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Abstract. This article is concerned with the construction and analysis of new time dis-
cretizations for the KdV equation on a torus for low-regularity solutions below H'. New
harmonic analysis tools, including averaging approximations to the exponential phase func-
tions and trilinear estimates of the KdV operator, are established for the construction and
analysis of time discretizations with higher convergence orders under low-regularity condi-
tions. In addition, new perturbation techniques are introduced to establish stability estimates
of time discretizations under low-regularity conditions without using filters when the energy
techniques fail. The proposed method is proved to be convergent with order v (up to a
logarithmic factor) in L? under the regularity condition u € C([0,T]; H) for v € (0, 1].
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The Korteweg—De Vries (KdV) equation is a nonlinear dispersive partial differential equa-

tion that describes many physical phenomena, including shallow water waves, ion acoustic
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waves in plasmas, acoustic waves on crystal lattices, and so on. The development of compu-
tational methods for the KAV equation has attracted much attention.

It is known that the KdV equation, either on a torus or on the whole space, is globally well-
posed in H?® with s > 0, i.e., there exists a unique solution in C'([0,T]; H®) for any initial value
in H?; see [1,10,12,33]. However, classical time discretizations for the KdV equation, including
finite difference methods, splitting methods, discontinuous Galerkin methods, and classical
exponential integrators, generally require much higher regularity for the numerical solutions
to converge with certain orders, i.e., these methods typically require v € C([0,T]; H3) and
u € C([0,T); H®) to have first- and second-order convergence in L?, respectively. The error
estimates under these regularity conditions (or stronger conditions) for the above-mentioned
classical time discretizations have been established, for example, in [7-9,16,17,21,25,27,32].
Such regularity conditions are not mere technical conditions required in the error analysis.
When the solution of the KdV equation does not have the required regularity, its numerical
approximations by the classical time discretizations generally have reduced order of conver-
gence.

In practice, the solutions of the KdV equation may be rough due to measurement or
randomness of the data [2,5]. To address the numerical approximation to nonsmooth so-
lutions, some low-regularity exponential integrators based on resonance analysis were re-
cently developed to relax the regularity requirement in solving nonlinear dispersive equations.
Such low-regularity integrators based on resonance analysis were initially introduced by Hof-
manova & Schratz [0] and Ostermann & Schratz [18,20] for solving the KdV equation and
the nonlinear Schrodinger (NLS) equation, respectively. In particular, for the KdV equa-
tion, the low-regularity integrator proposed in [6] can have first-order convergence in H'! for
u € C([0,T]; H®). Wu & Zhao [30] showed that another method outlined in [6] can have
second-order convergence in H? for u € C([0,T]; H¥**) with v > 0. In a more recent arti-
cle, Wu & Zhao [31] proposed two embedded low-regularity integrators for the KdV equation,
which have first-order convergence in H” for v € C([0, T|; H'*!) with v > % and second-order
convergence H” for u € C([0,T]; H'*3) with v > 0, respectively. The minimal regularity re-
quirement for the convergence analysis of these unfiltered algorithms for the KdV equation is
u € C([0,T); HY) for v > 3/2. This condition naturally arises in the energy type of stability
analysis.

The convergence of a fully discrete finite difference method was proved in [1] for u €
C([0,T); HY) with v > 3/4 under the CFL condition At < Ax?, where At and Az denote
the stepsize and mesh size in the temporal and spatial discretizations, respectively. The CFL
condition in a finite difference method plays a similar role as the filters in a spectral method,
i.e., to improve the stability of the method under low-regularity conditions. In the case of
~v = 3/4, the method is proved convergent with order 1/42. Since the convergence analysis
relies on the smoothing effect on R, the proof cannot be extended to the torus T.

Similarly, the development of low-regularity integrators for the NLS equations can be found
in [13,14,23,29]. The minimal regularity requirement for the convergence analysis of the
unfiltered algorithms for the NLS equation is u € C([0,T]; HY) for v > d/2, where d is the
dimension of space. This condition also arises in the energy stability analysis, which require
using the Kato-Ponce inequality || fg[| g+ < || ]|+ || 9]l g~ with v > . The question of whether
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any convergence rates can be achieved for rough solutions u € C([0, T]; H”), with an arbitrary
small v > 0, remained open for a long time for both the KdV equation and the NLS equation.

The convergence of numerical solutions for rough solutions in C([0,T]; HY) with an ar-
bitrary small v > 0 was addressed by Ostermann, Rousset & Schratz [19] and Rousset &
Schratz [21] for the NLS and KdV equations, respectively, by introducing and utilizing the
discrete Bourgain spaces. In particular, for the KdV equation, Rousset & Schratz [24] pro-
posed three filtered time discretizations for the KdV equation on the torus T (which cut
numerical solutions to frequencies below 7'_%, where 7 denotes the step size of time dis-
cretization), including a filtered exponential integrator, a filtered Lie splitting method, and a
filtered version of the resonance based scheme, and proved the convergence of order 3 for the
three methods under the regularity condition v € C([0,7T]; H”) with v € (0, 3]. The conver-
gence analysis in [24] is based on the combination of filters in the algorithms and the discrete
Bourgain spaces in the analysis. Since the filters in these algorithms truncate the numerical
solutions to frequencies below 7'_%, and such frequency-truncated functions approximate the
original functions in H”Y with an error bound of O(T%), it follows that the convergence of such
filtered algorithms is limited to order 3 for the KdV equation under the regularity condition
ue C([0,T]; HY).

This article is concerned with the construction and analysis of new time discretizations for
the KdV equation on a torus,

duult, x) + Pult, z) — %(%(u(t,x)Q), reT=[2r and e T,

u(0, ) = u’(x), zeT,

for low-regularity solutions below H', i.e., the initial value u° is in H” with v € (0, 1] and
therefore the solution w is in C([0,T]; HY) with v € (0,1]. One of the main difficulties in the
construction and analysis of low-regularity integrators for nonlinear dispersive equations is the
approximation of exponential functions with imaginary powers, say e’*?, based on a certain
decomposition of the phase function ¢ = ¢1 + ¢2. The approximation of such exponential
functions with imaginary powers were typically based on the following techniques:

€0 = ¢ L O(sldal) or %0 = €0 e 14 O(min{slé], sléal}),  (12)

see [0,13,14,23,29,31] and the references therein. The remainders in these types of approxi-
mations are still too large to obtain error estimates for rough solutions u € C([0, T]; H”) with
v € (0,1]. In this article we introduce a new averaging approximation technique:

olsloal}) . (13)

where M, (f) denotes the average of a function f in the interval [0, 7]; see Lemma 3.2. The
remainder in this approximation is smaller than the remainders in (1.2). In particular, the
additional upper bounds |¢1/¢p2| and |pa/¢1| for the remainder are important for us to obtain

)

" (eis(¢1+¢2)) M. (ez’sm)MT (eis¢2) + 0 <min {‘z;

P2
b1

error estimates in the rough case by using harmonic analysis techniques.

Moreover, it is known that the combination of filters and discrete Bourgain spaces in [21]
has played an important role in establishing the stability of numerical approximations to
rough solutions. In this article, we develop new techniques which can be used to establish
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stability estimates under such low-regularity conditions when the energy techniques fail and
filters are not used. More specifically, instead of using energy techniques locally in time, we
define a temporally continuous function ¥ '(t) which equals the numerical solution v™ at the
discrete time levels t,, n = 0,1,..., L, and satisfies an integral formulation of the continuous
KdV equation globally in time up to a perturbation term, i.e.,

t
Y () = o0 + % / 0, (e%/(s)) ds+R(1) for 1€ (0.7],
0

where the perturbation term R(t) can be defined piecewisely on each subinterval (¢, t,+1]
according to the definition of the time discretization on this subinterval. The specific form of
the perturbation term for the low-regularity integrator constructed in this article is given in
(5.7). In the absence of the perturbation term R(t), the solution of the integral equation above
coincides with the solution to the KdV equation. The continuous formulation of the numerical
scheme allows us to apply many harmonic analysis techniques at the continuous level, such as
low- and high-frequency decomposition in estimating the stability of solutions with respect to
perturbation. These techniques can significantly weaken the regularity conditions compared
with the energy approach of stability estimates used in numerical analysis.

In addition, we establish some new harmonic analysis tools, including new frequency decom-
position techniques (Lemma 3.3) and new trilinear estimates of the KdV operator (Propo-
sition 3.4), which can be used to construct and analyze low-regularity integrators without
using filters (that cut numerical solutions to frequencies below 77%) and therefore improves
the convergence order from % to vy (up to a logarithmic factor) under the regularity condition
u e C([0,T); H") for v € (0,1].

For the convenience of readers, we present the numerical scheme and the main theoretical
result below. Let t, = nT, n = 0,1,...,L = T/7, be a partition of the time interval [0, T
with stepsize 7 = T'/L. The low-regularity integrator constructed in this article for the KdV
equation (11.1) reads: For given u™ € H?, find u"*! € H" by

Wt =e TRy 4 Fu"]+ H[u"] for n=0,1...,L—1, (1.4)
where
Flu) = gBl(e 70, )] — ge 2 Rl(0; 1)),
H) = 3P [ (%0, ) o Fla]
g0 T 0 ) B[]
_ 5%6(377)838;1 [(e*safaglu")ﬂ :;
_ %e(s—ﬂag o2 [(e—(s—f)ag O2F[u"]) (e 8;1un):| :;

in which Py and P are projection operators defined by Pyf = % Jp fdz and Pf = f —
% fT f dz, respectively; see Section 2.3 for more details. The convergence of the numerical
solution to the solution of the KdV equation is guaranteed by the following theorem.
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Theorem 1.1. Let v € (0,1] and u € C([0,T]; H?) with initial value satisfying [ u® dz = 0.
Then there ezist positive constants 19 € (0, %] and C such that for 7 € (0,79 the numerical
solution given by (1.4) has the following error bound:

D) 2l
max [[u(tn, ) = u"llz2 < O n(1/7) (15)

where the constants 1o and C depend only on ||u°||g~, v and T.

Remark 1.1. Without loss of generality, we can assume that fT wdzr =0, ie., Pou’ =0
and Pu® = u°, where

1
Pou’ = o / wWWdr and Pu’ =’ — Pyu’
™ JT

are the zero-mode and nonzero-mode projections of u°, respectively. Otherwise we can con-
sider the function

a(t, z) = u(t,z — t Pou®) — Pou®,
which satisfies the KAV equation in (11.1) with initial value @° = Pu", which satisfies
Jp@0dz = 0.

The rest of this article is organized as follows. Some basic notations and preliminary results
are presented in Section 2. Several new tools for the construction and analysis of low-regularity
integrators are presented in Section 3, including a logarithmically growing trilinear estimate
on L2, the averaging approximation of exponential functions with imaginary powers, and new
trilinear estimates associated to the KdV operator. The construction of the low-regularity
integrator is presented in Section 4, and the reduction of the proposed numerical scheme to a
continuously formulated perturbed KdV equation is presented in Section 5. The consistency
estimates for the local and global errors are presented in Sections 6 and 7, respectively. The
stability estimates using low- and high-frequency decompositions are presented in Section 8.
The error estimates (i.e., proof of Theorem 1.1), which combine the consistency and stability
estimates, are presented in Section 9. Numerical experiments and conclusions are presented
in Sections 10 and 11, respectively.

2. Notations and preliminary results

In this section we present the basic notations to be used in this article, as well as some
preliminary results which were known in the literature and are frequently used in this article.

2.1. Baisc notations

For convenience, we adopt the following notations which are widely used in harmonic
analysis and partial differential equations:

(i) For a function f(¢,z) which depends on ¢ and z, we simply denote f(t) = f(¢,-).
(ii) We denote (k) = (1 + \k\Q)% for k € Z.
(iii) We denote by C' a generic positive constant which may be different at different occur-
rences, possibly depending on ||ul|¢([o,7};5~) and T, but is independent of the stepsize
7 and time level n.



(iv) We denote by A < B or B 2 A the statement “A < CB for some constant C' > 0.
(v) We denote by A ~ B the statement “C~'B < A < CB for some constant C' > 07”.
Namely, A ~ B is equivalently to A < B < A.
(vi) We denote by A < B or B >> A the statement A < C~1B for some sufficiently large
constant C' (which is independent of 7 and n).
(vii) The notation a+ stands for a + € with an arbitrary small ¢ > 0, and a— stands for
a — € with an arbitrary small € > 0.

With the notations above, we often decompose a subset E C Z? = {(k1, ko) : k1,ko € Z}
into two parts, i.e., F = Fy U E», with

Ey={(k1,k2) € E: k1| <|k2|} and Ep ={(ki,k2) € E: k1| 2 |kal}-
This means that we consider the decomposition with
FE, = {(kl,kg) S ZQ : |k‘1| < C’kg’} and Fy = {(k‘l,kz) € Z2 : ‘kl‘ > C|k?2|},

where ¢ is some sufficiently small constant (independent of 7 and n) which can satisfy the
requirement in our analysis.

2.2. Fourier transform

The inner product and norm of L?(T) is defined by

<ﬁm—Aﬂ@%ﬂM and |l = VT,

The Fourier transform of a function f € L?(T) is defined by
1 .
AN = 5= [ @

For the simplicity of notation, we also denote f, = Fj [f] and f = ]:kfl[fk]. The following
standard properties of the Fourier transform are well known:

f(z) = Z fretke (Fourier series expansion)
keZ
1
£l z2(ry = \/%( Z ]ka2> ? (Parseval’s identity)
keZ
(f.g)=2m Z frin (Plancherel’s identity)
keZ
Frlfg] = Z f Ty Oko (Conversion of products to convolutions)
k1+ko=k

The Sobolev space H*(T), with s € R, consists of generalized functions f = > fre™** such
keZ
that || f||ms < oo, where

Il = VR ( 0+ LA

kEZ



The operator J* = (1 — 92)2 : H*(T) — H®*~5(T), with s, s € R, is defined as

Jf =Y (U P2 fe™ V f e HO(T),
keZ
which satisfies that || f| gscr) = [[J°fll2()-

2.3. Projection operators
For any real number N > 0, we define the Littlewood-Paley projections P<y : L*(T) —
L?(T) and P : L*(T) — L*(T) as
Penf = Fp  (LgenTrlf]) = Z fre®e,

[k|<N

Ponf = -7:1;1(1|k|>N]:k[f]) = Z fkeikx‘
|k|>N

We denote Py = P<p and P = P+, which are called zero-mode and nonzero-mode projections,
respectively, satisfying the following identities:

1 1
POf:Qﬂ/dex and Pf(x):f(x)—%[rfdx.

