced mean curvature flow is formally the same as the matrix–vector form of270

the coupled system for non-forced mean curvature flow derived in [27], cf. (3.4)–(3.5) therein, with271

w D .nIHIu/ 2 R5N in the role of u D .nIH/ 2 R4N of [27]. The nonlinearity f.x;w/ is built up272

from integrals of the same type as f.x;u/ in [27], with the only exception of the second term in fH ,273

whose entries contain the tangential gradient of the basis functions and which in total can be written274

as A.x/u. This term stems from the term ��� ŒX�u in the evolution equation for H in Lemma 2.1.275

The function g is defined in the same way as g in [27], just with Vh D �Hh C uh in place of �Hh.276

REMARK 3.1 For the alternative system of equations (3.1) and (3.4) with (3.3) we denote277

z D
�

n
H

�
2 R4N ; f.x; z;u/ D

�
f�.x;n;H;u/
fH .x;n;H;u/

�
2 R4N278

and introduce279

F.x;u/jj D
Z
�hŒx�
F.uh;r�hŒx�uh/ �j Œx�:280

Equations (3.1) and (3.4) with (3.3) can then be written in the following matrix–vector form:281

KŒ3�.x/v D g.x; z;u/;

MŒ4�.x/PzC AŒ4�.x/z D f.x; z;u/;
d
dt

�
M.x/u

�
C A.x/u D F.x;u/;

Px D v:

(3.6)282

3.4 Lifts283

As in [28] and [27, Section 3.4], we compare functions on the exact surface � ŒX.�; t /�with functions284

on the discrete surface �hŒx.t/�, via functions on the interpolated surface �hŒx�.t/�, where x�.t/285

denotes the nodal vector collecting the grid points x�j .t/ D X.pj ; t / on the exact surface, where pj286

are the nodes of the discrete initial triangulation � 0
h

.287

Any finite element function wh on the discrete surface, with nodal values wj , is associated288

with a finite element function bwh on the interpolated surface � �
h

with the exact same nodal values.289

This can be further lifted to a function on the exact surface by using the lift operator l , mapping a290
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function on the interpolated surface � �
h

to a function on the exact surface � , provided that they are291

sufficiently close, see [12, 13].292

Then the composed lift L maps finite element functions on the discrete surface �hŒx.t/� to293

functions on the exact surface � ŒX.�; t /� via the interpolated surface �hŒx�.t/�. This is denoted by294

wLh D .bwh/l :295

4. Convergence of the semi-discretization296

We are now in the position to formulate the first main result of this paper, which yields optimal-297

order error bounds for the finite element semi-discretization (using finite elements of polynomial298

degree k > 2) (3.1), and (3.4) or (3.2), with (3.3) of the system for forced mean curvature equations299

(2.7), and one of the weak formulations (2.8) or (2.9) for the surface PDE, with the ODE (2.1) for300

the positions. We introduce the notation301

xLh .x; t/ D X
L
h .p; t/ 2 �hŒx.t/� for x D X.p; t/ 2 � ŒX.�; t /�:302

Theorem 4.1 For the coupled forced mean curvature flow problem (2.7) and (2.9) with a303

smooth function F , taken together with the velocity equation (2.1), we consider the space304

discretization (3.1)–(3.3) (or equivalently (3.5) in matrix–vector form) with evolving surface finite305

elements of polynomial degree k > 2. Suppose that the problem admits an exact solution306

.X; v; �;H; u/ that is sufficiently regular on the time interval t 2 Œ0; T �, and that the flow mapX.�; t /307

is non-degenerate so that � .t/ D � ŒX.�; t /� is a regular surface on the time interval t 2 Œ0; T �.308

