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Abstract. This article is concerned with the construction and analysis of new time dis-

cretizations for the KdV equation on a torus for low-regularity solutions below H1. New

harmonic analysis tools, including averaging approximations to the exponential phase func-

tions and trilinear estimates of the KdV operator, are established for the construction and

analysis of time discretizations with higher convergence orders under low-regularity condi-

tions. In addition, new perturbation techniques are introduced to establish stability estimates

of time discretizations under low-regularity conditions without using filters when the energy

techniques fail. The proposed method is proved to be convergent with order γ (up to a

logarithmic factor) in L2 under the regularity condition u ∈ C([0, T ];Hγ) for γ ∈ (0, 1].
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1. Introduction

The Korteweg–De Vries (KdV) equation is a nonlinear dispersive partial differential equa-

tion that describes many physical phenomena, including shallow water waves, ion acoustic
1
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waves in plasmas, acoustic waves on crystal lattices, and so on. The development of compu-

tational methods for the KdV equation has attracted much attention.

It is known that the KdV equation, either on a torus or on the whole space, is globally well-

posed in Hs with s ≥ 0, i.e., there exists a unique solution in C([0, T ];Hs) for any initial value

inHs; see [1,10,12,33]. However, classical time discretizations for the KdV equation, including

finite difference methods, splitting methods, discontinuous Galerkin methods, and classical

exponential integrators, generally require much higher regularity for the numerical solutions

to converge with certain orders, i.e., these methods typically require u ∈ C([0, T ];H3) and

u ∈ C([0, T ];H6) to have first- and second-order convergence in L2, respectively. The error

estimates under these regularity conditions (or stronger conditions) for the above-mentioned

classical time discretizations have been established, for example, in [7–9,16,17,21,25,27,32].

Such regularity conditions are not mere technical conditions required in the error analysis.

When the solution of the KdV equation does not have the required regularity, its numerical

approximations by the classical time discretizations generally have reduced order of conver-

gence.

In practice, the solutions of the KdV equation may be rough due to measurement or

randomness of the data [2, 5]. To address the numerical approximation to nonsmooth so-

lutions, some low-regularity exponential integrators based on resonance analysis were re-

cently developed to relax the regularity requirement in solving nonlinear dispersive equations.

Such low-regularity integrators based on resonance analysis were initially introduced by Hof-

manová & Schratz [6] and Ostermann & Schratz [18, 20] for solving the KdV equation and

the nonlinear Schrödinger (NLS) equation, respectively. In particular, for the KdV equa-

tion, the low-regularity integrator proposed in [6] can have first-order convergence in H1 for

u ∈ C([0, T ];H3). Wu & Zhao [30] showed that another method outlined in [6] can have

second-order convergence in Hγ for u ∈ C([0, T ];Hγ+4) with γ ≥ 0. In a more recent arti-

cle, Wu & Zhao [31] proposed two embedded low-regularity integrators for the KdV equation,

which have first-order convergence in Hγ for u ∈ C([0, T ];Hγ+1) with γ > 1
2 and second-order

convergence Hγ for u ∈ C([0, T ];Hγ+3) with γ ≥ 0, respectively. The minimal regularity re-

quirement for the convergence analysis of these unfiltered algorithms for the KdV equation is

u ∈ C([0, T ];Hγ) for γ > 3/2. This condition naturally arises in the energy type of stability

analysis.

The convergence of a fully discrete finite difference method was proved in [4] for u ∈
C([0, T ];Hγ) with γ ≥ 3/4 under the CFL condition ∆t ≤ ∆x3, where ∆t and ∆x denote

the stepsize and mesh size in the temporal and spatial discretizations, respectively. The CFL

condition in a finite difference method plays a similar role as the filters in a spectral method,

i.e., to improve the stability of the method under low-regularity conditions. In the case of

γ = 3/4, the method is proved convergent with order 1/42. Since the convergence analysis

relies on the smoothing effect on R, the proof cannot be extended to the torus T.
Similarly, the development of low-regularity integrators for the NLS equations can be found

in [13, 14, 23, 29]. The minimal regularity requirement for the convergence analysis of the

unfiltered algorithms for the NLS equation is u ∈ C([0, T ];Hγ) for γ > d/2, where d is the

dimension of space. This condition also arises in the energy stability analysis, which require

using the Kato–Ponce inequality ∥fg∥Hγ ≲ ∥f∥Hγ∥g∥Hγ with γ > d
2 . The question of whether
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any convergence rates can be achieved for rough solutions u ∈ C([0, T ];Hγ), with an arbitrary

small γ > 0, remained open for a long time for both the KdV equation and the NLS equation.

The convergence of numerical solutions for rough solutions in C([0, T ];Hγ) with an ar-

bitrary small γ > 0 was addressed by Ostermann, Rousset & Schratz [19] and Rousset &

Schratz [24] for the NLS and KdV equations, respectively, by introducing and utilizing the

discrete Bourgain spaces. In particular, for the KdV equation, Rousset & Schratz [24] pro-

posed three filtered time discretizations for the KdV equation on the torus T (which cut

numerical solutions to frequencies below τ−
1
3 , where τ denotes the step size of time dis-

cretization), including a filtered exponential integrator, a filtered Lie splitting method, and a

filtered version of the resonance based scheme, and proved the convergence of order γ
3 for the

three methods under the regularity condition u ∈ C([0, T ];Hγ) with γ ∈ (0, 3]. The conver-

gence analysis in [24] is based on the combination of filters in the algorithms and the discrete

Bourgain spaces in the analysis. Since the filters in these algorithms truncate the numerical

solutions to frequencies below τ−
1
3 , and such frequency-truncated functions approximate the

original functions in Hγ with an error bound of O(τ
γ
3 ), it follows that the convergence of such

filtered algorithms is limited to order γ
3 for the KdV equation under the regularity condition

u ∈ C([0, T ];Hγ).

This article is concerned with the construction and analysis of new time discretizations for

the KdV equation on a torus,∂tu(t, x) + ∂3
xu(t, x) =

1

2
∂x(u(t, x)

2), x ∈ T = [0, 2π] and t ∈ (0, T ],

u(0, x) = u0(x), x ∈ T,
(1.1)

for low-regularity solutions below H1, i.e., the initial value u0 is in Hγ with γ ∈ (0, 1] and

therefore the solution u is in C([0, T ];Hγ) with γ ∈ (0, 1]. One of the main difficulties in the

construction and analysis of low-regularity integrators for nonlinear dispersive equations is the

approximation of exponential functions with imaginary powers, say eisϕ, based on a certain

decomposition of the phase function ϕ = ϕ1 + ϕ2. The approximation of such exponential

functions with imaginary powers were typically based on the following techniques:

eisϕ = eisϕ1 +O(s|ϕ2|) or eisϕ = eisϕ1 + eisϕ2 − 1 +O(min{s|ϕ1|, s|ϕ2|}), (1.2)

see [6, 13,14,23,29,31] and the references therein. The remainders in these types of approxi-

mations are still too large to obtain error estimates for rough solutions u ∈ C([0, T ];Hγ) with

γ ∈ (0, 1]. In this article we introduce a new averaging approximation technique:

Mτ

(
eis(ϕ1+ϕ2)

)
= Mτ

(
eisϕ1

)
Mτ

(
eisϕ2

)
+O

(
min

{∣∣∣∣ϕ1

ϕ2

∣∣∣∣ , ∣∣∣∣ϕ2

ϕ1

∣∣∣∣ , s|ϕ1|, s|ϕ2|
})

, (1.3)

where Mτ (f) denotes the average of a function f in the interval [0, τ ]; see Lemma 3.2. The

remainder in this approximation is smaller than the remainders in (1.2). In particular, the

additional upper bounds |ϕ1/ϕ2| and |ϕ2/ϕ1| for the remainder are important for us to obtain

error estimates in the rough case by using harmonic analysis techniques.

Moreover, it is known that the combination of filters and discrete Bourgain spaces in [24]

has played an important role in establishing the stability of numerical approximations to

rough solutions. In this article, we develop new techniques which can be used to establish
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stability estimates under such low-regularity conditions when the energy techniques fail and

filters are not used. More specifically, instead of using energy techniques locally in time, we

define a temporally continuous function V (t) which equals the numerical solution vn at the

discrete time levels tn, n = 0, 1, . . . , L, and satisfies an integral formulation of the continuous

KdV equation globally in time up to a perturbation term, i.e.,

V (t) = v0 +
1

2

∫ t

0
es∂

3
x∂x

(
e−s∂3

xV (s)
)2

ds+R(t) for t ∈ (0, T ],

where the perturbation term R(t) can be defined piecewisely on each subinterval (tn, tn+1]

according to the definition of the time discretization on this subinterval. The specific form of

the perturbation term for the low-regularity integrator constructed in this article is given in

(5.7). In the absence of the perturbation termR(t), the solution of the integral equation above

coincides with the solution to the KdV equation. The continuous formulation of the numerical

scheme allows us to apply many harmonic analysis techniques at the continuous level, such as

low- and high-frequency decomposition in estimating the stability of solutions with respect to

perturbation. These techniques can significantly weaken the regularity conditions compared

with the energy approach of stability estimates used in numerical analysis.

In addition, we establish some new harmonic analysis tools, including new frequency decom-

position techniques (Lemma 3.3) and new trilinear estimates of the KdV operator (Propo-

sition 3.4), which can be used to construct and analyze low-regularity integrators without

using filters (that cut numerical solutions to frequencies below τ−
1
3 ) and therefore improves

the convergence order from γ
3 to γ (up to a logarithmic factor) under the regularity condition

u ∈ C([0, T ];Hγ) for γ ∈ (0, 1].