The operator 9, : L?(T) — H'(T) is defined by
B (ik) ™' fi, for k #0,
0 for k= 0.

This operator has a natural extension 9, ' : H*(T) — H**1(T) for all s € R. Moreover, the
following relation holds:

;L0 f = 0,0, f = Pf.

For functions restricted to low frequency or high frequency, the following Bernstein’s in-
equalities hold for any real numbers s > sg:

IP<n fllas S NPy flluso ¥ fe€ H™(T),

) (2.1)
IBsn fllro S N *[Bs fllge v f € H(T).

2.4. The Kato—Ponce inequality

The Kato—Ponce inequality will be frequently used in this paper. The result was originally
proved in [ 1] and then extended to the endpoint case in [3, 1 5] recently.

Lemma 2.1 (Kato—Ponce inequality). For s > 0, 1 < p < 00, 1 < p1,p3 < 00 and 1 <
P2, pa < 00 satisfying % = p% + p% and 119 = p%) + p%, the following inequality holds:

17Dl o < CUT Fllzorllgllzes + 17°gllLes || fllLrs),

where the constant C > 0 depends on s, p, p1,p2, ps3,pa. If s > % then the following inequality
holds:

17Dl o < CIT* Flleell T g o,
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where the constant C > 0 depends on s and p.

Remark 2.1. The Kato—Ponce inequality was originally established in whole space R, but it
also holds for periodic functions on T. This can be proved by using Stein’s extension operator
E : LY(T) — LY(R), which is bounded from W#P(T) to W*P(R) for all s > 0 and 1 < p < oc.
Therefore,
HJS(f9>HLmr) ~ HngWW(T) S|Ef EgHWsm(R)

S CUIESlwser @) Egll Lrz®) + | Egllwses @) | Ef || Lraw))

S C(f llwsormyllgll Loz cry + Ngllwses L f | Leary)

S CUI Fllzor myllgll ez ey + 1729l Les (1 1] Loary ) -

In addition to the Kato—Ponce inequality, we will also use the following basic inequality
(as a result of the Holder and Sobolev embedding inequalities):

If9llzz S 1 fallgll oy for fe HY and g € H*™), with ~ € [0,1], (2.2)

where

%+ when v = 0,

21—~ when~y€(0,3),

(2.3)

Y

71}

l\.')\r—l

0+ when v =

B[

0 when v € (

2.5. Integration by parts

The following integration-by-parts formula is closely related to the nonlinearity of the KdV
equation, and therefore will be frequently used in this paper, for example, in the construction
of the numerical scheme in (4.4)—(4.6) and (4.12), and the analysis of consistency errors in
(7.1) and (7.18). A proof of this formula can be found in [31].

Lemma 2.2 (Integration by parts). Let s > so > 0 and consider the space-time functions
f(t,x) and g(t,z) satisfying Pof(t) = Pog(t) = 0 for t € [so,s]. Then the following formula
holds:

/ o (1 (1) - () at

S0

3 td?ra (_tagaa?lf(t) tasa g( //f t) dadt
t 80 S0
_% / o (RO (1) - TR0 (1) + RO (1) - R0 g (1)) .
S0

3. New tools for the construction of low-regularity integrators

In this section, we establish several new technical tools which can be used to construct and
analyze low-regularity integrators with improved convergence orders. These technical tools
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are used in the following sections in estimating the local truncation errors and establishing
the stability estimates.

3.1. A logarithmically growing trilinear estimate on L?

The following trilinear estimate will be used in the analysis of the local truncation error
2 in Proposition 6.1; see (6.5) and (6.9) for the details.

Lemma 3.1. For any f,g,h € L? we define M(f,g,h) to be a function determined by its
Fourier coefficients

]:k[M(fvg7h)] = Z m(k7kluk27k3)fk1 gkz ;lk37
ki+ko+ks=k
where m is a multiplier satisfying the following estimate (for some constants 6y > 0 and
A>2):
m(k, k1, ko, k)| < AP[(k) 2 0(ks) 270 + (ko) 2 % (ks) "2 %] VO E[0,60.  (3.1)

Then the multilinear operator M : L?> x L? x L? — L? is well defined and satisfies the following
estimate:

IM(f, 9, W)l e2 S (I A) ([ fllz2llgll 2 [ 2ll 22

Proof. By the duality between L? and itself, it suffices to prove [(M(f,g,h), )| < InA for
any functions f, g, h,p € L? such that | f|lz2 = [|l9llz2 = |Rllz2 = |l¢llz2 = 1. By the Parseval
identity and (3.1), the following result holds:

|< (faga Z]:k f?.g? ] [30]

kEZ

D ACL(R) 50 (heg) ™50 o (o) ™20 (ka) )| Fry G | s || -

kEZ k1+ko+ks=k

(3.2)

Let f, §, h and @ be the functions with the nonnegative Fourier coefficients \fk|, |gK|, ]ﬁk|
and ||, respectively. These functions satisfy that
[fllzz = lgllzz = Rll2 = [[8llze = [ fllzz = llgllzz = [|Rllz2 = llllz2 = 1.

0 1
2

If we define (D, 6) to be the linear operator associated to the multiplier i (k, ) = Az (k) =277,

Namely,
Fili(D, 0)v] = Az (k) =2 "t
Then (3.2) can be written as

(M (f,0,0), 00 S D mlk, 0)iin(ks, 0)] fi |Gk, | s || 2]

k€Z k1+ko+ks=k

+Y D ks, 0)iin(ks, 0)] fi |19k | Pks || 2%

kEZ k1+ko+k3=k
= (fgm(D,0)h,m(D,0)@) + (f (D, 0)3][m(D, )h], &)
S A 2131 22 177D, 0| oo [l D, 0) G| oo
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+ 1 Fll 2 17D, 0)g || oo 17 (D, O) | oo |2 2- (3.3)
It remains to prove the following result:
(D, 03| + [[72(D, )k Lo + [[17(D, )@l < Vin A, (3.4)

This can be proved as follows:

(D, )3l = || S A% (1) 757 |gile™

kEZ L
1 1
SAT(D R (X Iael?)”
keZ kEZ
0
S ol (3.5)

If ﬁ < 6y then we can choose § = 1/1In A so that As <1 and = vIn A. In this case,

inequality (3.5) reduces to

1

Vo
[7i(D, 0)g o < Vin A

If ﬁ > 0y then 2 < A < e'/% and therefore A ~ 2, which implies that vIn A ~ 1. In this

case, we can choose 6 = 6 so that inequality (3.5) implies that

|(D, 0)§|l L <1< VInA.
This proves (3.4) and therefore completes the proof of Lemma 3.1. ]

3.2. Averaging approximation of exponential functions

In this subsection, we establish some average estimates which play important roles in the
analysis of the local truncation errors. We define the average and oscillation of a function f
in the interval [0, 7] by

1 T
Mm(5) =1 [ s
T Jo
and
osc([0,7]) += t1) — f(t2)],
1/ lose(to,7]) (o ax | f(t1) = f(t2)]
respectively. Then the following basic inequality holds and will be frequently used:
‘Mr(fg) - MT(f>MT(g)‘ < Hf”osc([l)n']) HgHOSC([O,T])- (3'6)
Indeed,

M, (fg) — My (f)Mo(g)] = | - / " feds— L / "ML (f)g ds
T Jo T Jo
1 T

= [ r=angas

T

=2 [ (=) o - M) ds
0

-
< HfHosc([O,T])HgHosc([O,T])' (37)
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In the following lemma we prove that, if f and g are exponential functions with imaginary

powers, then much better estimates can be obtained.

Lemma 3.2. Let o, € R. If o, # 0 and s € [0, 7], then

4 ,T|ar,frm}-

9

| M, (e a+5)) MT(eisa)MT(eisB)} < min{ a

If a + 3 #0, then
‘M ( is O‘+ﬁ)) MT(eiSO‘)MT(eiSB” <7t YHa+p7h
Proof. Since [[€**||osc(0,7)) < min{1, 7|}, (3.6) implies that
| M, (%)) — M. (™) M, (7| < min{r]|al, T[]}
Furthermore, similar as (3.7), we have

MT (eis(a+ﬁ)) - M’T‘ (eisa)MT (eisﬁ)

1 (7 . . .
I s isa isf
_T/O (e — M, (¢*)) ¢i*8 ds
1 / (e — M, (%)) (¢ — 1) ds
T Jo
:1/ el (eisﬁ — 1) ds — 1/ M. (eiso‘) (eis’g — 1) ds
T Jo T Jo
17 e 17 o
= /0 L0, (e") (7 1) ds — T /0 M, () (e — 1) ds.

Then, using integration by parts, we obtain

’M is a-‘r,@’)) M, (eisa)M (eisﬁ)}

‘ie”a (eiT’B . / 6 zsa-i—zs,@ ds ( zsa) / (eisﬁ _ 1) ds
0

1T

” 275_1}_1_‘5‘_1_‘]\4(2504 / ‘ezsﬁ 1‘(18

By substltutmg the following estimates into (3.12):
1

7lal’

L‘eim—l“ S

‘eiSB - 1| < 7|8 and ‘MT(eisa” =l

we obtain

‘MT(eis(a—i—,B)) - MT(eisa)M ( zsﬁ) S ‘6;
Based on the symmetry between « and 3, the following result also holds:
|

34 (6 9) 2 6001, (6] € 15

The two estimates above, together with (3.10), imply the desired estimate in (3.8).

(3.9)

(3.10)

(3.11)

(3.12)

In the case |a| > |B| we can obtain the following result directly from the expression in

(3.11):
MT (eis(a+ﬁ)) - MT (eisa)MT (eisﬁ)
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1 . . 1 B, . ) 1 /7, .
_ iToo [ ATB - Prlit(atB) _ iso\ — isf
= —e (e 1) iT(a+ﬁ)a(e 1) — M- (e )T/0 (e 1)ds,

which implies that
‘MT(eis(a—l-B)) o MT(eisa)MT(eisﬁ)‘ S T_l(‘a‘_l + |Oé +/8|_1) S 7_—1|a +ﬁ|_1-

Since the expression of M, (eis(‘”ﬁ)) — M, (eis"‘)MT (eisﬁ ) is symmetric about o and (3, in the
case || > |a| we can obtain the same result by switching the roles of @ and § in the argument
above. This proves the desired estimate in (3.9). O

3.3. Trilinear estimates associated to the KAV operator

In this subsection, we establish new estimates for the phase function
¢ =k — Kk} — k3 — k3
and use the results to prove two technical estimates for the following trilinear KdV operator:
S
C(v1,v2,v3) = / ot p (]P ((ftaa‘%1 (t) - e*taiw(t)) : e*taiaglvg(t)) dt, (3.13)
50
where s > sp > 0 are any two numbers such that |s — so| < 1. The trilinear estimates for the
KdV operator established in this subsection will play a key role in the stability estimates for
nonsmooth solutions in C'([0,T]; H") with v € (0, 1] possibly approaching zero.
For the simplicity of notation, we decompose the set {(k1, ks, k3) € Z3 : ky + ko + kg = k}
into the following two subsets:
Fo(k) Z:{(kl,k‘Q,kg) € 73 ki+ko+ks=kki+ky=0o0r ki +k3=0o0r ky+ kg = 0},
F(k‘) ::{(kl,kz,k‘g) c 73 ki+ko+ks=k ki+ko#0,ki+ ks #0,ko+ ks # 0},
and denote
|kim | = max{|k, k1], [k2|, k3| }.
We further decompose I'(k) into two subsets, i.e., I'(k) = I'1 (k) U T'y(k), where

1
(k) = {(kl,kg,kg) er: ¢l < Zykmﬁ},

Da(k) 1= { (k. ko k) €T 2 6] > %]kmﬁ}.

In the following lemma, we show that a good estimate exists for the phase function when
(k1, ko, ks) € T'(k). Moreover, better estimates can be obtained for (k1, ko, k3) € I'1(k) and
(k1, ko, k3) € T'a(k), respectively. These new estimates of the phase function can be used to
analyze the trilinear KdV operator defined in (3.13).

Lemma 3.3. Let k € Z. Then the following results hold.
(1) If (k1, ko, k3) € I'(k) then
1P| Z [kml-
(2) If (k1,ko,k3) € T'1(k) then
k| ~ || ~ k2| ~ [k3].
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(3) Ta(k) can be further decomposed into T's(k) = a1 (k) U Te(k), with
1
Por(k) = {(ks ko bs) € 0 x lknl* < [6] <[] 7},

Toa(k) = {(kr ko, ks) €T :[6] 2 k| 7).
Moreover, for (ki,ka,ks) € T'ai(k) there exist j,h € {1,2,3} such that |k; + ki| <
o 7.
Proof. For (ky, ko, ks) € I'(k), we denote ko = —k so that ko + k1 + ko + k3 = 0 and
kj + kn #0, for any j,h € {0,1,2,3} such that j # h. (3.14)
By the symmetry among the indices ko, k1, k2, k3, we may further assume the following rela-
tion:
kol = [k1| = [ko| = |ks]. (3.15)
In this case, the following results must hold:
|km| = |ko| ~ |k1| (in particular, |k1| < |ko| < 3|k1|) and ko- ki <O. (3.16)

In fact, if ko - k1 > 0 then the relation kg4 k1 + ko + k3 = 0 implies that kg = k1 = —ko = —k3,
which contradicts (3.14). If |ko| > 3|k1| then |ko + k1| > 2|k1| > |k + k3|, which contradicts
the relation ko + k1 + k2 + k3 = 0. Therefore, |ko| ~ |k1|. This proves the results in (3.16).

Since ko - k1 < 0 as shown in (3.16), without loss of generality, we may assume that ky > 0
and k1 < 0.