Then, there exists a constant h0 > 0 such that for all mesh sizes h 6 h0 the following error309

bounds for the lifts of the discrete position, velocity, normal vector and mean curvature hold over310

the exact surface � .t/ for 0 6 t 6 T :311

kxLh .�; t / � id� .t/kH1.� .t//3 6 Chk ;312

kvLh .�; t / � v.�; t /kH1.� .t//3 6 Chk ;313

k�Lh .�; t / � �.�; t /kH1.� .t//3 6 Chk ;314

kHL
h .�; t / �H.�; t /kH1.� .t// 6 Chk ;315

kuLh .�; t / � u.�; t /kH1.� .t// 6 Chk ;316
317

and also318

kX lh.�; t / �X.�; t /kH1.�0/3
6 Chk ;319

320

where the constant C is independent of h and t , but depends on bounds of higher derivatives of the321

solution .X; v; �;H; u/ of the forced mean curvature flow and on the length T of the time interval.322

Sufficient regularity assumptions are the following: with bounds that are uniform in t 2 Œ0; T �,323

we assume X.�; t / 2 H kC1.� 0/3 and for w D .�;H; u/ we assume w.�; t /; @�w.�; t / 2324

W kC1;1.� .t//5.325

Under these strong regularity conditions on the solution, we only require local Lipschitz326

continuity of the function F in (1.2). This condition is, of course, not sufficient to ensure the327

existence of even just a weak solution. The point here is that we restrict our attention to cases where328
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a sufficiently regular solution exists, which we can then approximate with optimal order under weak329

conditions on F . The regularity theory of Problem (1.1)–(1.2) is, however, outside the scope of this330

paper.331

The remarks made after the convergence result in [27] apply also here. In particular, it is332

explained that the admissibility of the triangulation over the whole time interval Œ0; T � is preserved333

for sufficiently fine grids, provided the exact surface is sufficiently regular.334

Proof. The proof reduces in essence to the proof of Theorem 4.1 in [27], since the matrix–335

vector formulation (3.5) is of precisely the same form as the matrix–vector formulation of [27],336

formulas (3.4)–(3.5) therein, with the same mass and stiffness matrices and with nonlinear337

functions given as integrals over products of smooth pointwise nonlinearities and finite element338

basis functions (and with w in the role of u of [27]). The proof of the stability bounds of [27,339

Proposition 7.1] uses energy estimates (testing with the time derivative of the error) on the equations340

of the matrix–vector formulation to bound errors in terms of defects in (3.5) in the appropriate341

norms. These stability bounds apply immediately to (3.5) with the same proof, except for one342

subtle point: Because of the term ��� ŒX�u in the evolution equation for H in Lemma 2.1, which343

translates into the second term A.x/u in fH .x;w/ in the matrix–vector formulation, the bound for344

the nonlinearity in part (v) of the proof of Proposition 7.1 in [27] needs to be changed. This is a very345

local modification to the proof. No other part of the stability proof is affected.346

To explain and resolve this local difficulty, we must assume that the reader has acquired some347

familiarity with Section 7 of [27]. We use the same notation ew D w � w� etc. for the error vectors348

and note that ew D .enI eHI eu/ now is in the role of eu D .enI eH/ of [27]. Because of the extra term349

A.x/u in fH .x;w/, the same argument as in part (v) of the proof of Proposition 7.1 in [27] yields350

only a modified bound351

PeTw
�
f.x;w/ � f.x�;w�/

�
6 ckPewkK.x�/

�
kewkK.x�/ C kexkA.x�/

�
;352

whereas in [27] only the weaker norm kPewkM.x�/ appears on the right-hand side. This modified353

estimate is not sufficient for the further course of the proof.354

It can be circumvented as follows. We write the error vector as ew D .enI eHI eu/ and take the355

inner product of PeH with
�
fH .x;w/ � fH .x�;w�/

�
. We note that356

fH .x;w/ DefH .x;w/C A.x/u;357

whereefH is a nonlinearity of the same type as those studied in [27], and so we have the following358

bound as in part (v) of the proof of Proposition 7.1 in [27],359

PeTH
�efH .x;w/ �efH .x�;w�/� 6 ckPewkM.x�/

�
kewkK.x�/ C kexkA.x�/

�
:360

For the solution x.t/ of (3.5) we have361

A.x/u D �M.x/ PuC fu.x;w/362

and for the nodal vector u�.t/ of the Ritz projection of the exact solution u.�; t / and the nodal vector363

x�.t/ of the exact positions we have, with a defect du.t/,364

A.x�/u� D �M.x�/ Pu� C fu.x�;w�/CM.x�/du:365
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So we can write366
367