For the convenience of readers, we present the numerical scheme and the main theoretical

result below. Let tn = nτ , n = 0, 1, . . . , L = T/τ , be a partition of the time interval [0, T ]

with stepsize τ = T/L. The low-regularity integrator constructed in this article for the KdV

equation (11.1) reads: For given un ∈ Hγ , find un+1 ∈ Hγ by

un+1 =e−τ∂3
xun + F [un] +H[un] for n = 0, 1 . . . , L− 1, (1.4)

where

F [un] =
1

6
P
[(
e−τ∂3

x∂−1
x un

)2]− 1

6
e−τ∂3

xP
[(
∂−1
x un

)2]
,

H[un] =
1

3
P
[(
e−τ∂3

x∂−1
x un

)
∂−1
x F [un]

]
+

τ

9
e−τ∂3

x(∂−1
x un)P0[(u

n)2]

− 1

54
e(s−τ)∂3

x∂−1
x

[
(e−s∂3

x∂−1
x un)3

]∣∣∣∣s=τ

s=0

− 1

27τ
e(s−τ)∂3

x∂−2
x

[
(e−(s−τ)∂3

x∂−2
x F [un]) (e−s∂3

x∂−1
x un)

]∣∣∣s=τ

s=0
,

in which P0 and P are projection operators defined by P0f = 1
2π

∫
T f dx and Pf := f −

1
2π

∫
T f dx, respectively; see Section 2.3 for more details. The convergence of the numerical

solution to the solution of the KdV equation is guaranteed by the following theorem.
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Theorem 1.1. Let γ ∈ (0, 1] and u ∈ C([0, T ];Hγ) with initial value satisfying
∫
T u

0 dx = 0.

Then there exist positive constants τ0 ∈ (0, 12 ] and C such that for τ ∈ (0, τ0] the numerical

solution given by (1.4) has the following error bound:

max
1≤n≤L

∥u(tn, ·)− un∥L2 ≤ Cτγ ln(1/τ), (1.5)

where the constants τ0 and C depend only on ∥u0∥Hγ , γ and T .

Remark 1.1. Without loss of generality, we can assume that
∫
T u

0 dx = 0, i.e., P0u
0 = 0

and Pu0 = u0, where

P0u
0 =

1

2π

∫
T
u0dx and Pu0 = u0 − P0u

0

are the zero-mode and nonzero-mode projections of u0, respectively. Otherwise we can con-

sider the function

ũ(t, x) := u(t, x− tP0u
0)− P0u

0,

which satisfies the KdV equation in (11.1) with initial value ũ0 = Pu0, which satisfies∫
T ũ

0dx = 0.

The rest of this article is organized as follows. Some basic notations and preliminary results

are presented in Section 2. Several new tools for the construction and analysis of low-regularity

integrators are presented in Section 3, including a logarithmically growing trilinear estimate

on L2, the averaging approximation of exponential functions with imaginary powers, and new

trilinear estimates associated to the KdV operator. The construction of the low-regularity

integrator is presented in Section 4, and the reduction of the proposed numerical scheme to a

continuously formulated perturbed KdV equation is presented in Section 5. The consistency

estimates for the local and global errors are presented in Sections 6 and 7, respectively. The

stability estimates using low- and high-frequency decompositions are presented in Section 8.

The error estimates (i.e., proof of Theorem 1.1), which combine the consistency and stability

estimates, are presented in Section 9. Numerical experiments and conclusions are presented

in Sections 10 and 11, respectively.

2. Notations and preliminary results

In this section we present the basic notations to be used in this article, as well as some

preliminary results which were known in the literature and are frequently used in this article.

2.1. Baisc notations

For convenience, we adopt the following notations which are widely used in harmonic

analysis and partial differential equations:

(i) For a function f(t, x) which depends on t and x, we simply denote f(t) = f(t, ·).
(ii) We denote ⟨k⟩ = (1 + |k|2)

1
2 for k ∈ Z.

(iii) We denote by C a generic positive constant which may be different at different occur-

rences, possibly depending on ∥u∥C([0,T ];Hγ) and T , but is independent of the stepsize

τ and time level n.
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(iv) We denote by A ≲ B or B ≳ A the statement “A ≤ CB for some constant C > 0”.

(v) We denote by A ∼ B the statement “C−1B ≤ A ≤ CB for some constant C > 0”.

Namely, A ∼ B is equivalently to A ≲ B ≲ A.

(vi) We denote by A ≪ B or B ≫ A the statement A ≤ C−1B for some sufficiently large

constant C (which is independent of τ and n).

(vii) The notation a+ stands for a + ϵ with an arbitrary small ϵ > 0, and a− stands for

a− ϵ with an arbitrary small ϵ > 0.

With the notations above, we often decompose a subset E ⊂ Z2 = {(k1, k2) : k1, k2 ∈ Z}
into two parts, i.e., E = E1 ∪ E2, with

E1 = {(k1, k2) ∈ E : |k1| ≪ |k2|} and E2 = {(k1, k2) ∈ E : |k1| ≳ |k2|}.

This means that we consider the decomposition with

E1 = {(k1, k2) ∈ Z2 : |k1| < c|k2|} and E2 = {(k1, k2) ∈ Z2 : |k1| ≥ c|k2|},

where c is some sufficiently small constant (independent of τ and n) which can satisfy the

requirement in our analysis.

2.2. Fourier transform

The inner product and norm of L2(T) is defined by

⟨f, g⟩ =
∫
T
f(x)g(x) dx and ∥f∥L2(T) :=

√
⟨f, f⟩.

The Fourier transform of a function f ∈ L2(T) is defined by

Fk[f ] =
1

2π

∫
T
e−ikxf(x) dx.

For the simplicity of notation, we also denote f̂k = Fk[f ] and f = F−1
k [f̂k]. The following

standard properties of the Fourier transform are well known:

f(x) =
∑
k∈Z

f̂ke
ikx (Fourier series expansion)

∥f∥L2(T) =
√
2π

(∑
k∈Z

|f̂k|2
) 1

2
(Parseval’s identity)

⟨f, g⟩ = 2π
∑
k∈Z

f̂kĝk (Plancherel’s identity)

Fk[fg] =
∑

k1+k2=k

f̂k1 ĝk2 (Conversion of products to convolutions)

The Sobolev space Hs(T), with s ∈ R, consists of generalized functions f =
∑
k∈Z

f̂ke
ikx such

that ∥f∥Hs < ∞, where

∥f∥Hs :=
√
2π

(∑
k∈Z

(1 + |k|2)s|f̂k|2
) 1

2

.
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The operator Js = (1− ∂2
x)

s
2 : Hs0(T) → Hs0−s(T), with s0, s ∈ R, is defined as

Jsf =
∑
k∈Z

(1 + |k|2)
s
2 f̂ke

ikx ∀ f ∈ Hs0(T),

which satisfies that ∥f∥Hs(T) = ∥Jsf∥L2(T).

2.3. Projection operators

For any real number N ≥ 0, we define the Littlewood–Paley projections P≤N : L2(T) →
L2(T) and P>N : L2(T) → L2(T) as

P≤Nf := F−1
k

(
1|k|≤NFk[f ]

)
=

∑
|k|≤N

f̂ke
ikx,

P>Nf := F−1
k

(
1|k|>NFk[f ]

)
=

∑
|k|>N

f̂ke
ikx.

We denote P0 = P≤0 and P = P>0, which are called zero-mode and nonzero-mode projections,

respectively, satisfying the following identities:

P0f =
1

2π

∫
T
f dx and Pf(x) = f(x)− 1

2π

∫
T
f dx.

The operator ∂−1
x : L2(T) → H1(T) is defined by

Fk[∂
−1
x f ] =

{
(ik)−1f̂k for k ̸= 0,

0 for k = 0.

This operator has a natural extension ∂−1
x : Hs(T) → Hs+1(T) for all s ∈ R. Moreover, the

following relation holds:

∂−1
x ∂xf = ∂x∂

−1
x f = Pf.

For functions restricted to low frequency or high frequency, the following Bernstein’s in-

equalities hold for any real numbers s ≥ s0:

∥P≤Nf∥Hs ≲ N s−s0∥P≤Nf∥Hs0 ∀ f ∈ Hs0(T),

∥P>Nf∥Hs0 ≲ N s0−s∥P>Nf∥Hs ∀ f ∈ Hs(T).
(2.1)

2.4. The Kato–Ponce inequality

The Kato–Ponce inequality will be frequently used in this paper. The result was originally

proved in [11] and then extended to the endpoint case in [3, 15] recently.

Lemma 2.1 (Kato–Ponce inequality). For s > 0, 1 < p ≤ ∞, 1 < p1, p3 < ∞ and 1 <

p2, p4 ≤ ∞ satisfying 1
p = 1

p1
+ 1

p2
and 1

p = 1
p3

+ 1
p4
, the following inequality holds:∥∥Js(fg)

∥∥
Lp ≤ C

(
∥Jsf∥Lp1∥g∥Lp2 + ∥Jsg∥Lp3∥f∥Lp4

)
,

where the constant C > 0 depends on s, p, p1, p2, p3, p4. If s > 1
p then the following inequality

holds: ∥∥Js(fg)
∥∥
Lp ≤ C∥Jsf∥Lp∥Jsg∥Lp ,
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where the constant C > 0 depends on s and p.

Remark 2.1. The Kato–Ponce inequality was originally established in whole space R, but it
also holds for periodic functions on T. This can be proved by using Stein’s extension operator

E : L1(T) → L1(R), which is bounded from W s,p(T) to W s,p(R) for all s ≥ 0 and 1 < p < ∞.