(1) If k9 <0 then ’(;5| = ‘3(]431 + ko)(lﬂ + kQ)(/ﬂ + k3)| > 3|k‘1 + k‘2| > 3|k‘1| ~ |k‘m’

If k9 > 0 then by the symmetry in the expression of ¢ = —kg — k3 — k3 — k‘g, we have

9] = [3(ko + k1) (ko + k2) (ko + k3)| > 3|ko + k2| > 3|ko| ~ [km|.
(2) In view of (3.15), we only need to prove |ko| ~ |k3| for (k1, k2, k3) € T'1(k). In fact, if

|ko| > 6|ks| then (3.16) implies that |ki| > ¥|ko| > 2|ks|, and therefore

1 1 1 1
ko + ks = Slkol = Slkml|, and ko + ko| = |k1 + ks| 2 Slk1] = |kl
This implies that
1 1 1
@1 = 13(ko + k1) (ko + k2) (ko + k3)| = 3 % S|k x &lkm| = Z'kmF

which contradicts that (ki, k2, k3) € T'1(k). This proves |ko| ~ |ks| for (k1, ke, k3) €
Fl(k)' 15 15

(3) If || Z |km| 7™ is not true, then |¢p| < |ko| 7. In this case, the following result must
hold:

ko + k| = [k + ks < [ko 7. (3.17)
Otherwise |ko + k1| 2 ]kolg, which together with (3.15) implies that
ko + k| > |ko + k1| > |ko|7 for all j € {1,2,3]}.

This means that |¢| > |k0|%, which contradicts |¢| < |ko|%. This proves (3.17) and
completes the proof of Lemma 3.3 (3).
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O

The main result of this subsection is the following proposition, which contains new estimates
of the trilinear KdV operator defined in (3.13) for low-regularity functions in L (s, s; H%) x
L>(sg,s8; H*) x L*™(sg,s; H*), with o € [0, 1] possibly approaching zero. The results are
proved by utilizing the new estimates for the phase function in Lemma 3.3.

Proposition 3.4. Let o € [0,1] and s > s9 > 0 with |s — so| < 1. Suppose that v; €
L>(so,s; H*) and Owj € LOO(SQ,S;H_%) for j =1,2,3. Then the trilinear operator defined
in (3.13) has the following properties:
(1)
HC(/U].7027/U3)HLZ
3
< 15 = sol TT Hesllxoqgu sy + a8, 102y sl om iy
7=1
where

HUHXO([so,s]) = HUHL‘X’(SO,S;LQ) + HatUHLoo(SO’S;H*%)'

Moreover, the inequality still holds when vy, va,v3 are permuted on the right-hand side.
(2) Ifvj,j=1,2,3 are time-independent, then

[C(v1,v2,03) | 12 S |s = sol® T ] llvjlleze
j=1
Proof. Clearly, the trilinear operator defined in (3.13) does not have zero mode, i.e.,

f(] [C(Ul, V2, U3)] =0.

For k # 0, the Fourier transform of (3. 13) can be written as

Fi [C(’Ul, V9, ’03 / 7it¢(ik3)71@17k1 (t)@27k2 (t)@37k3 (t) dt

0 kq +k2 +k3=
k1+ko#£0, k37£0

For the simplicity of notation, we assume that 0y, > 0 for k; € Z and j = 1,2,3 (otherwise
one can replace 0;y; by ‘ﬁj,kj| in the following argument and consider the functions v; :=
~'[|9;£] as in the proof of Lemma 3.1).
Since I'(k) = I'1 (k) U T'a(k), we can further decompose Fy, [C(v1,v2,v3)] into the following
several parts:

Fie[C(v1, v2,v3)] :/ > e (ik) "M 01 gy (1) 02,1, (£) 03,1 () Ut
50 k1 +ko+kz=Fk,k3#0
k1 +ka#0,k1 +k3=0
S
+/ > e (iks) T 01 gy (£) D21 (£) 03,1 (t)
50 ky+ko+kz=k,kz#0
k14k27#0,k2+k3=0

/ e (iks) ™ o1 gy ()2, ()03 15 (1) dt

0 k:1+k:z+k3 klméo
k1+ko7#
ki+ks= k2+/€3 0
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/ Z _it¢(ik3)_1@17k1 (t)@27k2 (t)@?’vkli (t) d
k17k27k3 erl )
k3¢0

+ / Z Zw(lkg) 01,1y () D2, 15 (8) 03,15 (1) A2
0 (ki,ko,k3)€T2(k)
k3#0

5
Z C; (v1,v2,v3)].

We present estimates for C;f(vl, vg,v3), 7 = 1,2,3,4,5, respectively.
(i) Estimates for Ci(vi,va,v3), C5(vi,v2,v3) and C5(vi,v2,v3): Since k3 = —k; # 0 and
ko = k in the expression of Cj (v1, va, U3) it follows that (by the Cauchy-Schwarz inequality)

|fk [Cl ’U1,’U2,’U3 ‘ < Z ‘]{1 1}1 kl UQ’k(t) 1}37,]fl (t) dt
S0 |40

S [ na@lon Ol el @) .

S0
This implies that
Hcik(vla V2, U3)HL2 5 |S - 80|||U1HL°°(SO,S;L2)||U2HL°°(SO,S;L2)||U3HL°°(SO,S;L2)'

Since Cj(v1,v2,v3) is similar as Cf(vy, v2,v3), and the expression of C3(v1,v2,v3) consists of
terms which are contained in Cj(vi,v2,v3), the same estimates hold for C;(v1,v2,v3) and

C;(U17v27v3)7 i'e'a
|CF (w1, v2,v3) || 12 4 ||C5 (1, v2,v3) || L2 + ||C5 (01, v2,v3)]| 12
S Is = solllvill oo so,s;2) 102l oo (50,5:02) 103 ]| Loo (50,5, 1.2) (3.18)
(i1) Estimates for Cj(vi,va,v3): Since |ki| ~ |ka| ~ |ks| ~ |k| for (ki, ke, k3) € T1(k), it
follows that

’fk [C4 V1, V2, ’U3 ‘ < Z |k3 ’L)1 kl ’U27k2 (t)@37k3 (t) dt¢
50 1 (k)
k3#0

/\ml 810 (8)0my ()31, (1) lt

k1 +k +k3=k
k1|~ ka|~k3|~|k|

1
/|m1 S (S i OF oo OF [ a(®)  at
|1 |~| | |k |~| |
<
N/SO (
1

o2 |~| K| |2 |~| k|
it on )l % (1 G on o))
keZ

1
2

(1) 2121 (O 65,51y 5 (D)

k1,k2

Therefore,
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/ (Z Z |01, (8)]?|D2,1, (£) | |173,k—1c1—1€2(t)|2)é dt

S0 k k1,keo
S ‘S - SO’”UIHLOO(S(),S;L2)”’U2HL°°(SO,S;L2)||U3HL°°(S(),S;L2)' (319)

We see that C; (v1,v2,v3), j = 1,2, 3,4 satisfy the estimates in both (1) and (2). It remains
to show that CZ(v1,ve,v3) also satisfies the estimates in (1) and (2).

Proof of (1). Via integration by parts, we can write F, [C%(v1,v2,v3)] as

. 1 . . .
F[Ca(v1,v9,03)] = ) e_m@m,kl ()02, ()03, k5 (2)

s

S0

Ta(k)
k30
P L
= / 10 Ly (610 (Dinsy (s (B)) ds. (3.20)
s k3¢
Iy (k)
ey 0

We further decompose I's(k) into two parts, i.e., a(k) = I'o1(k) U 2o (k), where
Por () = {(kn, ko, ks) €T < [hl* < 18] << [k 7},
15
Lo (k) := {(k1, k2, k3) € T2 [¢] 2 |km|7 }.
Then (3.20) can be written as
Fi[C3(v1,v2,03)] Z eTite mvl e (E) Dy (£) B3 15 (1)

S0
I21(k
kg;«éo

1. X )
_ Z ”¢ vml(t)w,kg(t)v&k:a(t)

50
oo (k
ks 750

1 N ~
_ Z / mﬁ 815 (01,5, ()02, (£) 03,5 (1)) ds
S0

I21(k
kg;«éo

S / i 1 500010 (D02, () 1, () s

oo (k
ks 750

4
ka‘ C5j Ul,?}Q,U3)]

S

S

Estimates for Ci(vi,v2,v3): In the expression of C¥ (v1,v2,v3), we have (ki,ko, k3) €
I'21(k). According to Lemma 3.3, for (k1, ke, ks) € I'a1(k) there exist j,h € {1,2,3}, such
that

5
kg + Fon| < [km|7.
Without loss of generality, we may assume that |ko + k3| < \k:m]%, as the other cases can be

treated similarly. Since |@| > |km|? on Tz (k), by using a change of variables ky = ko + k3
and the Cauchy—Schwarz inequality, we obtain

‘./T“k [C;l(vl, V2, 2)3)] }
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<t max Z |km|72|k3|71ﬁ1,k1 (t)ﬁQ,k2 (t)/ﬁ31k3 (t)
€{so.s} Fithatky =k
|ko+ks| <] km |7, k3|0

S D Tkl ksl T F o1 (D) Fr, o, [02(8)] g [0 (2)]

~ 5
163170 | 7y | | | 7
1

SO0 hal )T (X el T I [0 )P i, o2 D) Py s (0)])

(o< |k | ? g 0 Foa ks
1
_ 23 =
SO el F P O P )P P s )2
ki+ko+ks=k

where we have changed the subscripts back to k1, k2 and ks in the last inequality. For k # 0
and ki + ko + k3 = k, it is easy to verify that |k,,| = max(|k1], |k2|, |k3|) > (k;) for j =1,2,3.
By taking square of the inequality above and summing up the results for k£ € Z such that
k # 0, using the property that Fo[CZ; (v, v2,v3)] = 0, we obtain

€2y (o1, v2,03) || 70 SSTIRPT Y | =7 | [01. (0] 21 Py [02 (] 2| Fiy [0, (1)) 2

k#0 k1+ko+ks=k
2
S Z )7 Fy o (t ‘ | (k2) 72 Fiey [va(t ‘ | (3)7® Fiey [vs (t)]|
k1,k2,ks
Sl |17 o217 lvs 17 (3.21)
~l1v1 L>°(sg,8;H1) v2 L>(sg,s;H72) U3 L>(sg,s;H?3)> :
\;ghere 0<o< 24 and — § 0; <0,j=1,2,3, are any numbers satisfying 0 —01 —02—03 =
14

Estimates for Ciy(v1,v2,v3): Since |¢| 2 |km|175 for (k1, ke, k3) € T'a2(k), it follows that, by
the Cauchy—Schwarz inequality,
}‘Fk (C;)(Q(Ul, V2, U3)) |
_15 -1
S omax Y k| | ik [0 (8)] Py [02(8)] Fig [v3 (1))

A
—~

k2| <[Kum |, k370 k2| <[km| k370

23 2 2 2 %

SO Tl P P ) Bl @) Fraoa (),
k1+ko+ks=k

where we have changed the subscripts back to k1, k2 and k3 in the last inequality. By taking
square of the inequality above and summing up the results for k € Z such that k£ # 0, using
the property that Fo[Ciy(v1,v2,v3)] = 0, we obtain

Hcg2(v17 V2, U?;)HHJ SHUIHLOO(S(),S;Hal)HU2|’LOO(8(),S;HU2)||’U3HLOO(S()7S;HU3)? (322)

where 0 < 0 < 24 and — § 0j <0, 7 =1,2,3, are any numbers satisfying 0 —o1 —02—03 =
23
ﬁ-

S TR el ek O] P o2 (0] Fra [ 0]

N|=
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In particular, by choosing o = 02 = 03 = 0 and o7 = —23 in (3.21) and (3.22), we obtain
the following result:
Hcgl(vla V2, /U3) HLQ + HC§2(U17 V2, U3) HLQ
S HvlHLOO(SO’S;Hf%)HU?HLO"(SO,S;LQ)HU3”L°"(50,8;L2)‘ (323)
Since the constraint 0 — o1 — 09— 03 = % is symmetric about o1, o2 and o3, it follows that
the supscripts o1, o2 and o3 can be permuted in the right-hand sides of (3.21) and (3.22).
Therefore, the estimate in (3.23) still holds when v;, vy and v are permuted.
Estimates for Cs(v1,v2,v3) and Ciy(vi,v2,v3): Similar as CZ (v1, v, v3) and Ciy(v1, ve, v3),
the following result holds:

1C53(v1, v2, v3) || e + [|C54(v1, v2, v3)| 1o
S I = 0l (19001l o sstron) 102 20 s 5772 1051 £ g s1155)
+ [lv1ll oo (so, 5172 [|Okv2| oo (59,5171 | U3 ]| Lo (50,5, 173)
o ol 0 a0 1021l £ 1102 | Be0sl | o g o))
where 0 < o < % and —% <0; <0,7=1,2,3, are any numbers satisfying c —o1 — 02— 03 =
%. In particular, by choosing o1 = —% and ¢ = g9 = 03 = 0, we obtain

1C55(v1, 2, v3) || 2 + (G54 (v1, v2, v3)[ 2

S» |S - SO’ (Haﬂ)lHLoo(sO S,Hfﬁ)HIUQHLOO(SO,S;Lz)HU3HL°"(50,S;L2)

+ HvlHLOO(SQ,S;LQ)||atv2HLoo(SO78;H—%%) V3] Lo (s0,5:2.2)

(3.24)

+ |lox HLOQ(S(),S;LQ) [|va HLOO(S(),S;L2) |0vs HLOO(S(),S;H_%%)> :

Overall, the estimates of C;(vl,vg,vg), j=1,2,3,4,in (3.18) and (3.19), and the estimates
of C3;(v1,v2,v3), j = 1,2,3,4, in (3.23) and (3.24), imply the first result of Proposition 3.4.