PeTH
�
A.x/u � A.x�/u�

�
D �PeTHM.x/Peu � PeTH

�
M.x/ �M.x�/

�
u�368

C PeTH
�
fu.x;w/ � fu.x�;w�/

�
� PeTHM.x�/du:369

370

By the same estimates as used repeatedly in the proof of Proposition 7.1 in [27], this yields371

372

PeTH
�
A.x/u � A.x�/u�

�
6 kPeHkM.x/kPeukM.x/ C ckPeHkM.x�/kexkA.x�/373

C ckPeHkM.x�/
�
kewkK.x�/ C kexkA.x�/

�
C kPeHkM.x�/kdukM.x�/:374

375

We now fix a small � > 0 and use the scaled norm, for Pew D .PenI PeHI Peu/,376

kPewk
2
M.x/ D kPenk

2
M.x/ C kPeHk

2
M.x/ C !

2
kPeuk

2
M.x/377

with a large weight !. If ! > 1=.2�/, then we have378

kPeHkM.x/kPeukM.x/ 6 �kPewk
2
M.x/:379

Altogether, this yields the bound380

PeTw
�
f.x;w/ � f.x�;w�/

�
6 �kPewk

2
M.x/ C ckPewkM.x�/

�
kewkK.x�/ C kexkA.x�/ C kdukM.x�/

�
:381

With this bound, the further parts of the stability proof remain unchanged.382

Since the additional terms in (2.7) and (2.9) to those in the evolution equations of pure mean383

curvature flow in [27] do not present additional difficulties in the consistency error analysis, the384

same bounds for the consistency errors in .X; v;H; �; u/ are obtained as for .X; v;H; �/ in [27,385

Proposition 8.1]. Furthermore, the combination of the stability bounds and the consistency error386

bounds to yield optimal-order H 1 error bounds is verbatim the same as in [27, Section 9].387

REMARK 4.2 For the semi-discretization (3.6) a convergence proof can be obtained by combining388

the convergence proofs of our previous works [28] and [27]. The stability of the scheme is obtained389

by combining the results of [28, Proposition 6.1] (in particular part (A)) for the surface PDE, and390

of [27, Proposition 7.1] for the velocity law and for the geometric quantities, and further using391

the same modification for the extra term A.x/u as in the proof above. As this extension does not392

require any new ideas beyond [28] and [27], we do not present the lengthy but straightforward393

details. Since there are no additional difficulties in bounding the consistency errors, together with394

the stability bounds we then obtain the same error bounds as in Theorem 4.1. This is in agreement395

with the results of numerical experiments presented in Section 7.396

5. Linearly implicit full discretization397

For the time discretization of the system of ordinary differential equations of Section 3.3 we use a398

q-step linearly implicit backward difference formula (BDF) with q 6 5. For a step size � > 0, and399

with tn D n� 6 T , let us introduce, for n > q,400

the discrete time derivative Pun D
1

�

qX
jD0

ıjun�j ; and (5.1)401

the extrapolated value eun D q�1X
jD0


jun�1�j ; (5.2)402

403
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where the coefficients are given by ı.�/ D
Pq
jD0 ıj �

j D
Pq

`D1
1
`
.1 � �/` and404


.�/ D
Pq�1
jD0 
j �

j D .1 � .1 � �/q/=�, respectively.405

We determine the approximations xn to x.tn/, vn to v.tn/, and wn to w.tn/ or zn to z.tn/ and un406

to u.tn/ (only if not already collected into wn) by the linearly implicit BDF discretization of both407

systems (3.5) and (3.6).408

For (3.5) we obtain409

K.exn/vn D g.exn;ewn/;
M.exn/ Pwn C A.exn/wn D f.exn;ewn/;