Therefore,∥∥Js(fg)
∥∥
Lp(T) ∼

∥∥fg∥∥
W s,p(T) ≲

∥∥Ef Eg
∥∥
W s,p(R)

≲ C
(
∥Ef∥W s,p1 (R)∥Eg∥Lp2 (R) + ∥Eg∥W s,p3 (R)∥Ef∥Lp4 (R)

)
≲ C

(
∥f∥W s,p1 (T)∥g∥Lp2 (T) + ∥g∥W s,p3 (T)∥f∥Lp4 (T)

)
≲ C

(
∥Jsf∥Lp1 (T)∥g∥Lp2 (T) + ∥Jsg∥Lp3 (T)∥f∥Lp4 (T)

)
.

In addition to the Kato–Ponce inequality, we will also use the following basic inequality

(as a result of the Hölder and Sobolev embedding inequalities):

∥fg∥L2 ≲ ∥f∥Hγ∥g∥Ha(γ) for f ∈ Hγ and g ∈ Ha(γ), with γ ∈ [0, 1], (2.2)

where

a(γ) =



1
2+ when γ = 0,

1
2 − γ when γ ∈ (0, 12),

0+ when γ =
1

2
,

0 when γ ∈ (12 , 1].

(2.3)

2.5. Integration by parts

The following integration-by-parts formula is closely related to the nonlinearity of the KdV

equation, and therefore will be frequently used in this paper, for example, in the construction

of the numerical scheme in (4.4)–(4.6) and (4.12), and the analysis of consistency errors in

(7.1) and (7.18). A proof of this formula can be found in [31].

Lemma 2.2 (Integration by parts). Let s ≥ s0 ≥ 0 and consider the space-time functions

f(t, x) and g(t, x) satisfying P0f(t) = P0g(t) = 0 for t ∈ [s0, s]. Then the following formula

holds:∫ s

s0

et∂
3
x

(
e−t∂3

xf(t) · e−t∂3
xg(t)

)
dt

=
1

3
et∂

3
x∂−1

x

(
e−t∂3

x∂−1
x f(t) · e−t∂3

x∂−1
x g(t)

) ∣∣∣t=s

t=s0
+

1

2π

∫ s

s0

∫
T
f(t) g(t) dxdt

− 1

3

∫ s

s0

et∂
3
x∂−1

x

(
e−t∂3

x∂−1
x ∂tf(t) · e−t∂3

x∂−1
x g(t) + e−t∂3

x∂−1
x f(t) · e−t∂3

x∂−1
x ∂tg(t)

)
dt.

3. New tools for the construction of low-regularity integrators

In this section, we establish several new technical tools which can be used to construct and

analyze low-regularity integrators with improved convergence orders. These technical tools
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are used in the following sections in estimating the local truncation errors and establishing

the stability estimates.

3.1. A logarithmically growing trilinear estimate on L2

The following trilinear estimate will be used in the analysis of the local truncation error

Rn
2 in Proposition 6.1; see (6.5) and (6.9) for the details.

Lemma 3.1. For any f, g, h ∈ L2 we define M(f, g, h) to be a function determined by its

Fourier coefficients

Fk[M(f, g, h)] =
∑

k1+k2+k3=k

m(k, k1, k2, k3)f̂k1 ĝk2 ĥk3 ,

where m is a multiplier satisfying the following estimate (for some constants θ0 > 0 and

A ≥ 2):

|m(k, k1, k2, k3)| ≤ Aθ
[
⟨k⟩−

1
2
−θ⟨k3⟩−

1
2
−θ + ⟨k2⟩−

1
2
−θ⟨k3⟩−

1
2
−θ

]
∀ θ ∈ [0, θ0]. (3.1)

Then the multilinear operator M : L2×L2×L2 → L2 is well defined and satisfies the following

estimate:

∥M(f, g, h)∥L2 ≲ (lnA) ∥f∥L2∥g∥L2∥h∥L2 .

Proof. By the duality between L2 and itself, it suffices to prove |⟨M(f, g, h), φ⟩| ≲ lnA for

any functions f, g, h, φ ∈ L2 such that ∥f∥L2 = ∥g∥L2 = ∥h∥L2 = ∥φ∥L2 = 1. By the Parseval

identity and (3.1), the following result holds:

|⟨M(f, g, h), φ⟩| = 2π

∣∣∣∣∑
k∈Z

Fk[M(f, g, h)]Fk[φ]

∣∣∣∣
≲

∑
k∈Z

∑
k1+k2+k3=k

Aθ
[
⟨k⟩−

1
2
−θ⟨k3⟩−

1
2
−θ + ⟨k2⟩−

1
2
−θ⟨k3⟩−

1
2
−θ

]
|f̂k1 ||ĝk2 ||ĥk3 ||φ̂k|.

(3.2)

Let f̃ , g̃, h̃ and φ̃ be the functions with the nonnegative Fourier coefficients |f̂k|, |ĝk|, |ĥk|
and |φ̂k|, respectively. These functions satisfy that

∥f̃∥L2 = ∥g̃∥L2 = ∥h̃∥L2 = ∥φ̃∥L2 = ∥f∥L2 = ∥g∥L2 = ∥h∥L2 = ∥φ∥L2 = 1.

If we define m̃(D, θ) to be the linear operator associated to the multiplier m̃(k, θ) = A
θ
2 ⟨k⟩−

1
2
−θ.

Namely,

Fk[m̃(D, θ)v] = A
θ
2 ⟨k⟩−

1
2
−θv̂k.

Then (3.2) can be written as

|⟨M(f, g, h), φ⟩| ≲
∑
k∈Z

∑
k1+k2+k3=k

m̃(k, θ)m̃(k3, θ)|f̂k1 ||ĝk2 ||ĥk3 ||φ̂k|

+
∑
k∈Z

∑
k1+k2+k3=k

m̃(k2, θ)m̃(k3, θ)|f̂k1 ||ĝk2 ||ĥk3 ||φ̂k|

= (f̃ g̃ m̃(D, θ)h̃, m̃(D, θ)φ̃) + (f̃ [m̃(D, θ)g̃][m̃(D, θ)h̃], φ̃)

≲ ∥f̃∥L2∥g̃∥L2∥m̃(D, θ)h̃∥L∞∥m̃(D, θ)φ̃∥L∞
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+ ∥f̃∥L2∥m̃(D, θ)g̃∥L∞∥m̃(D, θ)h̃∥L∞∥φ̃∥L2 . (3.3)

It remains to prove the following result:

∥m̃(D, θ)g̃∥L∞ + ∥m̃(D, θ)h̃∥L∞ + ∥m̃(D, θ)φ̃∥L∞ ≲
√
lnA. (3.4)

This can be proved as follows:

∥m̃(D, θ)g̃∥L∞ =
∥∥∥∑
k∈Z

A
θ
2 ⟨k⟩−

1
2
−θ|ĝk|eikx

∥∥∥
L∞

≲ A
θ
2

(∑
k∈Z

⟨k⟩−1−2θ
) 1

2
(∑

k∈Z
|ĝk|2

) 1
2

≲
A

θ
2

√
θ
∥g∥L2 . (3.5)

If 1
lnA ≤ θ0 then we can choose θ = 1/ lnA so that A

θ
2 ≲ 1 and 1√

θ
=

√
lnA. In this case,

inequality (3.5) reduces to

∥m̃(D, θ)g̃∥L∞ ≲
√
lnA.

If 1
lnA ≥ θ0 then 2 ≤ A ≤ e1/θ0 and therefore A ∼ 2, which implies that

√
lnA ∼ 1. In this

case, we can choose θ = θ0 so that inequality (3.5) implies that

∥m̃(D, θ)g̃∥L∞ ≲ 1 ≲
√
lnA.

This proves (3.4) and therefore completes the proof of Lemma 3.1. □

3.2. Averaging approximation of exponential functions

In this subsection, we establish some average estimates which play important roles in the

analysis of the local truncation errors. We define the average and oscillation of a function f

in the interval [0, τ ] by

Mτ (f) =
1

τ

∫ τ

0
f(t) dt,

and

∥f∥osc([0,τ ]) := max
{t1,t2}⊂[0,τ ]

∣∣f(t1)− f(t2)
∣∣,

respectively. Then the following basic inequality holds and will be frequently used:∣∣Mτ (fg)−Mτ (f)Mτ (g)
∣∣ ≤ ∥f∥osc([0,τ ])∥g∥osc([0,τ ]). (3.6)

Indeed, ∣∣Mτ (fg)−Mτ (f)Mτ (g)
∣∣ = ∣∣∣∣1τ

∫ τ

0
fg ds− 1

τ

∫ τ

0
Mτ (f)g ds

∣∣∣∣
=

∣∣∣∣1τ
∫ τ

0

(
f −Mτ (f)

)
g ds

∣∣∣∣
=

∣∣∣∣1τ
∫ τ

0

(
f −Mτ (f)

)(
g −Mτ (g)

)
ds

∣∣∣∣
≤ ∥f∥osc([0,τ ])∥g∥osc([0,τ ]). (3.7)
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In the following lemma we prove that, if f and g are exponential functions with imaginary

powers, then much better estimates can be obtained.