Proof of (2). We further decompose CZ(v1, v2, v3) into the low-frequency and high-frequency
parts as follows:

Cs(v1,v2,v3) = Pejs_g|-aC3 (v1, 02, 03) + Ps s g0~ C5 (v1, V2, v3), (3.25)

where we have used the projections P< and P~y defined in Section 2.3 with N = |s — so| 7.
The first part in (3.25) can be estimated by using Bernstein’s inequality in (2.1), which
converts the L? norm to the H~%® norm, i.e.,

HP§|3_SO|—QC§(01, V2, U3)HL2 Sls— 30’_1)(&)&“6;(”179277}3)“}[4(&)7
where b(«) is chosen in the following way:

1
§+ when aa =0

bla) = %—a whenaE(O,%}

1
0 when a € <§,1]
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For time-independent functions v;, j = 1,2, 3, it is straightforward to verify (by the Cauchy—
Schwartz inequality and Sobolev embedding inequalities) that this choice of b(«) guarantees
the following inequality:

1C (v1, v2,v3) || 1y H Z e "9 (iks) T 01 oy Do oy O3 1y dtH
S0 1—\
kg;éo

Sls = soll|lvi || me vz || gelvs] Ha -

H—b(a)

Combining the two inequalities above, we obtain

20 o | 7o [oa| e |03 | e

HP§|3_50|—0¢C§(’01,’02,’03)
Since 1 — b(a)a > a, it follows that
|P<s—so-oCa (v1,v2,03) || ;o S |s — sol®[|vill e |va | e | vs]| e (3.26)

For time-independent functions vy, ve and vz, we have CZ;(vy, v, v3) = C24(v1,v2,v3) = 0
(as they contain the time derivatives of the functions vy, ve and v3). Therefore, the second
part in (3.25) can be estimated by using the decomposition

C;(Ul, V2, 1}3) = C;l (v1,v2,v3) + ng(vl, V2, V3).
According to Bernstein’s inequality, as shown in (2.1), we have
23
1P~ [s— s/~ C5; (01, v2,03) [ 12 S |5 — s0[13(|C5; (v1, v2, v3) | 23
Sls = sol*[lonllp2flval 2flvsl 2 for j = 1,2,

where the last inequality follows from (3.21) and (3.22) with o = 2 and o1 = 09 = 03 = 0.
This implies that

1P~ |s—so|-aC5 (v1,v2,v3) [ 12 S |s — so|“||vill 2 (|vall 2 (|l 2 (3.27)

Combining (3.26) and (3.27), we obtain the second result of Proposition 3.4. O

4. Construction of the low-regularity integrator

For the simplicity of notation, we decompose the phase function ¢ = k3 — k:f — k:g’ — kg’ into
the following two parts:

¢ = ¢1 + ¢27
where
61 1= (ky + ka)® — K — k§ = Bkka(ks + o), (4-1)
b2 = k® — k3 — (k1 + k2)® = 3kks (k1 + ko). (42)

Since Pou® = 0 (as assumed in Theorem 1.1 and explained in Remark 1.1), the conservation
law [ u(t,z)dz = [;u’(z)dz of the KAV equation implies that Pou(t,-) = 0 for all ¢ > 0. As
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a result, the twisted function v(t,-) := ewgu(t, -) also satisfies Pov(t,-) = 0 for all ¢ > 0, and
the KdV equation in (11.1) can be written as

1
dy(t,z) = 5&83896 [e7%u(t,2)]°, ¢t>0 and z € T. (4.3)

We denote v(t) = v(t, ) for abbreviation.
Let t, =n7,n=0,1,...,N = T/7 be a partition of the time interval [0, 7] with stepsize
7. Then the solution of (4.3) can be expressed in terms of the Newton—Leibniz formula, i.e.,

S i . 2
o(s) =v(tn) + = / o929, (e*taiv(t)) dt
2 J

n

=v(tn) + F"[s;v(tn)] + mn(s) for s € [tn, tnt1], (4.4)
where
1 [° :
F'[s;v(ty)] := 2/ %9, (e_tdgv(tn))th (4.5)
tn
_ L2 —s03 4—1 11 1003 A1 2
= < B[ (R0 u(ta)) | - PR (e RO 0(k)) | (46)
1
rn(s) = 2/ %29, [ —t3 (v(t) — v(ty)) e 102 (v(t) + v(tn))} dt, (4.7)
in
where the expression in (4.6) is given by Lemma 2.2. By using the Newton—Leibniz formula
again, i.e.,
1 tnt1 2
V(tpt1) =v(tn) + / %%, (e_sagv(s)> ds, (4.8)
2 Js,
and substituting expression (4.4) into (4.8), we obtain
1 tn+1 2
U(tnt1) =v(ta) + 5 / %29, ( =02 [u(ty) + F"[s;0(tn)] + rn(s)D ds
in
=v(tn) + F" [tn—i—l; U(tn)] + A o(tn)] + RY[v], (4.9)
where A"[v(ty,)] and the remainder R} [v] are defined by
tn+1
A[u(ty)] = / %29, ( O p(ty) —Saipn[s;v(tn)]) ds, (4.10)
tn
]. /tn+l 33 _ 63 2
] == €% 0, (e %= F™s;v(t, ds
=5 | ( [s50(t)])
1 tn+1
+ 2/ 5638 ( _Sagrn(s) o502 [2U(tn) + 2F"[s;u(tn)] + Tn(s)]) ds. (4.11)
tn

The third term on the right-hand side of (4.9) can be calculated by using the integration-
by-parts formula in Lemma 2.2, i.e.,

1
A [’U(tn)] _ gethBgP <e—tn+1agax—lv(tn) e—twﬂ@%ax—an [tn—i-l; U(tn)])

1 [tnt+1
- / P (e 00 Mo (tn) 0,0, F " 5 0(t)] ) ds
tn
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1
= Letunr0ip (ot ho(1,) e 020 P s 0(t,)])

tn41 :
_% / B (om0, (1) B[ (e Pu(t))] )ds
tn

1
= Leteni0p (oteni g o 1) e 020 P 1 s 0(t)])

+ %Tﬁx_lv(tn) Po[v(ta)?] + Bo(t)), (4.12)
where

n+1 1
B u(t,)] = —P /t s 883( =592 9=y (t,) e~ v(ty) e—saiv(tn))ds.

We approximate B"[v(t,)] by considering its Fourier coefficient, i.e., Fo[B"[v(t,)]] = 0 and
for k £ 0

Fi[B"u(t )]]

n+1 7' 1 . N
_ / 0y () ) O (1)
tn

k1 +k2+k3 k
k1,k2,k3#0

1 et 1 1 1\. ) )
=— ) — e S — 4 — + — O, (tn) Dk, (tn) Dy (tn) ds
181 t k;l k;Q k‘g
E1+kao+ks=k n
k1,ko,k3#0

1 [tetr 1 1 1 1\, . .
_ Z 5 o isd (k; + o + o k‘>vk1 (tn) Oky (tn) Uiy (tn) ds
kythoths=k Yt e

k1,k2,k3#0

1 tnt1 56
s~ .
ky +ko+ks=k tn
k1,k2,k3#0

1 tn+1 iso ¢ d
_ — “is0 T b () Dk (tn) Ok (tn
S s o ) () i (1) ds

ki+ko+ks=k
k1,k2,k3#0

o~
S~—
>
-
@
—~
~~
3
~—
oL
»

1 tn+1

. - —zsd)
Z 18k J,, Oky (tn) Oky (tn) Org (tn) ds,

ki+ko+ks=k
k1,k2,k3#0

where we have used the following relation (which was discovered in [31]):
11 1 ¢

1
ik Ra k Bkkikoks
Therefore, by applying the inverse Fourier transform, we have

= - g

$=tn+1

+ 8" u(ty)], (4.13)

s=tn

with

182

1 4 —1is
STt = ~Fp D e i () (1) (1) / e~i0ds,
ko ko ks =k 0
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In view of the expressions of ¢; and ¢ in (4.1)—(4.2), if k; + ko = 0 then ¢ = 0. Therefore, we
can decompose the expression of S"[v(t,)] into the following two parts (according to whether
k1 + kg is zero or not):

2 : 1 ) .
1 g ) A )
7 18k " p (tn) Oy (tn) vks(tn)/o e "% 5.
k1+kotks=k
k1+ka7#0

Now we use the following formula:
/0 "m0 s — TM,(e7 %1 92) = £ M, (e 75 ) M, (e7"5%2) + (7, k, ku, ko, k), (4.14)
where we have used the notation M- (f) =77 [ f(t)dt defined in Section 3.2, with
01k, k1, ko, k) == Mp(e %1e™92) — M (e ") M, (e~"5%2). (4.15)

Substituting (4.14) into the expression of S™[v(t,)], we obtain

n 1 —
S™v(tn)] = _ETaz lv(tn) Py [v(tn)2]
“E X M) M () e e (1) ey (1) D (6)
Fathothg=k O
k1+ko#£0
+ Ry [v(tn)], (4.16)

where the remainder R%[v(t,)] is given by

_ T — ~ ~ ~
Ryfo(tn)) = —F > e o (1, k, k1, ko, k3) Ok, (tn) Ok, () Ok, (tn)ds,  (4.17)
ki+ko+ks=k
k1+k2;£0

which will be dropped in the numerical scheme. The other terms on the right-hand side of
(4.16) will be kept in the numerical scheme.

By applying Fourier transform to (4.6) we can obtain Fo [0 'F"[tp+1;v(ts)]] = 0 and the
following expression for k #0:

—ir(B3—k$—k3) _q

1 1 € it (K3 —k3—k3) A N
Filor Fritnso(ta)] =5 D o D oy (1), (1)

N ikyikaik
1 e im3k1ka(ki+ka) _ q
3 2 —i3kyky (k1 + k)

o itn3k1kz (k1 +k2){;kl (tn) 0k, (tn)

k1+ko=k
1 e*i‘rd)l _ 1 i . R
=3 2 g @ () (t)
k1+ko=k
T —1 —1 ~ ~
:5 Z MT(e zs¢1)e ztn¢1vk1(tn)vk2(tn), (4.18)

ki1+ko=k
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where we have used the notation ¢; = 3k1k2(k1 + k2) and the following relation in the last
equality:
M, (e—i8¢1) ap—— /T e 1501 g — Mil_l
0 —iTP1
Then, substituting (4.18) into the right-hand side of (4.16) and using the notation ¢2 =
k3 — k3 — (k1 + k2)® = 3kks(k1 + ko), we obtain

n 1
S [v(tn)]:—ETﬁ v( )]P)g[v(tn)Q]
1 e i5¢1) o1 e T2 — 1 —1i
k19Zk Z Z <z>1 @1y () Oy (tn) T@e b2, (4,)
k+k3 k k1+ko= k
k0
+RS[( n)]
=—E7'8 Lo(tn) ]P’O[ (tn) ]
1 st -RED)
—1 ztnk . —itnk itn k3 ~
Tk 9ik Z ‘7: [n+1,v(tn)]]e T 3kiekes €5 Dy (tn)
k‘-i—kg
+ Rz [v(tn)]
= — 25707 o(ta) Pou(tn)?]
1 s 3 A S 3 A n _s 3 S=tn+1 "
— e 02 T RO s (k)] R0 ok ||+ By lo(ta)

(4.19)

Combining the expressions of A" [v(ty,)], B"[v(ty)] and S™[v(ty,)] in (4.12), (4.13) and (4.19),
respectively, we obtain

Ao(tn)] = H"[v(tn)] + R3[v(tn)], (4.20)
with

1
o [’U(tn)] _ getn+18§[@ (e—tn+13§’;az—1v(tn) e—tn+18£az—1Fn [thrl; U(tn)])

+ %Ta_lv(tn) Py [U(tn)Q]

383 —503 9—1 375t
pEr (G ) N
1 583 —502 9—2 . —503 9—1 §=tnt1
ey [ 072 F" [ty 13 v(tn)] e %20 v(tn)} .
Then, substituting (4.20) into (4.9), we obtain
0(tni1) = (tn) + F'ltus1s o(tn)] + H' ()] + RyJo] + B3fo(t)). (4.21)

By dropping the remainders R}[v] and RY[v(ty)] in (4.21), we obtain the following time-
stepping method:

V" =" £ F Mt g0 + H 0", (4.22)
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where v™ denotes the numerical approximation to v(t,). After substituting v = ety into
(4.22), we obtain
un—i—l _ e—ragun + e—tn+1aan [tn—i-l; etnagun} + e—tn_._la;’Hn [etnagunL (4'23)

which is equivalent to the numerical scheme in (1.4), where
F[un} — e_tn+1aan [thrl; etnagun] and H[un] _ e_t”“‘?gH”[et"agu"].

The rest of this article is devoted to the proof of Theorem 1.1 on the convergence with order
v (up to a logarithmic factor) of the proposed method for H” initial data with v € (0, 1].

Remark 4.1. Dropping the remainder term r,(s) in (4.4) leads to the low-regularity inte-
grator in [6], with the following estimate:

1

Irn(olloe = 5|

; <2 sup ot

L2 t€[tn,tn]

/ts etagam [e—tag (v(t) _ v(tn)) . e—tag (v(t) + v(tn))} dt

This implies that the low-regular integrator in [6] requires u € C([0,T]; H?) to have first-
order convergence in time. It is therefore conceivable that this low-regularity scheme cannot
achieve v order convergence when the initial value is in H? for v € (0,1]. Indeed, by using
integration by parts, we know that the regularity of the time-integral terms like (4.7) can
be significantly improved at the expense of an order 7 factor. Therefore, in this paper, an
iterative strategy is adopted in (4.9) with the aim of requiring less differentiability rather
than higher convergence rates. In this way, the remainder R7}[v] in (4.9) can be estimated
with less regularity requirement than r,(s). This approach was used in [31, Lemma 3.6],
where it has been proved that ||R}[v]||z» < C72, with a constant C' depending only on
SUDsetn tniq] VN i1 for o > 1. However, this regularity requirement is still too strong for
approximating solutions below H'.

In order to achieve optimal-order convergence in L? (up to a logarithmic factor) for ap-
proximating solutions below H', a new averaging approximation of the exponential phase
function in (4.14) is proposed to ensure that the remainder term R%[v] arising from the nu-
merical approximation of A™[v(t,)] in (4.9) has an optimal-order error estimate. Meanwhile,
in order to establish the stability estimate under the very rough functional space, a new con-
vergence analysis framework is proposed in this paper, which is based on the reduction of
the proposed numerical scheme to the perturbed KdV equation. For this reason, we do not
explicitly give an error estimate for the remainder term R7[v] in (4.9), but rather convert this
part of discussion to an estimate of Rj(¢) in Subsection 7.1.