Pxn D vn:
(5.3)410

For (3.6) we obtain411

K.exn/vn D g.exn;ezn;eun/;
M.exn/Pzn C A.exn/zn D f.exn;ezn;eun/;

1

�

qX
jD0

ıjM.exn�j /un�j C A.exn/un D F.exn;eun/;
Pxn D vn:

(5.4)412

The starting values xi and wi , or, in case of (5.4), zi and ui , for i D 0; : : : ; q � 1, are assumed to413

be given. They can be precomputed using either a lower order method with smaller step sizes or an414

implicit Runge–Kutta method.415

The classical BDF method is known to be A.�/-stable for some � > 0 for q 6 6 and to have416

order q; see [24, Chapter V]. This order is retained by the linearly implicit variant using the above417

coefficients 
j ; cf. [1].418

From the vectors xn D .xnj /, vn D .vnj /, and wn D .wnj /withwnj D .�
n
j ;H

n
j ; u

n
j / 2 R3�R�R419

for the first method and zn D .znj / with znj D .�nj ;H
n
j / 2 R3 � R and un D .unj / for the second420

method, we obtain approximations to their respective variables as finite element functions whose421

nodal values are collected in these vectors.422

6. Convergence of the full discretization423

We are now in the position to formulate the second main result of this paper, which yields optimal-424

order error bounds for the combined ESFEM–BDF full discretizations (5.3) of the forced mean425

curvature flow problem (2.7) coupled to the weak form (2.9) of the surface PDE, with (2.1), for426

finite elements of polynomial degree k > 2 and BDF methods of order 2 6 q 6 5.427

Theorem 6.1 Consider the ESFEM–BDF full discretizations (5.3) of the coupled forced mean428

curvature flow problem (2.7) and (2.9), with (2.1), using evolving surface finite elements of429

polynomial degree k > 2 and linearly implicit BDF time discretization of order q with 2 6 q 6 5.430

Suppose that the forced mean curvature flow problem admits an exact solution .X; v; �;H; u/ that is431

sufficiently smooth on the time interval t 2 Œ0; T �, and that the flow map X.�; t / W � 0 ! � .t/ � R3432

is non-degenerate so that � .t/ is a regular surface on the time interval t 2 Œ0; T �. Assume that the433

starting values are sufficiently accurate in the H 1 norm at time ti D i� for i D 0; : : : ; q � 1.434

Then there exist h0 > 0 and �0 > 0 such that for all mesh sizes h 6 h0 and time step sizes435

� 6 �0 satisfying the step size restriction436

� 6 C0h (6.1)437
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(where C0 > 0 can be chosen arbitrarily), the following error bounds for the lifts of the438

discrete position, velocity, normal vector and mean curvature hold over the exact surface � .tn/ D439

� ŒX.�; tn/� at time tn D n� 6 T :440

k.xnh/
L
� id� .tn/kH1.� .tn//3

6 C.hk C �q/;441

k.vnh/
L
� v.�; tn/kH1.� .tn//3

6 C.hk C �q/;442

k.�nh/
L
� �.�; tn/kH1.� .tn//3

6 C.hk C �q/;443

k.Hn
h /
L
�H.�; tn/kH1.� .tn//

6 C.hk C �q/;444

k.unh/
L
� u.�; tn/kH1.� .tn//

6 C.hk C �q/;445
446

and also447

k.Xnh /
l
�X.�; tn/kH1.�0/3

6 C.hk C �q/;448
449

where the constant C is independent of h, � and n with n� 6 T , but depends on bounds of higher450

derivatives of the solution .X; v; �;H; u/ of the forced mean curvature flow problem, on the length451

T of the time interval, and on C0.452

Sufficient regularity assumptions are the following: uniformly in t 2 Œ0; T � and for j D453