Lemma 3.2. Let α, β ∈ R. If α, β ̸= 0 and s ∈ [0, τ ], then∣∣Mτ

(
eis(α+β)

)
−Mτ

(
eisα

)
Mτ

(
eisβ

)∣∣ ≲ min

{∣∣∣∣αβ
∣∣∣∣ , ∣∣∣∣βα

∣∣∣∣ , τ |α|, τ |β|} . (3.8)

If α+ β ̸= 0, then ∣∣Mτ

(
eis(α+β)

)
−Mτ

(
eisα

)
Mτ

(
eisβ

)∣∣ ≲ τ−1|α+ β|−1. (3.9)

Proof. Since ∥eisα∥osc([0,τ ]) ≲ min{1, τ |α|}, (3.6) implies that∣∣Mτ

(
eis(α+β)

)
−Mτ

(
eisα

)
Mτ

(
eisβ

)∣∣ ≲ min {τ |α|, τ |β|} . (3.10)

Furthermore, similar as (3.7), we have

Mτ

(
eis(α+β)

)
−Mτ

(
eisα

)
Mτ

(
eisβ

)
=
1

τ

∫ τ

0

(
eisα −Mτ

(
eisα

))
eisβ ds

=
1

τ

∫ τ

0

(
eisα −Mτ

(
eisα

)) (
eisβ − 1

)
ds

=
1

τ

∫ τ

0
eisα

(
eisβ − 1

)
ds− 1

τ

∫ τ

0
Mτ

(
eisα

)(
eisβ − 1

)
ds

=
1

τ

∫ τ

0

1

iα
∂s
(
eisα

)(
eisβ − 1

)
ds− 1

τ

∫ τ

0
Mτ

(
eisα

)(
eisβ − 1

)
ds.

Then, using integration by parts, we obtain∣∣Mτ

(
eis(α+β)

)
−Mτ

(
eisα

)
Mτ

(
eisβ

)∣∣
=

∣∣∣∣ 1

iτα
eiτα

(
eiτβ − 1

)
− 1

τ

∫ τ

0

β

α
eisα+isβ ds−Mτ

(
eisα

)1
τ

∫ τ

0

(
eisβ − 1

)
ds

∣∣∣∣ (3.11)

≤ 1

τ |α|
∣∣eiτβ − 1

∣∣+ |β|
|α|

+
∣∣Mτ

(
eisα

)∣∣1
τ

∫ τ

0

∣∣eisβ − 1
∣∣ ds. (3.12)

By substituting the following estimates into (3.12):∣∣eisβ − 1
∣∣ ≤ τ |β| and

∣∣Mτ

(
eisα

)∣∣ = ∣∣∣ 1

iτα

∣∣eiτα − 1
∣∣∣∣∣ ≲ 1

τ |α|
,

we obtain ∣∣Mτ

(
eis(α+β)

)
−Mτ

(
eisα

)
Mτ

(
eisβ

)∣∣ ≲ |β|
|α|

.

Based on the symmetry between α and β, the following result also holds:∣∣Mτ

(
eis(α+β)

)
−Mτ

(
eisα

)
Mτ

(
eisβ

)∣∣ ≲ |α|
|β|

.

The two estimates above, together with (3.10), imply the desired estimate in (3.8).

In the case |α| ≥ |β| we can obtain the following result directly from the expression in

(3.11):

Mτ

(
eis(α+β)

)
−Mτ

(
eisα

)
Mτ

(
eisβ

)



12

=
1

iτα
eiτα

(
eiτβ − 1

)
− 1

iτ(α+ β)

β

α

(
eiτ(α+β) − 1

)
−Mτ

(
eisα

)1
τ

∫ τ

0

(
eisβ − 1

)
ds,

which implies that∣∣Mτ

(
eis(α+β)

)
−Mτ

(
eisα

)
Mτ

(
eisβ

)∣∣ ≲ τ−1
(
|α|−1 + |α+ β|−1

)
≲ τ−1|α+ β|−1.

Since the expression of Mτ

(
eis(α+β)

)
−Mτ

(
eisα

)
Mτ

(
eisβ

)
is symmetric about α and β, in the

case |β| ≥ |α| we can obtain the same result by switching the roles of α and β in the argument

above. This proves the desired estimate in (3.9). □

3.3. Trilinear estimates associated to the KdV operator

In this subsection, we establish new estimates for the phase function

ϕ := k3 − k31 − k32 − k33

and use the results to prove two technical estimates for the following trilinear KdV operator:

C(v1, v2, v3) =
∫ s

s0

et∂
3
xP

(
P
(
e−t∂3

xv1(t) · e−t∂3
xv2(t)

)
· e−t∂3

x∂−1
x v3(t)

)
dt, (3.13)

where s ≥ s0 ≥ 0 are any two numbers such that |s− s0| ≲ 1. The trilinear estimates for the

KdV operator established in this subsection will play a key role in the stability estimates for

nonsmooth solutions in C([0, T ];Hγ) with γ ∈ (0, 1] possibly approaching zero.

For the simplicity of notation, we decompose the set {(k1, k2, k3) ∈ Z3 : k1 + k2 + k3 = k}
into the following two subsets:

Γ0(k) :={(k1, k2, k3) ∈ Z3 : k1 + k2 + k3 = k, k1 + k2 = 0 or k1 + k3 = 0 or k2 + k3 = 0},

Γ(k) :={(k1, k2, k3) ∈ Z3 : k1 + k2 + k3 = k, k1 + k2 ̸= 0, k1 + k3 ̸= 0, k2 + k3 ̸= 0},

and denote

|km| = max{|k|, |k1|, |k2|, |k3|}.
We further decompose Γ(k) into two subsets, i.e., Γ(k) = Γ1(k) ∪ Γ2(k), where

Γ1(k) :=
{
(k1, k2, k3) ∈ Γ : |ϕ| < 1

4
|km|2

}
,

Γ2(k) :=
{
(k1, k2, k3) ∈ Γ : |ϕ| ≥ 1

4
|km|2

}
.

In the following lemma, we show that a good estimate exists for the phase function when

(k1, k2, k3) ∈ Γ(k). Moreover, better estimates can be obtained for (k1, k2, k3) ∈ Γ1(k) and

(k1, k2, k3) ∈ Γ2(k), respectively. These new estimates of the phase function can be used to

analyze the trilinear KdV operator defined in (3.13).

Lemma 3.3. Let k ∈ Z. Then the following results hold.

(1) If (k1, k2, k3) ∈ Γ(k) then

|ϕ| ≳ |km|.
(2) If (k1, k2, k3) ∈ Γ1(k) then

|k| ∼ |k1| ∼ |k2| ∼ |k3|.
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(3) Γ2(k) can be further decomposed into Γ2(k) = Γ21(k) ∪ Γ22(k), with

Γ21(k) := {(k1, k2, k3) ∈ Γ :
1

4
|km|2 ≤ |ϕ| ≪ |km|

15
7 },

Γ22(k) := {(k1, k2, k3) ∈ Γ : |ϕ| ≳ |km|
15
7 }.

Moreover, for (k1, k2, k3) ∈ Γ21(k) there exist j, h ∈ {1, 2, 3} such that |kj + kh| ≪
|km|

5
7 .

Proof. For (k1, k2, k3) ∈ Γ(k), we denote k0 = −k so that k0 + k1 + k2 + k3 = 0 and

kj + kh ̸= 0, for any j, h ∈ {0, 1, 2, 3} such that j ̸= h. (3.14)

By the symmetry among the indices k0, k1, k2, k3, we may further assume the following rela-

tion:

|k0| ≥ |k1| ≥ |k2| ≥ |k3|. (3.15)

In this case, the following results must hold:

|km| = |k0| ∼ |k1| (in particular, |k1| ≤ |k0| ≤ 3|k1|) and k0 · k1 < 0. (3.16)

In fact, if k0 ·k1 ≥ 0 then the relation k0+k1+k2+k3 = 0 implies that k0 = k1 = −k2 = −k3,

which contradicts (3.14). If |k0| > 3|k1| then |k0 + k1| > 2|k1| ≥ |k2 + k3|, which contradicts

the relation k0 + k1 + k2 + k3 = 0. Therefore, |k0| ∼ |k1|. This proves the results in (3.16).

Since k0 · k1 < 0 as shown in (3.16), without loss of generality, we may assume that k0 > 0

and k1 < 0.

(1) If k2 ≤ 0 then |ϕ| = |3(k1 + k0)(k1 + k2)(k1 + k3)| ≥ 3|k1 + k2| ≥ 3|k1| ∼ |km|.
If k2 > 0 then by the symmetry in the expression of ϕ = −k30 − k31 − k32 − k33, we have

|ϕ| = |3(k0 + k1)(k0 + k2)(k0 + k3)| ≥ 3|k0 + k2| ≥ 3|k0| ∼ |km|.
(2) In view of (3.15), we only need to prove |k0| ∼ |k3| for (k1, k2, k3) ∈ Γ1(k). In fact, if

|k0| ≥ 6|k3| then (3.16) implies that |k1| ≥ 1
3 |k0| ≥ 2|k3|, and therefore

|k0 + k3| ≥
1

2
|k0| =

1

2
|km|, and |k0 + k2| = |k1 + k3| ≥

1

2
|k1| ≥

1

6
|km|.

This implies that

|ϕ| = |3(k0 + k1)(k0 + k2)(k0 + k3)| ≥ 3× 1

2
|km| × 1

6
|km| = 1

4
|km|2

which contradicts that (k1, k2, k3) ∈ Γ1(k). This proves |k0| ∼ |k3| for (k1, k2, k3) ∈
Γ1(k).

(3) If |ϕ| ≳ |km|
15
7 is not true, then |ϕ| ≪ |k0|

15
7 . In this case, the following result must

hold:

|k0 + k1| = |k2 + k3| ≪ |k0|
5
7 . (3.17)

Otherwise |k0 + k1| ≳ |k0|
5
7 , which together with (3.15) implies that

|k0 + kj | ≥ |k0 + k1| ≳ |k0|
5
7 for all j ∈ {1, 2, 3}.