5. Reduction to a perturbed KdV equation

By using the twisted function v(t) = etaa%u(t)7 the KdV equation can be equivalently

formulated into the following integral form:

0 1 t 883 _383 2
v(t) =0 + 5/ e 20y (e "U(S)> ds for ¢t €[0,T7]. (5.1)
0
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In order to establish stability estimates for the numerical scheme under low-regularity condi-
tions below H'! (especially below H %), we shall rewrite the numerical scheme in (4.22) as a
perturbation of the integral equation in (5.1).
By using the relation H"[v"] = A™[v"] — R}[v"], as shown in (4.20), we first rewrite the
numerical scheme in (4.22) as
" = 0" 4+ Ftp ;0" + AM0"] — RY[0"). (5.2)

In view of the definitions of F"[t,4+1;v"] and A™[v"] in (4.5) and (4.10), respectively, the
following relation holds:

Substituting this expression into (5.2), we obtain

1 tnt1 2
,Un—l—l — "+ / esagax (e—sag (,Un + Fn[S;’Un}>) ds
tn

2
1 tnt1 2
= / %29, (e—saféF"[s;v”]) ds — R3[o"]. (5.3)
tn

We define a continuous function ¥/(t), t € [0, 7], which has the following expression for
t € [tn, tnsd]:

n 1 ! 593 —s93( n P ) 2
V(t)=v +2/tne Oz (e (U + F"[s;v })) ds
t_tn 1 tnt1 $03 —s03 ... n 2 ni,.n
- = [2/t %29, (e 2 F"[s; 0 ]) ds + R3[v ]]. (5.4)

In particular, ¥ (t,) = o™ for n =0,1,--- ,N. For t € [ty, t,+1] we further rewrite (5.4) as

1 [t 2
Yt ="+ 3 / %29, (e—saiw(s)) ds
tn
1 t
— 2/ %%, (efsag (7 (s) —v"™ — F"[s;0"]) - e 50 (7 (s) + 0" + F"[s; vn])) ds
tn
t—t, [1 [t 2
— [/ %029, <e_363F”[3; U”]) ds + RS[U"]] , (5.5)
T 2 i,
and then iterate this expression for n = 0,1,.... This yields the following integral equation

in the continuous form:

t 2
V() :v0+% / %29, (e—saiv/(s)) ds +R(t) for t € (tn,tniil, (5.6)
0
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with a remainder

t
R(t) =— ;/ esa”%@x (e_sag' (”//(s) — " — F”[s;v”]) L e~%03 (”//(s) + " +F”[s;v”])) ds
t'"/
t—tn 1 b1 $03 —s03 ... n 2 nr,.n
-— {2/t %29, (e F'[s;v ]) ds + R[v ]]

nmlortin . , , . . .
1 Z/ : %%, (e_sag (7 (s) — v — F7[s;07]) - e 50 (7 (s) + v + F? [s;vﬂ)) ds
j=0"1

n—

1
-2
§=0
= RI() + Ry(1) + Ry(E) + REE) for t € (tn,tnsa]. (5.7)

1 [ti+r 4 s N2 o
2/t. e*% 9, (e SazFJ[s;v]]) ds + R)[v’]

The integral equation in (5.6) can be viewed as a perturbation of (5.1) by the remainder
R(t). This continuous integral formulation of the numerical scheme allows us to apply low-
frequency and high-frequency decomposition in estimating the stability with respect to the
perturbation, which can significantly weaken the regularity conditions compared with the
energy approach of stability estimates used in the literature for the numerical analysis of the

KdV equation.
In order to analyze the error of the numerical approximations, we consider the following
continuous and discrete error functions:

e(t) :=wv(t) — ¥ (t) for t € [0,7], and e€":=0v(t,)—v",
which satisfy that e(t,) = €™. Then, by comparing (5.1) and (5.6), we obtain the following

error equation:

t
e(t) = +/ %, <68826(8) o503 (v(s) — ;e(s))> ds —R(t) for t€[0,T]. (5.8)
0
To simplify the notation, we rewrite (5.8) as
e(t) = e + F(t) — R(t), (5.9)

with
F(t) = /O Ty (efsf’%e(s) o0 (v(s) - %e(s))) ds. (5.10)

In the next two sections, we present estimates for the local error R§[v"] and the global
remainder R(t).

6. Estimates for the local error R}[v"]

As an extended notation of the local error R%[v"] defined in (4.17), we introduce the

following trilinear form:

- T o
Ry [v1,v9,v3) = —F, Z =ik’ Inln(7, k, K, ko, k)01 ky 2.k, 03 ks, (6.1)
k1+ko+k3=k
k1+k27#£0
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where the symbol n(7, k, k1, k2, k3) is defined in (4.15). Thus R5[v"] = RZ[v"™,v",v"]. The
main result of this section is the following proposition, where the estimate in (2) is not sharp
(in fact only one of the three functions v, vy and vs need to be in H?) but is sufficient for
the purpose of this article.

Proposition 6.1. For the function RY[vi,v2,vs] defined in (6.1), the following estimates
hold:

(1) If v1,va,v3 € HY with vy € [0, 1], then
| RS [v1, v2, v3]|| ;o S 7 In(1/7) o || o [ o2 | v [ vs| 2 -
(2) If vy € L? vy € HY,v3 € H" for some v > 0, then
| B [v1,v2, v3]|| 2 S Tlloall 2 vl o [[vs]| -
Moreover, the same result holds when v1,ve,v3 are permuted on the right-hand side.

Proof. For the simplicity of notation, we simply write R} = R[v1,va,v3] throughout the
proof of Proposition 6.1. According to the definition in (6.1), the Fourier coefficients of R
have the following expressions: Fy[R5] = 0 and

T . ~ R R
FrlRy] = — E Me lt"qs??(T, k, k1, ka, kg)vl’kl V2 ko U3,ks for k # 0.
k1+ko+ks=k
k1+k2750

Similarly as the proof of Proposition 3.4, we may assume that 0;;, > 0 for j = {1,2,3} and
k € Z. Otherwise we can replace 0, by [0;x| in the following argument and consider the
functions 9; := F; '[|9;x|], as in the proof of Lemma 3.1.

The proof of Proposition 6.1 relies on the following technical estimate for n(k, k1, ko, k3).

Lemma 6.2. Let (k,ki,ko, ks) € Z* with k1 + k2 + k3 = k, and denote by ki, k3, k3 a
permutation of ki, ko, ks satisfying
kil = |k3| = [k3].

Then the following estimate holds for 4 € [0, 1]:

~ 1 ~ ~ ~ 1 ~ = 5 1 51
NNE| "2 kY| ka7 [R5 72 + 7Y\ kY| k572 k5" T2  if kkikok 0,
<k:)_1‘n(7,k,k:1,k2,k3)}5{7 ’ \ | 1\ | 2’ ‘ 3| T | 1\ \ 2’ \ 3’ if kkikoks #

if kkikoks = 0.
Proof. In the case kkikoks = 0 either ¢1 = 0 or ¢ = 0, which together with Lemma 3.2
imply that n(7, k, k1, k2, k3) = 0. Therefore, we focus on the case kkikaks # 0 in the proof.

According to Lemma 3.2, for any 7; € [0,7] such that v; + 72 = 7, the following result
holds:

1-% ~ - _
k)| 5 (rlon)™ (el (€215 = 77hon 4 g 417,

In particular, setting v1 = 0 and v9 = 7 yields

In(7,k k1, ko, ks)| S 77 (0|7 gal.
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Since the estimate in Lemma 3.2 is symmetric about o = ¢ and 8 = ¢s, it follows that we
can switch ¢; and ¢9 in the inequality above, i.e.,

(7, K, k1, ko, k)| S 77|l
By considering the geometric average of the two inequalities above, we obtain
In(7, k, ki, k‘g,k‘g)} < 77)01]%¢o|®  for all a,b € [§ — 1,1] such that a + b = 7.
By the definitions of ¢1 and ¢9 in (4.1)—(4.2), this implies that
K1~ i o et b, k)| S 7 4 oy [ o g Py + o . (6.2)

Since the right-hand side of (6.2) is symmetric about k; and kg, without loss of generality,
we may assume that |k1| > |ka| (the case |ka| > |k1| can be considered similarly by switching
k1 and ko in the estimates below).
We consider the following several cases regarding whether |ks3| is larger or smaller than |k1|.
(i) |ks| > |k1|: In this case, since we have already assumed that |ki| > |k2|, there must
be |k| ~ |k3| 2 |k1| > |k2|. This is classified as Case 1 below.
(ii) |k3| ~ |k1]: In this case, |k| = |k1 + k2 + k3| S |k1]|. There are two subcases:
Case 1: |]€’ ~ |k73| Z |/€1‘ Z ‘kg‘
Case 2: |ks| ~ |k1| > |k
(iii) |kg| < |k1|: In this case, |k| = |k1 + k2 + k3| < |k1], and there are two subcases:
Case 3: |k| ~ |k1| > |ks|.
Case 4: |k1| > |kl |ks|. In this case, |ka| = |k1 + k3 — k| ~ |k1]-
In the following, we estimate |k|~* ‘7](7', k, k1, ks, k3) for the four different cases respectively.
Case 1: |k| ~ |ks| 2 |k1| > |ka|. In this case, |kf| ~ |k| ~ |k3| and |k5| ~ |k1], |E5] ~ |k2]-
By choosing a = 1 and b =4 — 1 in (6.2) and using the relation |k1 + ko| < |k1], we obtain

&I (e, by, ko, k)| S 7 K72 k[ o s
~ 1 ~ ~ ~ 1 3.5 3_%
= 7|2 g e [P 72 - (k|23 | [k o] 2
S 7|2 e e | a2

=L L 7k 15 o [—
~ TRz [k R2 [ R

N[

Case 2: |kz| ~ |k1| > |k|. In this case, |kT| ~ |k5| ~ |k1| ~ |k3| and |k3| ~ |k2|. By choosing
a=7%—3and b= 1 in (6.2) and using the relation |k + k2| < |k1|, we obtain
[kl b b )| 77 ]2 [T o T2~ |3 35 2.

Case 3: |k| ~ |k1| > |k3|. In this case, |k]| ~ |k| ~ |k1| and k5 = k2 or k3. We may assume
that k5 = k2 and k3 = k3 as the other case can be treated in the same way. By choosing
a=4%—3%,b=11in (6.2) and using the relation |k; + ka| < |k1|, we obtain

I [k o ez )| S 77 R 2 et [T ka2 2 [T
2|ks|2

<7 b | eV 2 kg T

STk |72 ko

w

N[

~ TR RS2 R
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Case 4: |ki| ~ |k2| > |k|, |ks]. In this case, |k]| ~ |k| ~ |k1| ~ |k2| and |k3| ~ |ks|. By
choosing a =4 — 1 and b =1 in (6.2), we obtain
(k™ (s by Ry, ey )| S 7772 sl 77 e e T2 s T2 - [ 772 | 277
STl ka2 ka2 ~ 775 T2 g T2
Finally, by collecting the estimates in the four cases above, we obtain the desired result. [

We continue with the proof of Proposition 6.1. Without loss of generality, we may assume
that |k1| > |ka| > |ks| in applying Lemma 6.2, which implies the following result for 5 € [0, 1]:
~ 1 ~ < 1 ~ ~ 1 1 . .
TN T (R 2 Ve el s T2 - (R Reg |2 KT 2) D1y By D
n ki+ko+ks=k
| Fi[R3]| < if kkikoks # 0,

0 if ki koks = 0.
(6.3)

In view of (6.3), we only need to consider the case kkjkaks # 0 when estimating |F[R5]|.

Proof of (1): In the case v € (0,1], we choose ¥ = v — 6 in (6.3) with 6 € [0, 3], i.e.,

| Fi[R8]| S7Hrr? Z ‘kr%’kl’770‘/@2‘779|k3|77%7%1,k1@2,k2®3,k3
ki kot ks=k
+ 7'1+77'1_9 2 i: |k:1|'Y_'9|k2|7_%_0|k:3|7_%_%1,k152,k2@3,k3
1+t ks=k
Sritrr=? 122 3’f/‘|_é_6|k:«z\_i’_9|/l€1|7171,1<:1|/l€2|7?72,k:2|/’fs|7173,1~c3
1+t hs=k
+71+le_9 | SZ oo =2 g | =2 V[0 sy o s
ki+ko+ks=k

Then, by applying Lemma 3.1 with A = 7! and 6y = 2, we obtain
RS [0, vz, vs] | o S 7 W1/ 7) o[l [z o sl (6.4)

In the case v = 0, we decompose Fi[R}] into two parts according to whether (k1, ko, k3) ¢
(k) or (ki, ke, k3) € T'(k), where I'(k) is defined in Section 3.3. Namely,

T

Fi[R3] = Z Tgke*it”%(ﬂ K, k1, ko, k3)01 ky Dok, 03 ks (6.5a)
k1+ko+ks=k
k1+ko#£0
k1+4+k3=0 or ko+k3=0
T . A .
+ Z @e Zt”¢7](7’, k, ]{21, kQ, kg)'l)l’kl V2 ko U3 kg- (6.5b)

(k1,k2,k3) €L (k)

The summation in (6.5a) can be estimated as follows, where we focus on the case ka4 k3 = 0
(the case k1 + k3 = 0 can be treated in the same way): If ko + k3 = 0 then k1 = k and
therefore

6.50) ST > k[T 0T, K,k Ko, k) 61k D2,y D3,
ko+k3=0
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< 7 Folvavs] 01 (since |n| <1 and |k|7t < 1)
S Tllvavs | L1 D1k,
which implies that
| FH16.5)] || 12 S Tllonllzllvall 2 llvs]| 2 (6.6)

According to Lemma 3.3 (2), I'(k) can be decomposed into two parts, i.e., I'(k) = 'y (k) U
Ta(k), with

k| ~ [k1] ~ |ka| ~ |k3| for (K1, ko, k3) € T'1(k),
6] > [k |? = [Ki1]? for (ki, ke, k3) € Ta(k).