1; : : : ; q C 1,454

X.�; t / 2 H kC1.� 0/3; @
j
t X.�; t / 2 H

1.� 0/3;455

v.�; t / 2 H kC1
�
� .t/

�3
; @�

j
v.�; t / 2 H 2

�
� .t/

�3
;456

for w D .�;H; u/; w.�; t /; @�w.�; t / 2 W kC1;1
�
� .t/

�5
; @�

j
w.�; t / 2 H 2

�
� .t/

�5
:457

458

For the starting values, sufficient approximation conditions are as follows: for i D 0; : : : ; q � 1,459

k.xih/
L
� id� .ti /kH1.� .ti //

3 6 C.hk C �q/;460

for w D .�;H; u/; k.wih/
L
� w.�; ti /kH1.� .ti //

5 6 C.hk C �q/;461
462

and in addition, for i D 1; : : : ; q � 1,463

�1=2



1
�

�
X ih �X

i�1
h

�l
�
1

�

�
X.�; ti / �X.�; ti�1/

�



H1.�0/3

6 C.hk C �q/:464

Since (5.3) is the same as the matrix–vector form of mean curvature flow in [27, equation (5.1)]465

(recalling that here w D .nIHIu/ takes the role of u D .nIH/ of [27]) and the only problematic466

additional term in (5.3) is the term A.exn/eun that appears in f.exn;ewn/, the proof of Theorem 6.1467

directly follows from the error analysis presented in [27] together with the modification concerning468

A.x/u given in the proof of Theorem 4.1.469

REMARK 6.2 For the second algorithm (5.4), we expect that a fully discrete error estimate470

can be obtained by combining the stability results for the coupled mean curvature flow,471

[27, Proposition 10.1], with the extension of the stability analysis for the surface PDE [29,472

Proposition 6.1] (via energy estimates obtained by testing with Pen). We note here that this extension,473

in particular the analogous steps to part (iv) in [27, Proposition 10.1], is lengthy and possibly474

nontrivial. Numerical experiments presented in Section 7 illustrate that optimal-order error estimates475

are also observed for the scheme (5.4).476
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7. Numerical experiments477

We present numerical experiments for the forced mean curvature flow, using both (5.3) and (5.4).478

For our numerical experiments we consider the problem coupling forced mean curvature flow (with479

a new parameter " > 0) of the surface � .X.�; t //, together with evolution equations for its normal480

vector � and mean curvature H , where the forcing is given through the solution u of a reaction–481

diffusion problem on the surface:482

@�u D � u.r� ŒX� � v/C�� ŒX�uC f .u;r� ŒX�u/C %1;

v D � "H� C g
�
u/� C %2;

@�� D "�� ŒX�� C "jAj
2� � r� ŒX�.g.u//C %3;

@�H D "�� ŒX�H C "jAj
2H ��� ŒX�.g.u// � jAj

2g.u/C %4;

@tX D v;

(7.1)483

where the inhomogeneities %i are scalar or vector valued functions on R3 � Œ0; T �, to be specified484

later on.485

We used this problem to perform:486

� A convergence order experiment for the algorithm (5.3), in order to illustrate our theoretical487

results of Theorem 4.1 and 6.1.488

� A convergence order experiment for algorithm (5.4), illustrating Remark 4.2 and 6.2.489

� An experiment, using algorithm (5.3), for a tumour growth model from [2, Section 5], where one490

component of a reaction–diffusion surface PDE system forces the mean curvature flow motion of491

the surface. This experiment allows a direct comparison on the same problem with other methods492

published in the literature.493

All our numerical experiments use quadratic evolving surface finite elements, and linearly implicit494