This means that |ϕ| ≳ |k0|
15
7 , which contradicts |ϕ| ≪ |k0|

15
7 . This proves (3.17) and

completes the proof of Lemma 3.3 (3).
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□

The main result of this subsection is the following proposition, which contains new estimates

of the trilinear KdV operator defined in (3.13) for low-regularity functions in L∞(s0, s;H
α)×

L∞(s0, s;H
α) × L∞(s0, s;H

α), with α ∈ [0, 1] possibly approaching zero. The results are

proved by utilizing the new estimates for the phase function in Lemma 3.3.

Proposition 3.4. Let α ∈ [0, 1] and s ≥ s0 ≥ 0 with |s − s0| ≲ 1. Suppose that vj ∈
L∞(s0, s;H

α) and ∂tvj ∈ L∞(s0, s;H
− 23

14 ) for j = 1, 2, 3. Then the trilinear operator defined

in (3.13) has the following properties:

(1) ∥∥C(v1, v2, v3)∥∥L2

≲ |s− s0|
3∏

j=1

∥vj∥X0([s0,s]) + ∥v1∥
L∞(s0,s;H

− 23
14 )

∥v2∥L∞(s0,s;L2)∥v3∥L∞(s0,s;L2),

where

∥v∥X0([s0,s]) := ∥v∥L∞(s0,s;L2) +
∥∥∂tv∥∥

L∞(s0,s;H
− 23

14 )
.

Moreover, the inequality still holds when v1, v2, v3 are permuted on the right-hand side.

(2) If vj , j = 1, 2, 3 are time-independent, then∥∥C(v1, v2, v3)∥∥L2 ≲ |s− s0|α
3∏

j=1

∥vj∥Hα .

Proof. Clearly, the trilinear operator defined in (3.13) does not have zero mode, i.e.,

F0[C(v1, v2, v3)] = 0.

For k ̸= 0, the Fourier transform of (3.13) can be written as

Fk

[
C(v1, v2, v3)

]
=

∫ s

s0

∑
k1+k2+k3=k
k1+k2 ̸=0,k3 ̸=0

e−itϕ(ik3)
−1v̂1,k1(t)v̂2,k2(t)v̂3,k3(t) dt

For the simplicity of notation, we assume that v̂j,kj ≥ 0 for kj ∈ Z and j = 1, 2, 3 (otherwise

one can replace v̂j,kj by |v̂j,kj | in the following argument and consider the functions ṽj :=

F−1
k [ |v̂j,k| ] as in the proof of Lemma 3.1).

Since Γ(k) = Γ1(k) ∪ Γ2(k), we can further decompose Fk

[
C(v1, v2, v3)

]
into the following

several parts:

Fk

[
C(v1, v2, v3)

]
=

∫ s

s0

∑
k1+k2+k3=k,k3 ̸=0
k1+k2 ̸=0,k1+k3=0

e−itϕ(ik3)
−1v̂1,k1(t)v̂2,k2(t)v̂3,k3(t) dt

+

∫ s

s0

∑
k1+k2+k3=k,k3 ̸=0
k1+k2 ̸=0,k2+k3=0

e−itϕ(ik3)
−1v̂1,k1(t)v̂2,k2(t)v̂3,k3(t) dt

−
∫ s

s0

∑
k1+k2+k3=k,k3 ̸=0

k1+k2 ̸=0
k1+k3=k2+k3=0

e−itϕ(ik3)
−1v̂1,k1(t)v̂2,k2(t)v̂3,k3(t) dt
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+

∫ s

s0

∑
(k1,k2,k3)∈Γ1(k)

k3 ̸=0

e−itϕ(ik3)
−1v̂1,k1(t)v̂2,k2(t)v̂3,k3(t) dt

+

∫ s

s0

∑
(k1,k2,k3)∈Γ2(k)

k3 ̸=0

e−itϕ(ik3)
−1v̂1,k1(t)v̂2,k2(t)v̂3,k3(t) dt

=:

5∑
j=1

Fk

[
C∗
j (v1, v2, v3)

]
.

We present estimates for C∗
j (v1, v2, v3), j = 1, 2, 3, 4, 5, respectively.

(i) Estimates for C∗
1(v1, v2, v3), C∗

2(v1, v2, v3) and C∗
3(v1, v2, v3): Since k3 = −k1 ̸= 0 and

k2 = k in the expression of C∗
1(v1, v2, v3), it follows that (by the Cauchy–Schwarz inequality)∣∣Fk

[
C∗
1(v1, v2, v3)

]∣∣ ≲∫ s

s0

∑
k1 ̸=0

|k1|−1v̂1,k1(t) v̂2,k(t) v̂3,−k1(t) dt

≲
∫ s

s0

v̂2,k(t)∥v1(t)∥L2∥v3(t)∥L2 dt.

This implies that∥∥C∗
1(v1, v2, v3)

∥∥
L2 ≲ |s− s0|∥v1∥L∞(s0,s;L2)∥v2∥L∞(s0,s;L2)∥v3∥L∞(s0,s;L2).

Since C∗
2(v1, v2, v3) is similar as C∗

1(v1, v2, v3), and the expression of C∗
3(v1, v2, v3) consists of

terms which are contained in C∗
1(v1, v2, v3), the same estimates hold for C∗

2(v1, v2, v3) and

C∗
3(v1, v2, v3), i.e.,∥∥C∗

1(v1, v2, v3)
∥∥
L2 +

∥∥C∗
2(v1, v2, v3)

∥∥
L2 +

∥∥C∗
3(v1, v2, v3)

∥∥
L2

≲ |s− s0|∥v1∥L∞(s0,s;L2)∥v2∥L∞(s0,s;L2)∥v3∥L∞(s0,s;L2). (3.18)

(ii) Estimates for C∗
4(v1, v2, v3): Since |k1| ∼ |k2| ∼ |k3| ∼ |k| for (k1, k2, k3) ∈ Γ1(k), it

follows that∣∣Fk

[
C∗
4(v1, v2, v3)

]∣∣ ≲∫ s

s0

∑
Γ1(k)
k3 ̸=0

|k3|−1v̂1,k1(t)v̂2,k2(t)v̂3,k3(t) dt

≲
∫ s

s0

|k|−1
∑

k1+k2+k3=k
|k1|∼|k2|∼|k3|∼|k|

v̂1,k1(t)v̂2,k2(t)v̂3,k3(t) dt

≲
∫ s

s0

|k|−1
( ∑

|k1|∼|k|
|k2|∼|k|

1
) 1

2
( ∑

|k1|∼|k|
|k2|∼|k|

∣∣|v̂1,k1(t)|2|v̂2,k2(t)|2 |v̂3,k−k1−k2(t)|2
) 1

2
dt

≲
∫ s

s0

( ∑
k1,k2

∣∣|v̂1,k1(t)|2|v̂2,k2(t)|2 |v̂3,k−k1−k2(t)|2
) 1

2
dt.

Therefore,∥∥C∗
4(v1, v2, v3)

∥∥
L2 ≲

(∑
k∈Z

∣∣Fk

[
C∗
4(v1, v2, v3)

]∣∣2) 1
2



16

≲
∫ s

s0

(∑
k

∑
k1,k2

|v̂1,k1(t)|2|v̂2,k2(t)|2 |v̂3,k−k1−k2(t)|2
) 1

2
dt

≲ |s− s0|∥v1∥L∞(s0,s;L2)∥v2∥L∞(s0,s;L2)∥v3∥L∞(s0,s;L2). (3.19)

We see that C∗
j (v1, v2, v3), j = 1, 2, 3, 4 satisfy the estimates in both (1) and (2). It remains

to show that C∗
5(v1, v2, v3) also satisfies the estimates in (1) and (2).

Proof of (1). Via integration by parts, we can write Fk

[
C∗
5(v1, v2, v3)

]
as

Fk

[
C∗
5(v1, v2, v3)

]
=

∑
Γ2(k)
k3 ̸=0

e−itϕ 1

k3ϕ
v̂1,k1(t)v̂2,k2(t)v̂3,k3(t)

∣∣∣s
s0

−
∑
Γ2(k)
k3 ̸=0

∫ s

s0

e−itϕ 1

k3ϕ
∂t
(
v̂1,k1(t)v̂2,k2(t)v̂3,k3(t)

)
ds. (3.20)

We further decompose Γ2(k) into two parts, i.e., Γ2(k) = Γ21(k) ∪ Γ22(k), where

Γ21(k) := {(k1, k2, k3) ∈ Γ : |km|2 ≲ |ϕ| ≪ |km|
15
7 },

Γ22(k) := {(k1, k2, k3) ∈ Γ : |ϕ| ≳ |km|
15
7 }.

Then (3.20) can be written as

Fk

[
C∗
5(v1, v2, v3)

]
=

∑
Γ21(k)
k3 ̸=0

e−itϕ 1

k3ϕ
v̂1,k1(t)v̂2,k2(t)v̂3,k3(t)

∣∣∣s
s0

−
∑

Γ22(k)
k3 ̸=0

e−itϕ 1

k3ϕ
v̂1,k1(t)v̂2,k2(t)v̂3,k3(t)

∣∣∣s
s0

−
∑

Γ21(k)
k3 ̸=0

∫ s

s0

eitϕ
1

k3ϕ
∂t
(
v̂1,k1(t)v̂2,k2(t)v̂3,k3(t)

)
ds

−
∑

Γ22(k)
k3 ̸=0

∫ s

s0

eitϕ
1

k3ϕ
∂t
(
v̂1,k1(t)v̂2,k2(t)v̂3,k3(t)

)
ds

=:
4∑

j=1

Fk

[
C∗
5j(v1, v2, v3)

]
.

Estimates for C∗
51(v1, v2, v3): In the expression of C∗

51(v1, v2, v3), we have (k1, k2, k3) ∈
Γ21(k). According to Lemma 3.3, for (k1, k2, k3) ∈ Γ21(k) there exist j, h ∈ {1, 2, 3}, such
that

|kj + kh| ≪ |km|
5
7 .