In view of (6.5) we can decompose R} into

Ry = F '[(6.5a)] + wy + w2, (6.7)
with .
_ U, N N N
wj = Fy ! > 135° (7 k., ky, ko, k)01, Boky B3k,

(k1,k2,k3)erj(]€)
By choosing 4 = 0 in Lemma 6.2, we have
1 o1 B R A
Felw]| ST Y (k72 ks| 72 + [ko| 2 |ks|72) 01k, D2,y 03 s
(k1,k2,k3)€l1 (k)

1 1 1 R N N .
ST Z k1|8 ka|” 3| k3| 301 gy D2 koV3,ky  if Kk1koks # 0,
k1+ko+ks=k

where the last inequality uses the equivalence relation |k| ~ |k1| ~ |k2| ~ |ks| for (k1, ko, k3) €
I'; (k). By applying the Fourier inversion formula and using the Sobolev embedding L?(T) —
W_%’6(']I‘), we have

_1 1 _1
lwillz2 S 710|501l Lo 1025 v2ll Lo 102 "5 vsll Lo S Tllvall 2 [[vall L2 llvs|l 2. (6.8)
For (kl,k'g,k?,) S Fg(k) C F(k‘) we have ‘¢| = ‘3(]{1 + kg)(k)l + kg)(kg + k3)‘ # 0 and
|6| > |km|? = |k1]?. In this case, by choosing a = ¢1, B = ¢ and a + 8 = ¢ in (3.9), we
obtain
Tk (T ks ks ke ks)| S IR T S R
By choosing 4 = 0 in Lemma 6.2 we also have
1 1 1 _1
TR (T kR ko, k)| S (K72 Rs| T2 kel T2 R3] 7).
The geometric average of the two inequalities above yields that
k| (K b b k)| S 7 (R 2 sl TS Rl 3R ks 2R
S ORI R k| 2R ka2 R k|2 E) VO € (0,1,
Then we can apply Lemma 3.1 with A = 772 and 6§y = %, which implies that
[wallzz S 7In(1/7)llvr]l 2 [|vall p2llvs]l 2. (6.9)

Finally, substituting estimates (6.6), (6.8) and (6.9) into (6.7), we obtain

1R3> S 7In(1/7)[lor]] g2 [|vall 2 [|vs ]| £2-
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This, together with (6.4) for the case v € (0, 1], gives the desired estimate in (1).

Proof of (2): We may assume that |ki| > |ka| > |ks3|, since the other cases can be reduced to
this case). By choosing 4 = 0 in (6.3), we have

101 T T
FelBRN S 7 > (k72 ks| ™2 + [ka| 2 |ks| "2 ) Dy gy Do,y O ks
k1+ko+kz=k

— 774 (1073 (01 2 10u] B0) + v1 04|50z 104 B0y ).
Therefore, by the Plancherel identity and the Sobolev inequality, we obtain that

| B3 1lz S7l[19:] 72 (01 02 18] 0s) | o + 7l[or 102202 1002 03]
<rljvr v2 |agﬁ|—§u3HL1+ +7jv1 10,209 |ax|—5v3HL2
Srllonll alloall o [10el =20l o + 7o 1181202l o [[106] 205
Sllonll e lloal o llosl -
This proves the desired result in (2). O

By choosing v; = v9 = v3 = v™ in Proposition 6.1, we obtain the following estimate for the
local error R [v"™].

Corollary 6.3. Under the assumptions of Theorem 1.1, the following estimate holds:
IRS W™ 2 S 77 In(1/7) + 7 ([l 22 + [n(1/7)[?[le"]72)-

< 1. By substituting the

~

Proof. The assumptions of Theorem 1.1 guarantees that ||v(¢,,)]| g~
expression v" = v(t,) — €" into the trilinear form R%[v"], we obtain

Ry[v"] = Ry[v(tn)] + R3[e", v(tn), v(tn)] + R3[v(tn), €", v(tn)] + Ry [v(tn), v(tn), €"]
+ Ryle™, e, v(tn)] + Rye", v(tn), €"] + Ry[v(tn), €", "] — Ry[e", ", e"].
We apply Proposition 6.1 (1) to the first term and last four terms on the right-hand side.
This yields
RS [w(ta)]llz2 S 77 W1/ 7)o (ta) 13-,

1IR3, e o(ta)ll e S Tn(L/T)[le™|Zallv(tn)ll2 S Tlle™ll 22 + 7 In(L/7)*[le" |72,
[R5 [e", v(tn), €™l 2 S TIn(L/T)[[e® 72 0(tn)ll 2 S Tlle™l L2 + 7 In(1/7)[ e [|72,
RS [v(ta), €™, e[l 2 S mIn(1/m)|[e® 72 0(tn)ll 2 S ™2 + 71 In(1/7)[ e (|72,

2 < 7In(1/7)

|Ry[e", e, e" Tin(1/7 He"H%g.

7ln

2

Furthermore, we apply Proposition 6.1 (2) to the rest terms in the above expression of R [v™].
Then we obtain the desired result in Corollary 6.3. O
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7. Estimates for the global remainder R (%)

The main result of this section is the following proposition, where R () is defined in (5.7).

Proposition 7.1. Under the assumptions of Theorem 1.1, the following estimate holds:

IR@)llzz S tnpr 7 I(1/7) + tnpy max (el 22 + (1 /7)["[le?l|Z2)  for t € (tn, tusa].

Proof. For t € (t,,tn+1], we consider the expression of R(¢) in (5.7) and estimate Rj (%),
R5(t), R5(t) and Rj(t) separately in the following subsections.

7.1. Estimation of Rj(¢)
In view of the definition in (5.7), we can decompose Rj(t) into the following two parts:
t
Ri(t) =— / 5029, <e_sag (7 (s) —v" — F"[s;0"]) - o502 (V" + F"[s; U”])) ds

t'll

1 3

_ ! sawa (7582(7/ — " — F"s: n)>2d
2/tne . (e (s) —wv [s; 0" s.

Then we can apply the integration-by-parts formula in Lemma 2.2 with V(¢,) = v" and
F™[t,;v"] = 0. This yields the following expression of Rj(t):

RE(t) = — éetfﬁ‘ﬂ» (e—tai’ax—l (7 (t) — v — F{t;0"]) - e 9207 (v + P71, v"]))
t
+ % / %02 P (efsagaglas (¥ (s) —v" = F"[s;0"]) - efsagagl(v” + F"[s; v"])) ds
tn
1 t 3 3 3
+ 3 / s p <e_36908;1(7/(s) — " = F"[s;0"]) - e %919, F"[s; v"]) ds
tn

I s —sC n n n 2
—2/tneagt9x<e dg‘(”f/(s)—v — F"[s;v ])) ds

= Ri1(t) + Riz(t) + Riz(t) + Ra(t). (7.1)

As an extended notation of the function F""[s;v] defined in (4.6), we consider the following
bilinear form (for time-independent functions vy, vy such that Pyv; = Povg = 0):

1 S
F"[s;v1,v9) : = 2/ etag&r (e_tagvl e_wgvg)dt (7.2)
tn
1 t=s
= getag (e*tagf);lvl e*t838;1v2> ‘ for s € [tn, tnt1], (7.3)
t=tn

where the last equality is obtained by using the integration-by-parts formula in Lemma 2.2.
This extended notation satisfies that F"[s;v,v] = F™[s;v]. The following bilinear estimate
for F™[s;v1, va] will be used.

Lemma 7.2. For vy,vy € HY with v € (0,1], and s € [ty, tnt1], the following result holds:

1+v—p
| [s3v1,v2] || s S TR0 ot v |[vallgn for B € [Bo(7),1+ 7],
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where

2
1
v—1 when’ye(?l}.

Proof. On one hand, we consider the H%() norm of the expression in (7.2) and prove the
following result:

[E™ [t 01, 02] || oo S Tllvr e vz mo- (7.4)

Indeed, the expression in (7.2) gives us the following inequality:

S
3
1™ [s301, 0] | oo S / e 01 e un]| g0y sacl.
tn

If v € (0, i] then 2~ — % < 0. In this case, we apply the Sobolev embedding HY < LP and
L5 < H 32 with p = 2/(1 — 27), i.e.,

[ F™ 301, v2] | o0 S /He Sy e” TUQH pdt
< [ I o)

< [l el
tn

S7llvrll e flval -

If v € (3 1 2) then 0 < —5 + 2v < ~. In this case, we apply the Kato—Ponce inequality in
Lemma 2. 1 and the Sobolev embeddings H? — W~ 2+27’p1 H7 — LP? with l —y = l - L

p1
and + = , 1.e.,

S P
[ £ [s3 01, v || oo () 5/ He ta?’le +2%p1}|e_td£v2||m2dt
tn

S
+/t HeitagmHLmH tag”” +2v,p1dt

S
< [l e ralinat
tn

Slloilla lv2|l -
If v = %, then Byo(v) +1 = %— and therefore, by the Kato—Ponce inequality in Lemma 2.1
and the Sobolev embedding H 2 IPforall p e [1 o0), we have

1™ [s5 01, vl oy < / e s 20y

S N Y e

Sl g el
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If~ e (%, 1], then By(y) + 1 = v and therefore, by the Kato—Ponce inequality in Lemma 2.1
and the Sobolev embedding HY — L, we have

S
3
||F”[s;v1,02]||H@O<7)§/ |e™ P20y ™t “UQHHWdt
tn

S
S N
tn

STllvll g llvz |l av-

On the other hand, we consider the H'*Y norm of the expression in (7.3), which gives us
the following inequality:

[E" [s3 01, 0ol e S Nlvalle l[ozl| o

By considering the complex interpolation between the estimates for || F"[s;v1, va]|| g0
and [|F™[s;v1, v2]|| g1+~, we obtain the result of Lemma 7.2. O

By using the result of Lemma 7.2, we manage to obtain the following several useful estimates
for ¥ (t) — o™ — F™[t; v"].

Lemma 7.3. Under the assumptions of Theorem 1.1, the following estimates hold for t €
[tn, trnt1):

(1) H@;l(”f/(t) — " — F"[t;v ])H <7 In(1/7) + 7‘(||e"\|L2 + ]1n(1/7)\3||e”||12).

(2) H@;lat(”//(t) — " — F"[t; 0" )H <S7tIn(l/7) + (||e”||L2 + ln(1/7)|3||e"Hi2).

(3) |V (t) —v™ — F[t; 0" HL2 ST+ €Mz + e

Proof. By comparing the expressions of #'(t) and F™[t;v"] in (5.4) and (4.5), respectively, we
can derive the following expression:

t
Y (t) —o" — F"[t;0"] :/ 5029, ( _Sagv”-e_sagF”[s;U"])> ds (7.5a)
tn
1/t 2
+3 /t %29, (e*saféF"[s;v”])) ds (7.5b)
t—tp |1 bt 583 —803 .., n 2 ni,n
- [2/t 20, (%P sim) ds + Bl ]]. (7.5¢)

Proof of (1): Although the three terms in (7.5a), (7.5b) and (7.5c) should be estimated
separately, we focus on the estimation of (7.5a) as the other terms can be treated similarly.
By applying 9, ! to (7.5a) and substituting v™ = v(t,) — €” into the result, we obtain

9,1 (7.5a) :/t SdIIP)( zv(t ) - e_sagF”[s;U"])> ds (7.6a)

t
—/ SBCCIF’( % en 7383}7”[8;7)”]) ds. (7.6b)
tn
The expression in (7.6a) can be estimated by applying inequality (2.2), i.e

1(7-6a)llz2 S Tllo@n)llzr sup [[F"[s;0" ]| gacn, (7.7)
SE[tn,thrﬂ
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where ||[F™[s;v"]|| ga¢y can be decomposed into the following two parts using the triangle
inequality:
IE" 350" N oy < 1" [850(En) | oy + [1F" [550™] = F"[ 30 (tn)]l] grac) - (7.8)
The first term on the right-hand side of (7.8) can be estimated by choosing 5 = a(y) in
Lemma 7.2, which implies that

1+y—a(y)
1F* 53 v(t) [l gracn S 777500 [[o(ta) | Fy S 77 [0 (t) 1 s (7.9)

where the last inequality follows from the fact that 11;7%50({% > ~ for v € (0,1] for the

expression of a(y) in (2.3).
The second term on the right-hand side of (7.8) can be estimated as follows:

| F'[s;0"] = Fls; v(tn)]ll gracy = [|1F[s5€",20(tn) — €]l grac
S| F[s; €™, 20(ty) — €|l g (since a(y) < 1)
S e[z (lo@a)llzz + lle™[z2), (7.10)

where the last inequality can be obtained from expression (7.3) directly. Hence, by substitut-
ing (7.9)—(7.10) into (7.8), we obtain that

1E™ 530" o S 77+ ll€® |2 + e 72 for s € [tn, tusal, (7.11)

where we have omitted the dependence on ||v(t,)||%--
Substituting (7.11) into (7.7) yields

I1(7-62) 12 S 77+ ([l 22 + lle”][72)- (7.12)
The expression in (7.6b) can be estimated by
1(7.6b) ||z S 7lle"llz sup  [[F"[s;0"][| g (7.13)
5€[tn,tnt1]

From expression (4.6) we see that

1" [s50" e S 10" 172 = llo(ta) = €172 S 1+ [[€"|7. (7.14)
Inserting (7.14) into (7.13), gives that
I1(7-6D) 12 S T(le™ 122 + lle™[172)- (7.15)

Then, substituting (7.12) and (7.15) into (7.6), we obtain
10 (75a)ll 2 < 77 + 7 (lle"ll 2 + lle"[172)-

The estimation of |0, (7.5b)|| ;2 and |0, 1(7.5¢)|| ;2 are easier than |0, (7.5a)||z2. In fact,
employing (7.11), we have that

IF" [s:0™ |2 < IF" (530"l oy S 77+ l€™llz2 + [le"][72 for s € [tn, tns], (7.16)

Hence, by applying d; ! to (7.5b) and considering the L? norm of the result, and then by
(7.16) and (7.14), we have

t
105 (7.5b) 12 < / VF™ s 0] | F[55 0] 1 ds
tn

ST (llemlzz + llel72)-
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Since 9, 1(7.5¢) consists of RY[v"] and a term similar as 9, 1(7.5b), it follows that we can
directly use the result in Corollary 6.3 and the above estimate for ||0;1(7.5b)| 2. Then we

obtain the following result:
1051 (7.5¢) 2 S 7V In(1/7) + 7 (el 2 + [In(1/7)Plle"l|72) + 77 + 7 (lle” |2 + [le” 1 72)

ST In(1/7) + (e g2 + [In(1/7)Plle"[72).

where the last inequality is obtained by considering the two cases |In(1/7)|||e™]|;2 < 1 and
|In(1/7)|||e™|| 2 > 1 separately. This proves the first result of Lemma 7.3.