BDF methods. The numerical computations were carried out in Matlab. The initial meshes for all495

surfaces were generated using DistMesh [33], without taking advantage of the symmetries of the496

surfaces.497

7.1 Convergence experiments498

In order to illustrate the convergence results of Theorem 4.1 and 6.1, we have computed the errors499

between the numerical and exact solutions of the system (7.1), where the forcing is set to be g.u/ D500

u, and � D 1. The reaction term in the PDE is F.u;r� ŒX�u/ D u2. The inhomogeneities %i are501

chosen such that the exact solution is X.q; t/ D R.t/q, with q on the initial surface �0, the sphere502

with radius R0, and u.x; t/ D e�tx1x2, for all x 2 � ŒX� and 0 6 t 6 T . The function R satisfies503

the logistic differential equation:504

dR.t/
dt
D

�
1 �

R.t/

R1

�
R.t/; t 2 Œ0; T �;505

R.0/ D R0;506
507

with R1 > R0, i.e., the exact evolving surface � ŒX.�; t /� is a sphere with radius R.t/ D508

R0R1
�
R0.1 � e

�t /CR1e
�t
��1.509
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FIG. 1. Temporal convergence of the algorithm (5.3) for forced MCF with g.u/ D u, using BDF2/quadratic ESFEM
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FIG. 2. Spatial convergence of the algorithm (5.3) for forced MCF with g.u/ D u, using BDF2/quadratic ESFEM

Using the algorithm in (5.3) with 2-step BDF method and quadratic evolving surface FEM, we510

computed approximations to forced mean curvature flow, using R0 D 1 and R1 D 2, until time511

T D 1. For our computations we used a sequence of time step sizes �k D �k�1=2 with �0 D 0:2,512

and a sequence of initial meshes of mesh widths hk � 2�1=2hk�1 with h0 � 0:5. The numerical513

experiments suggest that the step size restriction (6.1) is not required in practice.514

In Figure 1 and 2 we report the errors between the exact and both numerical solutions for all515

four variables, i.e., the surface error, the errors in the dynamic variables � and H , and the error516
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FIG. 3. Temporal convergence of the algorithm (5.4) for forced MCF with g.u/ D u, using BDF2/quadratic ESFEM

in the PDE variable u. The logarithmic plots show the L1.H 1/ norm errors against the time step517

size � in Figure 1, and against the mesh width h in Figure 2. The lines marked with different518

symbols correspond to different mesh refinements and to different time step sizes in Figure 1 and 2,519

respectively.520

In Figure 1 we can observe two regions: a region where the temporal discretization error521

dominates, matching to the O.�2/ order of convergence of our theoretical results, and a region,522

with small time step sizes, where the spatial discretization error dominates (the error curves flatten523

out). For Figure 2, the same description applies, but with reversed roles.524

Both the temporal and spatial convergence, as shown by Figures 1 and 2, respectively, are in525

agreement with the theoretical convergence results of Theorem 4.1 and 6.1 (note the reference lines).526

We have performed the same convergence experiments using algorithm (5.4), which, in view527

of Remarks 4.2 and 6.2, and the stability and convergence results of previous works [27–29, 32],528

should also have the same convergence properties as the algorithm (5.4). As Figures 3 and 4 (created529

analogously as Figure 1 and 2) illustrate, this expectation appears to be fulfilled.530

We have obtained similar convergence plots for the non-linear forcing term g.u/ D 1
2
u2 for531

both algorithms.532

7.2 Tumour growth533

We performed numerical experiments, using (5.3), on a well-known model for forced mean534

curvature flow from [2, Section 5]: The problem (7.1), with vector valued unknown u D .u1; u2/535

and with a small parameter " D 0:01, models solid tumour growth, for further details we refer536

to [7–9] and [2]. Our results can be compared to those in these references, in particularly with those537

in [2].538

The surface PDE system for u D .u1; u2/ describes the activator–depleted kinetics, and has539

diffusivity constants 1 and d D 10 for u1 and u2, respectively. The reaction term is given by, with540
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FIG. 4. Spatial convergence of the algorithm (5.4) for forced MCF with g.u/ D u, using BDF2/quadratic ESFEM