Without loss of generality, we may assume that |k2 + k3| ≪ |km|
5
7 , as the other cases can be

treated similarly. Since |ϕ| ≳ |km|2 on Γ21(k), by using a change of variables k̃2 = k2 + k3
and the Cauchy–Schwarz inequality, we obtain∣∣Fk

[
C∗
51(v1, v2, v3)

]∣∣
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≲ max
t∈{s0,s}

∑
k1+k2+k3=k

|k2+k3|≪|km|
5
7 ,|k3|̸=0

|km|−2|k3|−1v̂1,k1(t)v̂2,k2(t)v̂3,k3(t)

≲
∑

|k3|̸=0

∑
|k̃2|≪|km|

5
7

|km|−2|k3|−1Fk−k̃2
[v1(t)] Fk̃2−k3

[v2(t)]Fk3 [v3(t)]

≲
( ∑

|k̃2|≪|km|
5
7 ,k3 ̸=0

|km|−
5
7 |k3|−2

) 1
2
( ∑

k̃2,k3

|km|−
23
7 |Fk−k̃2

[v1(t)]|2|Fk̃2−k3
[v2(t)]|2|Fk3 [v3(t)]|2

) 1
2

≲
( ∑

k1+k2+k3=k

|km|−
23
7 |Fk1 [v1(t)]|2|Fk2 [v2(t)]|2|Fk3 [v3(t)]|2

) 1
2
,

where we have changed the subscripts back to k1, k2 and k3 in the last inequality. For k ̸= 0

and k1 + k2 + k3 = k, it is easy to verify that |km| = max(|k1|, |k2|, |k3|) ≥ ⟨kj⟩ for j = 1, 2, 3.

By taking square of the inequality above and summing up the results for k ∈ Z such that

k ̸= 0, using the property that F0[C∗
51(v1, v2, v3)] = 0, we obtain∥∥C∗

51(v1, v2, v3)
∥∥2
Hσ ≲

∑
k ̸=0

|k|2σ
∑

k1+k2+k3=k

|km|−
23
7 |Fk1 [v1(t)]|2|Fk2 [v2(t)]|2|Fk3 [v3(t)]|2

≲
∑

k1,k2,k3

∣∣⟨k1⟩σ1Fk1 [v1(t)]
∣∣2∣∣⟨k2⟩σ2Fk2 [v2(t)]

∣∣2∣∣⟨k3⟩σ3Fk3 [v3(t)]
∣∣2

≲∥v1∥2L∞(s0,s;Hσ1 )∥v2∥
2
L∞(s0,s;Hσ2 )∥v3∥

2
L∞(s0,s;Hσ3 ), (3.21)

where 0 ≤ σ ≤ 23
14 and −23

14 ≤ σj ≤ 0, j = 1, 2, 3, are any numbers satisfying σ−σ1−σ2−σ3 =
23
14 .

Estimates for C∗
52(v1, v2, v3): Since |ϕ| ≳ |km|

15
7 for (k1, k2, k3) ∈ Γ22(k), it follows that, by

the Cauchy–Schwarz inequality,∣∣Fk

(
C∗
52(v1, v2, v3)

)∣∣
≲ max

t∈{s0,s}

∑
k1+k2+k3=k

|k3|̸=0

|km|−
15
7 |k3|−1Fk1 [v1(t)]Fk2 [v2(t)]Fk3 [v3(t)]

≲
( ∑

|k2|≤|km|,k3 ̸=0

|km|−1|k3|−2
) 1

2
( ∑

|k2|≤|km|,k3 ̸=0

|km|−
23
7

∣∣Fk−k2−k3 [v1(t)]
∣∣2∣∣Fk2 [v2(t)]

∣∣2∣∣Fk3 [v1(t)]
∣∣2) 1

2

≲
( ∑

k1+k2+k3=k

|km|−
23
7

∣∣Fk1 [v1(t)]
∣∣2∣∣Fk2 [v2(t)]

∣∣2∣∣Fk3 [v1(t)]
∣∣2) 1

2
,

where we have changed the subscripts back to k1, k2 and k3 in the last inequality. By taking

square of the inequality above and summing up the results for k ∈ Z such that k ̸= 0, using

the property that F0[C∗
52(v1, v2, v3)] = 0, we obtain∥∥C∗

52(v1, v2, v3)
∥∥
Hσ ≲∥v1∥L∞(s0,s;Hσ1 )∥v2∥L∞(s0,s;Hσ2 )∥v3∥L∞(s0,s;Hσ3 ), (3.22)

where 0 ≤ σ ≤ 23
14 and −23

14 ≤ σj ≤ 0, j = 1, 2, 3, are any numbers satisfying σ−σ1−σ2−σ3 =
23
14 .
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In particular, by choosing σ = σ2 = σ3 = 0 and σ1 = −23
14 in (3.21) and (3.22), we obtain

the following result: ∥∥C∗
51(v1, v2, v3)

∥∥
L2 +

∥∥C∗
52(v1, v2, v3)

∥∥
L2

≲ ∥v1∥
L∞(s0,s;H

− 23
14 )

∥v2∥L∞(s0,s;L2)∥v3∥L∞(s0,s;L2). (3.23)

Since the constraint σ−σ1−σ2−σ3 =
23
14 is symmetric about σ1, σ2 and σ3, it follows that

the supscripts σ1, σ2 and σ3 can be permuted in the right-hand sides of (3.21) and (3.22).

Therefore, the estimate in (3.23) still holds when v1, v2 and v3 are permuted.

Estimates for C∗
53(v1, v2, v3) and C∗

54(v1, v2, v3): Similar as C∗
51(v1, v2, v3) and C∗

52(v1, v2, v3),

the following result holds:

∥C∗
53(v1, v2, v3)∥Hσ + ∥C∗

54(v1, v2, v3)∥Hσ

≲ |s− s0|
(
∥∂tv1∥L∞(s0,s;Hσ1 )∥v2∥L∞(s0,s;Hσ2 )∥v3∥L∞(s0,s;Hσ3 )

+ ∥v1∥L∞(s0,s;Hσ2 )∥∂tv2∥L∞(s0,s;Hσ1 )∥v3∥L∞(s0,s;Hσ3 )

+ ∥v1∥L∞(s0,s;Hσ3 )∥v2∥L∞(s0,s;Hσ2 )∥∂tv3∥L∞(s0,s;Hσ1 )

)
,

where 0 ≤ σ ≤ 23
14 and −23

14 ≤ σj ≤ 0, j = 1, 2, 3, are any numbers satisfying σ−σ1−σ2−σ3 =
23
14 . In particular, by choosing σ1 = −23

14 and σ = σ2 = σ3 = 0, we obtain

∥C∗
53(v1, v2, v3)∥L2 + ∥C∗

54(v1, v2, v3)∥L2

≲ |s− s0|
(
∥∂tv1∥

L∞(s0,s;H
− 23

14 )
∥v2∥L∞(s0,s;L2)∥v3∥L∞(s0,s;L2)

+ ∥v1∥L∞(s0,s;L2)∥∂tv2∥L∞(s0,s;H
− 23

14 )
∥v3∥L∞(s0,s;L2)

+ ∥v1∥L∞(s0,s;L2)∥v2∥L∞(s0,s;L2)∥∂tv3∥L∞(s0,s;H
− 23

14 )

)
. (3.24)

Overall, the estimates of C∗
j (v1, v2, v3), j = 1, 2, 3, 4, in (3.18) and (3.19), and the estimates

of C∗
5j(v1, v2, v3), j = 1, 2, 3, 4, in (3.23) and (3.24), imply the first result of Proposition 3.4.

Proof of (2). We further decompose C∗
5(v1, v2, v3) into the low-frequency and high-frequency

parts as follows:

C∗
5(v1, v2, v3) = P≤|s−s0|−αC∗

5(v1, v2, v3) + P>|s−s0|−αC∗
5(v1, v2, v3), (3.25)

where we have used the projections P≤N and P>N defined in Section 2.3 with N = |s−s0|−α.

The first part in (3.25) can be estimated by using Bernstein’s inequality in (2.1), which

converts the L2 norm to the H−b(α) norm, i.e.,∥∥P≤|s−s0|−αC∗
5(v1, v2, v3)

∥∥
L2 ≲ |s− s0|−b(α)α

∥∥C∗
5(v1, v2, v3)

∥∥
H−b(α) ,

where b(α) is chosen in the following way:

b(α) =



1

2
+ when α = 0

1

2
− α when α ∈

(
0,

1

2

]
0 when α ∈

(1
2
, 1
]
.
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For time-independent functions vj , j = 1, 2, 3, it is straightforward to verify (by the Cauchy–

Schwartz inequality and Sobolev embedding inequalities) that this choice of b(α) guarantees

the following inequality:∥∥C∗
5(v1, v2, v3)

∥∥
H−b(α) =

∥∥∥∥∫ s

s0

∑
Γ2(k)
k3 ̸=0

e−itϕ(ik3)
−1v̂1,k1 v̂2,k2 v̂3,k3 dt

∥∥∥∥
H−b(α)

≲ |s− s0|∥v1∥Hα∥v2∥Hα∥v3∥Hα .

Combining the two inequalities above, we obtain∥∥P≤|s−s0|−αC∗
5(v1, v2, v3)

∥∥
L2 ≲|s− s0|1−b(α)α∥v1∥Hα∥v2∥Hα∥v3∥Hα .