Proof of (2): By applying 9, 19; to the expression in (7.5), we have
;10 (V (t) — " — F[t;0"]) = elOip (e*tagv” e toipm [t; v"]))

4 %etaip (671:33 F™[t; v”]) ) 2 (7.17)

1[1 [t 2
——|= / e*02p (e_sagF"[s; U”]) ds 4+ 0, 'Ry [v"] |,
T2,
which can be treated in the same way as (7.6). This proves the second result of Lemma 7.3.
Proof of (3): By using the integration-by-parts formula in Lemma 2.2 and the expression of
F[s;v"] in (4.5), we find that

(7.58) = etaﬁp(e—taia;lv" et 1, v"]) (7.18a)

t , f
—/ esaﬂ%IP’(]P’[(efsagv”)ﬁ efsag(‘);lv"). (7.18b)
tn

The first term on the right-hand side of (7.18) can be estimated by using the Holder and
Sobolev inequalities as follows:

403 A 453 A
1(7.18) | 22 S lle™" %0, "™ || g2 lle™"%= 0, F™ t50"] | o
S o |2 [|F™ 8 0" ]| L2
Then, by substituting (7.16) into the inequality above, we further obtain that
I1(7182) |2 < (lo(ta)llz2 + lle™122) (77 + €™ |2 + €™ [172)
ST letlze + lle™17e + llet |l
ST+ lletlze + N2
We rewrite (7.18b) as
¢
(7.18b) = — / esaip(xp[(efsf’%v(tn))ﬂ ~efsaia;1v(tn)) ds
t

t
+/ esaglP’(P[(e_sagv(tn))Q] ~e_5858;1v(tn) — P[(e_sagv”)Z] : e_s“)g@;lv") ds.
tn

and apply Proposition 3.4 (2) with a = v and « = 0 for the first and second term, respectively.
This yields the following result:

3
1(7.18b) 122 < 77 |[o(ta)|[ 57 + (€™ lz2llv(ta)lIZ + le® I Z2llo(tn)llze + lle"ll72).
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Substituting the estimates of ||(7.18a)| ;2 and ||(7.18b)]| 2 into (7.18), we obtain
1(7-5a) |2 S 77+ (Ile"[l 22 + [le"72)-
The following result can be obtained similarly by using integration by parts as in (7.18):
1(7-5) [ 22 + [[(7.5¢) | 2 S 77+ ([le” (|2 + [le"[|72)-

Finally, substituting the above estimates of ||(7.5a)||z2, ||(7.5b)||z2 and ||(7.5¢)||z2 into (7.5)
yields the third result of Lemma 7.3. O

By applying Lemma 7.3 (1) to the expression of Rj;(¢) in (7.1) and using (7.16), we obtain
IR @)= S 102" () - W—WWWHMW+F”UHB
Szt (7 (1) =" = Fr (o)) [ [le” + F7 s 0"] 4 v(ta)]|
<[ lI1(1/7) +7(lle"llz2 + (/) Plle™I72) ] (77 + lle™ g2 + lle™ 172 +1)
ST (/1) + ([l 2 + [n(1/T)Plle"||72)  for t € (tn, tata]-
Similarly, by applying Lemma 7.3 (2) to the expression of Ri,(¢) in (7.1), we obtain
[R2(O] 2 S 7|07 0 (¥ () =™ = F"[t; UnDHLgOB [v" + F"ft 0" HL°°L2
ST (/1) + ([l 2 + [ In(1/7) P lle™]%2) for ¢ € (tn, tnt1]-

We substitute expression (4.5) into the expression of Ri;(¢) in (7.1), i.e

I 5 \2
1a(t) = 3/ eSO <]P’<es‘9£v”> 5638 7 (s) — o™ — F"[s; v"])) ds.
tn
Then we apply Proposition 3.4 (1) to the expression above. This yields the following result:
HRTS(“HB <7'””nHL2H7/ — v = F [t o" HL°°L2

el 00— = Py

([0l # (@) = o™ = P07

»\8

L°°H
S I/ + (€2 + [In(1/7) ||6"HL2)] o™ |72,

where the last inequality follows from Lemma 7.3. Since [[v"]|3, < [|e"||32 + [[v(tn)]32, it
follows that
[RT3(0)| 2 < 77 In(1/7) + 7(ll€” [ 2 + [In(1/7)[* [l 72 + [In(1/7)|le"72)

ST I(/7) + 7 (el 2 + [n(L/7)PllenG2)-

The expression of Ri,(t) can be rewritten as follows, by using the integration-by-parts

formula in Lemma 2.2, i.e.,

(1) = — OB (P (1) v~ Pl

+é/@%wg@@%wg—w—wmww SO 0,(4 () — 0" — F's;07) ) ds.
tn
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Then, by the Holder and Sobolev inequalities, we have that

sup || RY4(1)]] 2

te(tnytn+1]

5”7/( — " — F"t;0"] . VY (t) — " — F"[t;0"])

HLOO(tn, tna1;L2) Hax ( HLOO(tn,tn+1;L2)
+ 7|7 () — " — F [t 0" HLOO(%th;LQ)H(?;lat(”//(t) — o™ — F"[t;0"))
S e + el ) [ (/) + 7 ([l g2 + [n(1/7)Plle™142)]

ST+ (llet e + [n(1/7)["lle”22).-

HLOO (tn,tn+1;L2)

Combining with the estimates of HRTj(t)HLZ’ j=1,2,3,4,

[RIO| > < 77 In(1/7) + 7 (lle"ll 2 + [In(1/7)[ [le" |72).- (7.19)

7.2. Estimation of R3(t), R5(t) and Rj(t)
For the remainder R5(t) defined in (5.7), i.e.,

R5(t) = Sl [1 /ttn+1 %029, ( _sagF"[s;v”])st + RS[U”]},

T 2

we rewrite j;i”“ 5929, (6*5‘93 F"s; U"])2 ds as

tn+1 2
/ %%, (efsagF"[s;v”D ds
tn
tn41 2
= / %029, ( _sagF”[s;v(tn)]) ds
tn
tn+1 P
—I—/ 8838 ( —s0; (F“[s; "] — F"s; v(tn)]) e 502 (F”[s; "] + F”[S;v(tn)])) ds.
tn
and use inequality (2.2). Then we obtain

|Fn[33 U(t")]HLOO(tn,th;Ha(v))

| F™[s;:0™] + F"[s30(tn)]

| R5(t) 7|0 F" [s;0 )]HLm(tn,th;Hﬂl

+ 7||[F™[s;0"] — F™[s;v(tn)]

g2 <

(Frr— (Pr—
iG] P

By using Lemma 7.2 with 8 = 1 + v and 3 = a(y), with fjjig(f()) > ~ for v € (0,1] for the

expression of a(vy) in (2.3), as well as inequalities (6.3) and (7.10), we obtain
R3] 2 S 7 In(1/7) + 7 ([ 22 + [ In(1/7) ][l 1 72)- (7.20)

According to the definitions in (5.7), R3(t) and R} () can be expressed in terms of Rj(t;41)
and R3(t;+1) as follows:

= Ri(tj1) and Rj(t) ZR‘Z tiy1) for t € (tn,tni1]-
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By substituting estimates (7.19) and (7.20) into relations above, we obtain the following
result:

[R5 > + I1RIO] 12 S tasr 7 In(1/7) + s Goax (el 2 + [ n(1/7)[7le?||72).  (7-21)

Then, by combining the estimates in (7.19) and (7.20) and (7.21), we obtain the result of
Proposition 7.1. ]

8. Stability estimates using low-high frequency decompositions

The main result of this section is the following proposition, which concerns the estimation
of the function F(t) defined in (5.10).

Proposition 8.1. Under the assumptions of Theorem 1.1, there exists a positive constant C,
which may depend on ||v| peo(o,1;m) but is independent of T, such that

|F@)||,2 < Ctr" + CN?tllell oo (0,.12) (1 + llell oo (or:22))
F O+ N el ey (14 [I(1/7) P el e ppy) YN 2 1.
In the proof of Proposition 8.1 we need to use the two estimates in the following lemma.

Lemma 8.2. Under the assumptions of Theorem 1.1, there exists a positive constant C,
which may depend on ||v| pec(o,;m) but is independent of T, such that
(1) loR]] g < CT7In(1/7) + C([le"||z2 + [ In(1/7)[7[[e"[|72).

Loo(0,T;H ™ 27)
@) %l oo -3, < €T In(1/7) + C(lle™lg2 + [n(1/7)["[le™]25)-

Proof. By differentiating (5.7) with respect to t € (¢, tn+1], we can find the following expres-
sion:

AR(t) = — %eta?éax (e*tai (V () =™ — F [t;0"]) - e (9 (t) + o™ + F[t; v"]))
-2 B /t+ 0, (2P0 dt+R’§[v"]}
= — %etagﬁx (eftag (7 (t) — " = F"[t;0"]) - e 102 (7 (t) — o™ — F"[t; v"]))
t838 ( —t03 (/V(t) " Fn[t; vn]) . e—taﬁ (,Un + Fn[t;’l)n]))
— T RS (tpa). (8.1)

Then, by applying the Sobolev embedding inequality L! < H~3~ and the Holder inequality
£l < Ifliz2llgll 22, we have

Hat HLoo t, t H*** N H/y B Fn[t’ ,Un]Hioo(thn—O—l?Lz)
nsln+41,

+ H"’/ =" = P50 i [0 O W e 0022

+ 77 [ Ra(tnr)|

2
< (77 + ez + lle"ll7e)
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+ (77 el e + e 72) (1 + lle"l[F2)
+ 77 In(1/7) + [l g2 + [In(1/7)*[le" |72
< In(1/7) + [le"(lz2 + [n(L/7)[7le" |22,

where the second to last inequality follows from Lemma 7.3 and (7.20), together with the
following estimate of |[v™ + F"[t; v"]|| poo (1, t,,,1;02) DY using the expression in (4.6):

[0 + FP 50" | oo (1t 0522) S 0™ 122 + 107172 S T4 (el + €172 S 1+ (€172
(8.2)

This proves the first result of Lemma 8.2.
By differentiating (5.8) with respect to t € (t,,tp+1], we can find the following expression:

Die(t) = By e~ Pe(t) e (u(t) - %e(t))} + R,

Then, by applying the Sobolev embedding L! < H~>~ and the Holder inequality Ifglls <
| fllz2llgll Lz, we have

[Ore®)]| ,—5— SNelz2 (lo@®lzz + le@lz2) + [R5
<7 In(1/7) + (llell oo o2y + 1L/ Pllel oo o s12))-
This proves the second result of Lemma 8.2. ]

Proof of Proposition 8.1. We first consider the low-frequency part of F(t), i.e.,

IP<nF(#)]|,2 S H /Ot esaglP)SN@x [e_sage(s) e 50 <v(s) - 1e(s))} ds

2 L2
< ! 2||9—11,—s03 —502 _ 1
< | N7, e %=e(s) e v(s) e(s) ds
0 2 L2
S N2t||e”L°°(0,t;L2) (HU||L°°(O,t;L2) + HeHLoo(o,t;L?))
SNt (lell poo(o,:22) + He”%oo(o,t;L?))' (8.3)

We then consider the high-frequency part of F(t) by using the integration-by-parts formula
in Lemma 2.2, which implies that

F(t) = %e@ip [0 e(r) 0, (u(t) - %e(t))} (8.4a)
t
- % / esaﬁp[e—saiaglase(s) e_sai"@;l (U(s) - e(s))} ds (8.4b)
0
¢ , .
- é / esagP[e*s%@;le(s) efsag(?;lasv(s)] ds. (8.4c)
0

The first term on the right-hand side of (8.4) can be estimated by using the Sobolev and
Bernstein inequalities, i.e.,

P> (8.4)]] 2 S N’lue’tag(?;le(t) e t02 g1 (v(t) - 1e(t)) Hm

SN Hellzz (vl g2 + llellz2)
SN llellzz + llell72)-



41

In view of the relation e(t) = €® + F(t) + R(t), as shown in (5.9), the second term on the
right-hand side of (8.4) can be decomposed into the following two parts:

(8.4b) = —% /0 P (e—saféa;lasf(s) e %251 (u(s) —6(5))) ds (8.5)
L (" sotp (o0l 0y
- 3/0 s <e %910, R(s) e %1 (v(s) — e(s))) ds. (8.5b)

where (8.5a) can be furthermore expressed as follows by using relation (5.10):

(8.5a) = — ;/Ot esagp(P [e_sage(s) e 502 (v(s) - %e(s))} _8838 ( (s) — e(s)))ds.
1

By considering P> y(8.5a), the frequency of at least one of the three terms e(s), v(s) — 5e(s)

and v(s) — e(s), should be greater than or equal to N/3. Then, by applying Proposition 3.4

(1) to the high-frequency part of the expression above and using Bernstein’s inequality for

high-frequency functions, i.e., the second inequality of (2.1) with sg = ﬁ and s = 0, we

obtain
P> n(8-52)]] 12 Stllellxoqoumllv = gellxogoallv = ellxoqoa)
+ N1 lell oo (0.6:22) 10 = gell Los (0,22 [0 = €]l oo 0,1:12)
Stllellxoqom (1o1%oqo + lelloo.)
+ N-i2 el Lo (0,22 (HUH%oo(o,t;m) + HeH%m(O,t;LQ))'

From (4.3) it is straightforward to derive that ||v]|xooq) S 1, and from Lemma 8.2 (2) we
know that

lellxoo.) S 7 (/) + (lell oo (o.i2) + 1 ML/ llel|Toc o 1:12))- (8.6)
Therefore, we have that
_23
[P>n(858)|| > < tr7 In(1/7) + (t+ N710) (lell o o,:02) + 11/ 7) P llell Foo o 1:12)) -
We substitute expression (8.1) into (8.5b). This yields

n—1
(8.5b) =Ri(t) + Y Ri(tj41) for t € (tn,tntal, (8.7)
j=0
where
1 t 63 83
RE(t) = 6/ PP (B(e (¥ () — " — Fsio")
tn

.e—sag (7/(8) + " _|_Fn[s;vn])) 8338 ( ( )— 6(5))) ds

t
+ ;T_l/ P(e_sagﬁgc_l?%;(tnﬂ) —% g Hv(s) — e(s))) ds for t € (tn,tnt1].
tn

which can be estimated by using Proposition 3.4 (1), i.e.,

[RE®)]] 2 ST (5) = 0" = F™5;0"[| x0((t ts])
N (s) + 0" 4+ F* 550" x0((tn i ]) (10 x00.) + €l x0(0,47))
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H 7 (s) =" = F"[s;0"]]]

Loo(tn’tn+l;H7%’i)
() + 0"+ FI 530 | Lot 22 (0] o i22) + lellzoo22))
+ 1R () 122 (0]l o 0.522) + llell Lo 022)) -
Lemma 7.3 says that
17(5) = v" = F"[5:0™ | 5014, 4,0y S 77 W0(/T) + (€22 + [ (L/7)P e [172),

1765) = 0" = Flsi" ey ety S T WL/) (1€ + (1) 32).