 > 0,541

F.u/ D F.u1; u2/ D

�


�
a � u1 C u

2
1u2

�


�
b � u21u2

� �
;542

while in the velocity law the non-linearity is given by543

g.u/ D g.u1; u2/ D ı u1:544

The parameters are chosen exactly as in [2, Table 5]: d D 10, a D 0:1, b D 0:9, ı D 0:1, and545

� D 0:01. The parameter 
 will be varied for different experiments.546

The initial data for all of the presented experiments are obtained (exactly as in [2, Section 4.1.1547

and Figure 8]) by integrating the reaction–diffusion system on the fixed unit sphere over the time548

interval Œ0; 5�, with small random perturbations of the steady state u1 D aCb and u2 D b=.aCb/2549

as initial data. Further initial values (for i D 1; : : : ; q�1) for high-order BDF methods are computed550

using a cascade of steps performed by the corresponding lower order methods.551

To mitigate the stiffness of the non-linear term, the linear part of F.u/ is handled fully implicitly,552

while the non-linear parts of F , and the velocity law as well, are treated linearly implicitly using the553

extrapolation (5.2).554

In Figure 5 and 6 we report on the evolution of the surface (and the approximated mean curvature555

and normal vector) and the component u1 for parameters 
 D 30 and 
 D 300, respectively, at556

different times over the time interval Œ5; 8�. In these plots the linear interpolation of the computed557

quadratic surface is plotted (since Matlab can only visualise polygonal objects). Figure 5 and 6558

we present the surface evolution and the component u1 of the surface PDE system (left-hand side559

columns) and the computed mean curvature Hh and normal vector �h (right-hand side columns)560

at times t D 5; 6; 7; 8 (the rows from top to bottom), on a mesh with 3882 nodes and time step561

size � D 0:0015625. In particular the top rows show the initial data where the surface evolution is562

started. The obtained results for the surface evolution and the reaction–diffusion PDE system (left563
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FIG. 5. Evolution of the solution (u1), normal vector and mean curvature for tumour growth model with 
 D 30 at time
t D 5; 6; 7; 8; dof 3882
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FIG. 6. Evolution of the solution (u1), normal vector and mean curvature for tumour growth model with 
 D 300 at time
t D 5; 6; 7; 8; dof 3882
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columns) match nicely (note the random effects in generating initial data) to previously reported564

results.565

In spite of the smoothing effect of the mean curvature flow, for some more complicated examples566

it would be beneficial to use an algorithm which allows the tangential motion of the surface nodes,567

for example based on the DeTurck trick [19], or on the velocity law v � � D V , e.g., [4, 5], or on568

ALE techniques [20, 26, 30]. However, in our experiments – both here and in [27] – this was not569

found necessary.570

Acknowledgement The work of Balázs Kovács and Christian Lubich is supported by Deutsche571

Forschungsgemeinschaft, SFB 1173. The work of Buyang Li is partially supported by an internal572

grant (Project ZZKQ) of The Hong Kong Polytechnic University.573

References574

1. Akrivis, G. & and Lubich, C., Fully implicit, linearly implicit and implicit–explicit backward difference575

formulae for quasi-linear parabolic equations. Numer. Math. 131 (2015), 713–735. Zbl1334.65124576

MR3422451577

2. Barreira, R., Elliott, C. M., & Madzvamuse, A., The surface finite element method for pattern formation578

on evolving biological surfaces. J. Math. Biol. 63 (2011), 1095–1119. Zbl1234.92007 MR2855805579

3. Barrett, J., Deckelnick, K. & Styles, V., Numerical analysis for a system coupling curve evolution to580

reaction diffusion on the curve. SIAM J. Numer. Anal. 55 (2017), 1080–1100. Zbl1365.65218581

4. Barrett, J., Garcke, H., & Nürnberg, R., On the variational approximation of combined second and fourth582

order geometric evolution equations. SIAM J. Sci. Comput. 29 (2007), 1006–1041. Zbl1148.65074583