Since 1− b(α)α ≥ α, it follows that∥∥P≤|s−s0|−αC∗
5(v1, v2, v3)

∥∥
L2 ≲ |s− s0|α∥v1∥Hα∥v2∥Hα∥v3∥Hα . (3.26)

For time-independent functions v1, v2 and v3, we have C∗
53(v1, v2, v3) = C∗

54(v1, v2, v3) = 0

(as they contain the time derivatives of the functions v1, v2 and v3). Therefore, the second

part in (3.25) can be estimated by using the decomposition

C∗
5 (v1, v2, v3) = C∗

51(v1, v2, v3) + C∗
52(v1, v2, v3).

According to Bernstein’s inequality, as shown in (2.1), we have

∥P>|s−s0|−αC∗
5j(v1, v2, v3)∥L2 ≲ |s− s0|

23
14

α∥C∗
5j(v1, v2, v3)∥H 23

14

≲ |s− s0|α∥v1∥L2∥v2∥L2∥v3∥L2 for j = 1, 2,

where the last inequality follows from (3.21) and (3.22) with σ = 23
14 and σ1 = σ2 = σ3 = 0.

This implies that

∥P>|s−s0|−αC∗
5(v1, v2, v3)∥L2 ≲ |s− s0|α∥v1∥L2∥v2∥L2∥v3∥L2 . (3.27)

Combining (3.26) and (3.27), we obtain the second result of Proposition 3.4. □

4. Construction of the low-regularity integrator

For the simplicity of notation, we decompose the phase function ϕ = k3− k31 − k32 − k33 into

the following two parts:

ϕ = ϕ1 + ϕ2,

where

ϕ1 := (k1 + k2)
3 − k31 − k32 = 3k1k2(k1 + k2), (4.1)

ϕ2 := k3 − k33 − (k1 + k2)
3 = 3kk3(k1 + k2). (4.2)

Since P0u
0 = 0 (as assumed in Theorem 1.1 and explained in Remark 1.1), the conservation

law
∫
T u(t, x)dx =

∫
T u

0(x)dx of the KdV equation implies that P0u(t, ·) = 0 for all t ≥ 0. As
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a result, the twisted function v(t, ·) := et∂
3
xu(t, ·) also satisfies P0v(t, ·) = 0 for all t ≥ 0, and

the KdV equation in (11.1) can be written as

∂tv(t, x) =
1

2
et∂

3
x∂x

[
e−t∂3

xv(t, x)
]2
, t ≥ 0 and x ∈ T. (4.3)

We denote v(t) = v(t, ·) for abbreviation.
Let tn = nτ , n = 0, 1, . . . , N = T/τ be a partition of the time interval [0, T ] with stepsize

τ . Then the solution of (4.3) can be expressed in terms of the Newton–Leibniz formula, i.e.,

v(s) = v(tn) +
1

2

∫ s

tn

et∂
3
x∂x

(
e−t∂3

xv(t)
)2

dt

= v(tn) + Fn[s; v(tn)] + rn(s) for s ∈ [tn, tn+1], (4.4)

where

Fn[s; v(tn)] :=
1

2

∫ s

tn

et∂
3
x∂x

(
e−t∂3

xv(tn)
)2
dt (4.5)

=
1

6
es∂

3
xP

[(
e−s∂3

x∂−1
x v(tn)

)2]
− 1

6
etn∂

3
xP

[(
e−tn∂3

x∂−1
x v(tn)

)2]
, (4.6)

rn(s) :=
1

2

∫ s

tn

et∂
3
x∂x

[
e−t∂3

x
(
v(t)− v(tn)

)
· e−t∂3

x
(
v(t) + v(tn)

)]
dt, (4.7)

where the expression in (4.6) is given by Lemma 2.2. By using the Newton–Leibniz formula

again, i.e.,

v(tn+1) = v(tn) +
1

2

∫ tn+1

tn

es∂
3
x∂x

(
e−s∂3

xv(s)
)2

ds, (4.8)

and substituting expression (4.4) into (4.8), we obtain

v(tn+1) = v(tn) +
1

2

∫ tn+1

tn

es∂
3
x∂x

(
e−s∂3

x
[
v(tn) + Fn[s; v(tn)] + rn(s)

])2
ds

= v(tn) + Fn
[
tn+1; v(tn)

]
+An[v(tn)] +Rn

1 [v], (4.9)

where An[v(tn)] and the remainder Rn
1 [v] are defined by

An[v(tn)] :=

∫ tn+1

tn

es∂
3
x∂x

(
e−s∂3

xv(tn) e
−s∂3

xFn[s; v(tn)]
)
ds, (4.10)

Rn
1 [v] :=

1

2

∫ tn+1

tn

es∂
3
x∂x

(
e−s∂3

xFn[s; v(tn)]
)2

ds

+
1

2

∫ tn+1

tn

es∂
3
x∂x

(
e−s∂3

xrn(s) e
−s∂3

x
[
2v(tn) + 2Fn[s; v(tn)] + rn(s)

])
ds. (4.11)

The third term on the right-hand side of (4.9) can be calculated by using the integration-

by-parts formula in Lemma 2.2, i.e.,

An[v(tn)] =
1

3
etn+1∂3

xP
(
e−tn+1∂3

x∂−1
x v(tn) e

−tn+1∂3
x∂−1

x Fn
[
tn+1; v(tn)

])
− 1

3

∫ tn+1

tn

es∂
3
xP

(
e−s∂3

x∂−1
x v(tn) e

−s∂3
x∂−1

x ∂sF
n
[
s; v(tn)

] )
ds
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=
1

3
etn+1∂3

xP
(
e−tn+1∂3

x∂−1
x v(tn) e

−tn+1∂3
x∂−1

x Fn
[
tn+1; v(tn)

])
− 1

6

∫ tn+1

tn

es∂
3
xP

(
e−s∂3

x∂−1
x v(tn) P

[(
e−s∂3

xv(tn)
)2] )

ds

=
1

3
etn+1∂3

xP
(
e−tn+1∂3

x∂−1
x v(tn) e

−tn+1∂3
x∂−1

x Fn
[
tn+1; v(tn)

])
+

1

6
τ∂−1

x v(tn) P0

[
v(tn)

2
]
+Bn[v(tn)], (4.12)

where

Bn[v(tn)] := −P
∫ tn+1

tn

1

6
es∂

3
x

(
e−s∂3

x∂−1
x v(tn) e

−s∂3
xv(tn) e

−s∂3
xv(tn)

)
ds.

We approximate Bn[v(tn)] by considering its Fourier coefficient, i.e., F0

[
Bn[v(tn)]

]
= 0 and

for k ̸= 0

Fk

[
Bn[v(tn)]

]
= −

∑
k1+k2+k3=k
k1,k2,k3 ̸=0

1

6

∫ tn+1

tn

e−isϕ 1

ik1
v̂k1(tn) v̂k2(tn) v̂k3(tn) ds

= −
∑

k1+k2+k3=k
k1,k2,k3 ̸=0

1

18i

∫ tn+1

tn

e−isϕ

(
1

k1
+

1

k2
+

1

k3

)
v̂k1(tn) v̂k2(tn) v̂k3(tn) ds

= −
∑

k1+k2+k3=k
k1,k2,k3 ̸=0

1

18i

∫ tn+1

tn

e−isϕ

(
1

k1
+

1

k2
+

1

k3
− 1

k

)
v̂k1(tn) v̂k2(tn) v̂k3(tn) ds

−
∑

k1+k2+k3=k
k1,k2,k3 ̸=0

1

18ik

∫ tn+1

tn

e−isϕv̂k1(tn) v̂k2(tn) v̂k3(tn) ds

= −
∑

k1+k2+k3=k
k1,k2,k3 ̸=0

1

18i

∫ tn+1

tn

e−isϕ ϕ

3kk1k2k3
v̂k1(tn) v̂k2(tn) v̂k3(tn) ds

−
∑

k1+k2+k3=k
k1,k2,k3 ̸=0

1

18ik

∫ tn+1

tn

e−isϕv̂k1(tn) v̂k2(tn) v̂k3(tn) ds,

where we have used the following relation (which was discovered in [31]):

1

k1
+

1

k2
+

1

k3
− 1

k
=

ϕ

3kk1k2k3
.

Therefore, by applying the inverse Fourier transform, we have

Bn[v(tn)] = − 1

54
es∂

3
x∂−1

x

[(
e−s∂3

x∂−1
x v(tn)

)3]∣∣∣s=tn+1

s=tn
+ Sn[v(tn)], (4.13)

with

Sn[v(tn)] = −F−1
k

∑
k1+k2+k3=k

1

18ik
e−itnϕv̂k1(tn) v̂k2(tn) v̂k3(tn)

∫ τ

0
e−isϕds.
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In view of the expressions of ϕ1 and ϕ2 in (4.1)–(4.2), if k1+k2 = 0 then ϕ = 0. Therefore, we

can decompose the expression of Sn[v(tn)] into the following two parts (according to whether

k1 + k2 is zero or not):

Sn[v(tn)] = −F−1
k

∑
k1+k2=0

τ

18ik
v̂k1(tn) v̂k2(tn) v̂k(tn)

−F−1
k

∑
k1+k2+k3=k
k1+k2 ̸=0

1

18ik
e−itnϕv̂k1(tn) v̂k2(tn) v̂k3(tn)

∫ τ

0
e−isϕds.