The above result and (8.2), together with the triangle inequality, imply that

|7 (s) + 0" + F"[s;0"] HXO([tn,tn+1])

S (s) = 0" = F 530" x0 sy + 200" + F 150" o 10000
ST I(1/7) + €l z2 + | In(1/7)Plle?]| 72 + 1+ [le”]172

S 1+ [In(1/7)[* e 22

From (8.6) we also know that
ol xoqo.) + llellxoqosgy S 1+ [n(1/7)[3[le™]|3-.
These estimates, together with (8.6) and Proposition 7.20, give the the following result:
[R5 2 < [T In(1/7) + 7lle" (|2 (1 + [ In(1/7)[*[le™[72)]
(L4 (/) el foo o p02)) (L + [ (1/7)Flelf o (0 4;1.2))-
Substituting this into (8.7) yields that
[(8:5D)|| 2 S 77 In(1/7) + tlel| poe(o,502) (1 + [(1/7) [ le| 7 0 1or2y) -

By substituting the estimates of H]P’Z]V(&Ba)HLQ and H(S.Sb)HL2 into (8.5), we obtain

P> n(8.4b) 12 S 77 In(1/7) + (t+ N73) lel| o 0,22) (1 + | In(1/7)[*llell Ze 0,1522)) -

Finally, by using the expression of d;v(s) in (4.3), the last term on the right-hand side of
(8.4) can be rewritten as follows:

(8.4c) :_é/Ot 0P (IP( Ho(s))” e 20, e(s )) ds.

Again, by considering P> (8.4c), the frequency of at least one of the three terms v(s), v(s)
and e(s), should be greater than or equal to N/3. Then, by applying Proposition 3.4 (1) to
the high-frequency part of the expression above together with (8.6), and using Bernstein S
inequality for high-frequency functions, i.e., the second inequality of (2.1) with so = 1 1 3 and
s = 0, we obtain

23
P> (8.40) 12 S tlellxoqo.llvllxoqog) + N~ lellLwqu) 10T 0.0

_23
<t In(1/7) + (t+ N7 el pooo,22) (1 + 1/ 7) [ flell T 0,122 -
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Combining the estimates of P>x(8.4a), (8.4b) and P>y (8.4¢c), yields a desired estimate of
HIP’ZNJ-"(IS)HLQ, which together with the estimate of HPSN.F(t)HL2 in (8.3) implies the result
of Proposition 8.1. O

9. Error estimates (Proof of Theorem 1.1)
By using the relation e(t) = ¢ + F(t) — R(t) in (5.9), and the estimates of R(t) and F(t)
in Propositions 7.1 and 8.1, respectively, we obtain
le(t)llz2 < €2 + C(t+ 1) In(1/7) + CtN2H€HL°°(O,t;L2) (14 llell Lo 0,:22))
£ C(t+ 7+ N8 el pmogirny (1 + [(1/7) el S prey) Vi € 0.7
Choosing N = (t + 7)7% in the inequality above, we have

1
le(®)llz2 < 11”2 + Crr n(1/7) + Calt + 7) % [lef| oo 0,522y (1 + [0 (1/7) el 70 0.1:12)) -
(9.1)

Since € = 0 and ||e[| 00 (0,s;22) is a continuous function of ¢ € [0,7], we may assume that
t« € (0,T] is the maximal time such that

5
el oo o,t522) < T2

If t, =T then we set § = 0.

If t. < T then there exists a positive constant § > 0 such that [[e]|re (0, 4+5,02) < 273
according to the continuity of ||e]| Lo (o4 r2) With respect to t € [0, 7.

In either case, we can rewrite (9.1) as follows (regarding s as the initial time):

1
el oo (s,6:22) < lle(s)llpz + Cr177 In(1/7) + C3(t — s + 7)1 |lel| oo (s,1:12)
< |lellzeo(0,5;22) + C177 In(1/7) + C3(t — s + T)%He”LOO(s,t;LQ)a 0<s<t<ti+9,
which implies that
1
lell oo 0,4522) < M€l oo (o,5;02) + C177 In(1/7) + C3(t — s + T)4|le|lpoo(op02), 0 < s <t <t +0.

Let Ty = 1(2C5)7%, 7 € (0,Ty], and consider a sequence of intervals [kTp, (k + 1)Tp),
k = 0,...,m, such that mTp < T < (m + 1)Tp. The maximal number of such intervals
is bounded, i.e., m < T/Ty, which is independent of the stepsize 7. On every subinterval
[kTo, (k + 1)To) such that [kTo, (k + 1)To] N[0, t. + 6] # 0, we have

el oo (0,522) < ll€llpoe(o,k1p;22) + C177 In(1/7) + %HBHL“’(OJ;L?) vt € [kTo, (k+ 1)To] N[0, ¢ + 4],
which implies that

lell oo 0,522) < 2llellpoo,pmp;z2) +2C177 In(1/7) Vit € [kTo, (k + 1)To] N [0, . + 6]
Iterating this inequality for £k = 0,1,..., yields that

||e||Loo(07t*+5;L2) < 2m+1||eOHL2 +2m 20, Y In(1/7) = om+20 7Y In(1/7).
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Since m and C; are independent of 7, it follows that there exists a positive constant 7y such
that for 7 < 75 we have

J
el oo (0,6, +6,02) < T2

This contradicts the maximality of ¢, € (0,7T] unless t, = T. Therefore, t, =T, § = 0, and
lell Lo (o,,22) < 220177 In(1/7).

This proves the error estimate in Theorem 1.1. O

10. Numerical experiments

In this section, we present numerical experiments on the convergence of the proposed low-
regularity integrator for the KdV equation with H” initial data, for v = 0.2, 0.4, 0.6 and 0.8,
respectively. The computations are performed by Matlab with double precision.

We consider the KdV equation

owu(t, z) 4+ dul(t, ) = %@(u(t,x)Q) for x € T and t > 0, (10.1)
u(0,z) = u’(z) for z €T,

with the following initial value:
1 .
0 _ —0.51—~ jikz
u’(x) 0 g k| e, (10.2)
0£kEZ

which is in H7(T) but not in HYT0%(T). We compare the numerical solution given by the
proposed method with several pre-existing methods, including the Crank—Nicolson method,

i.e.,

o % (B3u" 1 4 BBum) = %ax (™12 + (™),
the resonance based scheme in [0] (referred to as hs16), i.e.,

untl = e TORyn 4 é (e*Tagc?;lu”)Q — ée”ag (8;1u")2 ,

and the following filtered time discretization methods (with filtering operator II, := X( —
i@zT%) using cut-off function x = 1j_; 1}, see [21]):

e The filtered resonance based scheme (referred to as Filtered-hs16)
1 2 1
Wt = e-r@ﬁun + 61—[7_ (e—Tagagll—[Tun> - EHTG—M‘;‘ (aﬂg—lHTunf’

e The filtered exponential integrator (referred to as Filtered-EI)

o
—1
Un+1 — e_Tag |:un + %@(Ta‘g)nfax(ﬂ‘run)2i| ) @(5) = : 5 ?
e The filtered Lie splitting (referred to as Filtered-Lie)
-1
Wt — 67782‘ [un + %HT&E(HTU”)?} , (,0(6) — € 5
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We present the errors of the numerical solutions at T" = 1 in Figure 10.1 for several H?
initial values with v = 0.2, 0.4, 0.6 and 0.8, respectively, with sufficiently large degrees
of freedom (i.e., dof=2'%) in the spatial discretization by a Fourier spectral method. The
reference solution is obtained by using the proposed low-regularity integrator with a much
smaller time step size. The numerical results in Figure 10.1 show that the proposed method
has convergence order v in approximating the rough solutions with the H7 initial values.

H%2 initial value H%# initial value
0]
10 N —e— Proposed LRI —e— Proposed LRI
A * v v —— hslé — % + hslb
Filtered_hs16 Filtered_hs16
Filtered_EI . Filtered_EI
—— Filtered Lie 1077 —— Fitered Lie
10714 —4— Crank-Nicolson —4— Crank-Nicolson
—= 0(1") —= 0"
9 --- 0(t"?) il --- 0(1"?)
£ £ w0y
— .
o [e]
= 10723 =
) J\f/ CIJ
10—3 4
107* 4
1072 1071 1072 1071
step size step size
HO6 initial value HO®8 initial value
—e— Proposed LRI —e— Proposed LRI
.__.______-—0———0——"‘—1'— hslé .—.’_.______.__._.——-———v— hs16
Filtered_hs16 10- 4 Filtered_hs16
1074 Filtered El Filtered El
—— Filtered Lie —— Filtered_Lie
—— Crank-Nicolson —4— Crank-Nicolson
== o 104 —- 0"
N-_j 10-2 4 ——= 0(1"R) r_\‘_j -—= 0(T"R)
£ £
— _
2 2
— _
a [}
107] 4
10744
1072 1071 1072 1071
step size step size

FIGURE 10.1. L2 errors of several methods for H” initial data with v € (0, 1).
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— T=0.098
— T=0.098175
— T=0.0981747704

15 4

10

Time
o
u(T, x)

-10 10

x€[0,2m]

FI1GURE 10.2. An example of rough solutions to the KdV equation.

15 4 — T=27%T 15 4 —— Proposed LRI
— hslé
— Filtered_hs16
10 4 10 q Filtered_El

—— Filtered_Lie
—— Cranck-Nicolson

u(T, x)
u(T, x)

-10 -10

x€[0,2m x€[0,2m]

F1cure 10.3. Comparison of several methods for computing the rough solu-
tion.

Next, we compare several numerical methods for the KdV equation in (10.1) with the
following piecewise smooth discontinuous initial state:

3m bmw
10 f —, —
R or r € [ 3' 8 ],
0/ —
8 8
0, else where.

The evolution of the solution is presented in Figure 10.2 (given by a reference solution with
sufficiently small step size), which shows that the solution is highly rough and possibly discon-
tinuous. The graph of the numerical solutions at time 7' = 7 /32 ~ 0.0981747704 produced
by the Crank—Nicolson method and several other low-regularity integrators with step size
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7 = 2747 are presented in Figure 10.3 (right). Figure 10.3 (left) shows that the proposed
method is sufficiently accurate with 7 = 2747, while Figure 10.3 (right) shows that the other
methods with the same step size have observable errors in approximating the discontinuous
solution in this example.

11. Conclusions and extended studies

We have presented several new tools for the construction and analysis of low-regularity
integrators for the KdV equations, including the averaging approximation technique for ex-
ponential functions with imaginary powers (Lemma 3.2), the new estimates for the symbol
¢ = k3 — k3 — ki — k3 (Lemma 3.3), and new trilinear estimates associated to the KdV op-
erator (Proposition 3.4). These new techniques have played essential roles in analyzing the
local error, global remainder, and the stability estimates. We have also introduced a new
technique, which reformulates the numerical scheme into a perturbed integral formulation of
the continuous KdV equation globally posed on the time interval [0, 7], instead of locally
posed on [t,, tp4+1], for analyzing the stability of numerical approximations to solutions below
H'. By combining the several new techniques, we have constructed a new time discretiza-
tion which is convergent with order v in L? (up to a logarithmic factor) under the regularity
condition u € C([0,T]; H), with v € (0, 1] possibly approaching zero.

This paper focuses on the development of low-regularity integrators that could improve
the convergence rates of time discretization without the necessity of using filters. Typically,
filters necessitates a stepsize that correlates with the degrees of freedom in space discretization,
similar to a CFL condition. Our approach increases the flexibility in choosing the degrees of
freedom for space discretization, which enables the design of a fully discrete numerical scheme
that operates independently of any CFL condition. We believe that rigorous analysis of the
full discretization, when coupled with the Fourier spectral method in space, can be conducted
within the theoretical framework proposed in this paper, which provides a foundation for such
future research.

The algorithm constructed in this paper improves the error from O(77/3) to O(r7 In(1/7)),
with a logarithmic factor In(1/7) arising from technical estimates detailed within our paper.
The optimality of the logarithmic factor In(1/7) is uncertain since the numerical tests cannot
reveal the logarithmic influence on convergence rates. Typically, if the theoretical error is
expressed as O(777¢) for any € in the range (0,y), numerical tests would generally reflect a
convergence order of v. Hence, further study is required to determine if the logarithmic term
can be refined in future analyses.

The methodologies and theoretical framework introduced in this article can be extended
to develop low-regularity integrators for a variety of nonlinear dispersive equations. These in-
clude the modified KdV equation, the generalized KdV equation, and the nonlinear Schrédinger
(NLS) equation. For instance, consider the NLS equation given by

10pu + Oppu = |u|2u (11.1)
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This equation can be decomposed into low- and high-frequency components as follows:

{iatugN = OpaU<N + )\|u§N|2U§N + Ni(u<n, usn), (11.2)

i0usN = OpzptusN + AT AMous Ny + No(u<n, usn),

where u<y = H<yu and us y = IIs yu. The remainder terms N;j(u<n,usn) for j = 1,2 can
be addressed by adopting the trilinear estimate strategies developed in Section 3.3 (refer to
the definition of T'(vy,vs,v3) and subsequent discussions). Furthermore, the low-frequency
component can be approximated using the averaging approximation techniques described in
this paper. Thus, we can design a low-regularity integrator for the NLS equation that sep-
arately computes the high- and low-frequency parts of the solution, as elaborated in [28].
Employing the framework proposed in Section 5, the numerical scheme can be reduced to
a perturbed integral formulation of the continuous NLS equation. This adaptation enables
the proof of convergence rates using the Strichartz estimates for the continuous NLS equa-

tion, leading to a low-regularity integrator whose L%-norm error is (9(7'4%) for solutions in
C([0,T]; H"). For small values of 7, this convergence rate surpasses those of pre-existing
algorithms; see [28] for more details.

The construction and analysis of more rapidly convergent algorithms based on the pro-
posed framework and techniques, for nonlinear dispersive equations in both one- and higher-
dimensional spaces, will be studied in our future work.
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