MR2318696584

5. Barrett, J., Garcke, H., & Nürnberg, R., On the parametric finite element approximation of evolving585

hypersurfaces in R3. J. Comput. Phys. 227 (2008), 4281–4307. Zbl1145.65068 MR3639582586

6. Barrett, J., Garcke, H., & Nürnberg, R., Parametric finite element approximations of curvature driven587

interface evolutions. Handbook of Numerical Analysis 21 (2020), 275–423. Zbl07224912588

7. Chaplain, M., Ganesh, M., & Graham, I., Spatio-temporal pattern formation on spherical surfaces:589

Numerical simulation and application to solid tumour growth. J. Math. Biol. 42 (2001), 387–423.590

Zbl0988.92003 MR1842835591

8. Crampin, E. J., Gaffney, E. A. & Maini, P. K., Reaction and diffusion on growing domains: Scenarios for592

robust pattern formation. Bull. Math. Biol. 61 (1999), 1093–1120. Zbl1323.92028593

9. Crampin, E. J., Gaffney, E. A. & Maini, P. K., Mode-doubling and tripling in reaction-diffusion patterns594

on growing domains: A piecewise linear model. J. Math. Biol. 44 (2002), 107–128. Zbl1016.35035595

MR1889906596

10. Deckelnick, K., Dziuk, G., & Elliott, C. M., Computation of geometric partial differential equations and597

mean curvature flow. Acta Numerica 14 (2005), 139–232. Zbl1113.65097 MR2168343598

11. Deckelnick, K., Elliott, C., & Styles, V., Numerical diffusion-induced grain boundary motion. Interfaces599

Free Bound. 3 (2001), 393–414. Zbl0991.35095 MR1869586600

12. Demlow, A., Higher–order finite element methods and pointwise error estimates for elliptic problems on601

surfaces. SIAM J. Numer. Anal. 47 (2009), 805–807. Zbl1195.65168 MR2485433602

13. Dziuk, G., Finite elements for the Beltrami operator on arbitrary surfaces. Partial Differential Equations603

and Calculus of Variations, Lecture Notes in Math., 1357. Springer, Berlin, pages 142–155, 1988.604

Zbl0663.65114 MR0976234605

14. Dziuk, G. An algorithm for evolutionary surfaces. Numer. Math. 58 (1990), 603–611, 1990. Zbl0714.606

65092 MR1083523607

http://www.emis.de/MATH-item?1334.65124
http://www.ams.org/mathscinet-getitem?mr=3422451
http://www.emis.de/MATH-item?1234.92007
http://www.ams.org/mathscinet-getitem?mr=2855805
http://www.emis.de/MATH-item?1365.65218
http://www.emis.de/MATH-item?1148.65074
http://www.ams.org/mathscinet-getitem?mr=2318696
http://www.emis.de/MATH-item?1145.65068
http://www.ams.org/mathscinet-getitem?mr=3639582
http://www.emis.de/MATH-item?07224912
http://www.emis.de/MATH-item?0988.92003
http://www.ams.org/mathscinet-getitem?mr=1842835
http://www.emis.de/MATH-item?1323.92028
http://www.emis.de/MATH-item?1016.35035
http://www.ams.org/mathscinet-getitem?mr=1889906
http://www.emis.de/MATH-item?1113.65097
http://www.ams.org/mathscinet-getitem?mr=2168343
http://www.emis.de/MATH-item?0991.35095
http://www.ams.org/mathscinet-getitem?mr=1869586
http://www.emis.de/MATH-item?1195.65168
http://www.ams.org/mathscinet-getitem?mr=2485433
http://www.emis.de/MATH-item?0663.65114
http://www.ams.org/mathscinet-getitem?mr=0976234
http://www.emis.de/MATH-item?0714.65092
http://www.emis.de/MATH-item?0714.65092
http://www.emis.de/MATH-item?0714.65092
http://www.ams.org/mathscinet-getitem?mr=1083523
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