Now we use the following formula:∫ τ

0
e−isϕ ds = τMτ (e

−isϕ1e−isϕ2) = τMτ

(
e−isϕ1

)
Mτ

(
e−isϕ2

)
+ τη(τ, k, k1, k2, k3), (4.14)

where we have used the notation Mτ (f) = τ−1
∫ τ
0 f(t)dt defined in Section 3.2, with

η(τ, k, k1, k2, k3) := Mτ (e
−isϕ1e−isϕ2)−Mτ

(
e−isϕ1

)
Mτ

(
e−isϕ2

)
. (4.15)

Substituting (4.14) into the expression of Sn[v(tn)], we obtain

Sn[v(tn)] = − 1

18
τ∂−1

x v(tn) P0

[
v(tn)

2
]

−F−1
k

∑
k1+k2+k3=k
k1+k2 ̸=0

τ

18ik
Mτ

(
e−isϕ1

)
Mτ

(
e−isϕ2

)
e−itnϕ1e−itnϕ2 v̂k1(tn) v̂k2(tn) v̂k3(tn)

+Rn
2 [v(tn)], (4.16)

where the remainder Rn
2 [v(tn)] is given by

Rn
2 [v(tn)] = −F−1

k

∑
k1+k2+k3=k
k1+k2 ̸=0

τ

18ik
e−itnϕη(τ, k, k1, k2, k3)v̂k1(tn)v̂k2(tn)v̂k3(tn)ds, (4.17)

which will be dropped in the numerical scheme. The other terms on the right-hand side of

(4.16) will be kept in the numerical scheme.

By applying Fourier transform to (4.6) we can obtain F0

[
∂−1
x Fn[tn+1; v(tn)]

]
= 0 and the

following expression for k̃ ̸= 0:

Fk̃

[
∂−1
x Fn[tn+1; v(tn)]

]
=

1

6

∑
k1+k2=k̃

e−iτ(k̃3−k31−k32) − 1

ik1ik2ik̃
e−itn(k̃3−k31−k32)v̂k1(tn)v̂k2(tn)

=
1

2

∑
k1+k2=k̃

e−iτ3k1k2(k1+k2) − 1

−i3k1k2(k1 + k2)
e−itn3k1k2(k1+k2)v̂k1(tn)v̂k2(tn)

=
1

2

∑
k1+k2=k̃

e−iτϕ1 − 1

−iϕ1
e−itnϕ1 v̂k1(tn)v̂k2(tn)

=
τ

2

∑
k1+k2=k̃

Mτ

(
e−isϕ1

)
e−itnϕ1 v̂k1(tn)v̂k2(tn), (4.18)
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where we have used the notation ϕ1 = 3k1k2(k1 + k2) and the following relation in the last

equality:

Mτ

(
e−isϕ1

)
= τ−1

∫ τ

0
e−isϕ1ds =

e−iτϕ1 − 1

−iτϕ1
.

Then, substituting (4.18) into the right-hand side of (4.16) and using the notation ϕ2 =

k3 − k33 − (k1 + k2)
3 = 3kk3(k1 + k2), we obtain

Sn[v(tn)] = − 1

18
τ∂−1

x v(tn) P0

[
v(tn)

2
]

−F−1
k

1

9ik

∑
k̃+k3=k
k̃ ̸=0

τ

2

∑
k1+k2=k̃

Mτ

(
e−isϕ1

)
e−itnϕ1 v̂k1(tn)v̂k2(tn)

e−iτϕ2 − 1

−iτϕ2
e−itnϕ2 v̂k3(tn)

+Rn
2 [v(tn)]

= − 1

18
τ∂−1

x v(tn) P0

[
v(tn)

2
]

−F−1
k

1

9ik

∑
k̃+k3=k

eitnk̃
3Fk̃

[
∂−1
x Fn[tn+1; v(tn)]

]
e−itnk3 e

−iτ(k3−k̃3−k33) − 1

−iτ3kk̃k3
eitnk

3
3 v̂k3(tn)

+Rn
2 [v(tn)]

= − 1

18
τ∂−1

x v(tn) P0

[
v(tn)

2
]

− 1

27τ
es∂

3
x∂−2

x

[
e−s∂3

x∂−2
x Fn[tn+1; v(tn)] e

−s∂3
x∂−1

x v(tn)
]∣∣∣s=tn+1

s=tn
+Rn

2 [v(tn)].

(4.19)

Combining the expressions of An[v(tn)], B
n[v(tn)] and Sn[v(tn)] in (4.12), (4.13) and (4.19),

respectively, we obtain

An[v(tn)] = Hn[v(tn)] +Rn
2 [v(tn)], (4.20)

with

Hn[v(tn)] =
1

3
etn+1∂3

xP
(
e−tn+1∂3

x∂−1
x v(tn) e

−tn+1∂3
x∂−1

x Fn
[
tn+1; v(tn)

])
+

1

9
τ∂−1

x v(tn) P0

[
v(tn)

2
]

− 1

54
es∂

3
x∂−1

x

[(
e−s∂3

x∂−1
x v(tn)

)3]∣∣∣s=tn+1

s=tn

− 1

27τ
es∂

3
x∂−2

x

[
e−s∂3

x∂−2
x Fn

[
tn+1; v(tn)

]
e−s∂3

x∂−1
x v(tn)

]∣∣∣s=tn+1

s=tn
.

Then, substituting (4.20) into (4.9), we obtain

v(tn+1) = v(tn) + Fn[tn+1; v(tn)] +Hn[v(tn)] +Rn
1 [v] +Rn

2 [v(tn)]. (4.21)

By dropping the remainders Rn
1 [v] and Rn

2 [v(tn)] in (4.21), we obtain the following time-

stepping method:

vn+1 = vn + Fn[tn+1; v
n] +Hn[vn], (4.22)



24

where vn denotes the numerical approximation to v(tn). After substituting vn = etn∂
3
xun into

(4.22), we obtain

un+1 = e−τ∂3
xun + e−tn+1∂3

xFn
[
tn+1; e

tn∂3
xun

]
+ e−tn+1∂3

xHn[etn∂
3
xun], (4.23)

which is equivalent to the numerical scheme in (1.4), where

F [un] = e−tn+1∂3
xFn

[
tn+1; e

tn∂3
xun

]
and H[un] = e−tn+1∂3

xHn[etn∂
3
xun].

The rest of this article is devoted to the proof of Theorem 1.1 on the convergence with order

γ (up to a logarithmic factor) of the proposed method for Hγ initial data with γ ∈ (0, 1].

Remark 4.1. Dropping the remainder term rn(s) in (4.4) leads to the low-regularity inte-

grator in [6], with the following estimate:

∥rn(s)∥L2 =
1

2

∥∥∥∥∫ s

tn

et∂
3
x∂x

[
e−t∂3

x
(
v(t)− v(tn)

)
· e−t∂3

x
(
v(t) + v(tn)

)]
dt

∥∥∥∥
L2

≲ τ2 sup
t∈[tn,tn+1]

∥v(t)∥3H2 .

This implies that the low-regular integrator in [6] requires u ∈ C([0, T ];H2) to have first-

order convergence in time. It is therefore conceivable that this low-regularity scheme cannot

achieve γ order convergence when the initial value is in Hγ for γ ∈ (0, 1]. Indeed, by using

integration by parts, we know that the regularity of the time-integral terms like (4.7) can

be significantly improved at the expense of an order τ factor. Therefore, in this paper, an

iterative strategy is adopted in (4.9) with the aim of requiring less differentiability rather

than higher convergence rates. In this way, the remainder Rn
1 [v] in (4.9) can be estimated

with less regularity requirement than rn(s). This approach was used in [31, Lemma 3.6],

where it has been proved that ∥Rn
1 [v]∥Hγ ≤ Cτ2, with a constant C depending only on

supt∈[tn,tn+1] ∥v∥Hγ+1 for γ > 1
2 . However, this regularity requirement is still too strong for

approximating solutions below H1.

In order to achieve optimal-order convergence in L2 (up to a logarithmic factor) for ap-

proximating solutions below H1, a new averaging approximation of the exponential phase

function in (4.14) is proposed to ensure that the remainder term Rn
2 [v] arising from the nu-

merical approximation of An[v(tn)] in (4.9) has an optimal-order error estimate. Meanwhile,

in order to establish the stability estimate under the very rough functional space, a new con-

vergence analysis framework is proposed in this paper, which is based on the reduction of

the proposed numerical scheme to the perturbed KdV equation. For this reason, we do not

explicitly give an error estimate for the remainder term Rn
1 [v] in (4.9), but rather convert this

part of discussion to an estimate of R∗
1(t) in Subsection 7.1.

5. Reduction to a perturbed KdV equation

By using the twisted function v(t) = et∂
3
xu(t), the KdV equation can be equivalently

formulated into the following integral form:

v(t) = v0 +
1

2

∫ t

0
es∂

3
x∂x

(
e−s∂3

xv(s)
)2

ds for t ∈ [0, T ]. (5.1)
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In order to establish stability estimates for the numerical scheme under low-regularity condi-

tions below H1 (especially below H
1
2 ), we shall rewrite the numerical scheme in (4.22) as a

perturbation of the integral equation in (5.1).

By using the relation Hn[vn] = An[vn] − Rn
2 [v

n], as shown in (4.20), we first rewrite the

numerical scheme in (4.22) as

vn+1 = vn + Fn[tn+1; v
n] +An[vn]−Rn

2 [v
n]. (5.2)

In view of the definitions of Fn[tn+1; v
n] and An[vn] in (4.5) and (4.10), respectively, the

following relation holds:

Fn
[
tn+1; v

n
]
+An[vn] =

1

2

∫ tn+1

tn

es∂
3
x∂x

(
e−s∂3

xvn
)2

ds

+

∫ tn+1

tn

es∂
3
x∂x

(
e−s∂3

xvn · e−s∂3
xFn[s; vn]

)
ds

=
1

2

∫ tn+1

tn

es∂
3
x∂x

(
e−s∂3

x

(
vn + Fn[s; vn]

))2
ds

− 1

2

∫ tn+1

tn

es∂
3
x∂x

(
e−s∂3

xFn[s; vn]
)2

ds.

Substituting this expression into (5.2), we obtain

vn+1 = vn +
1

2

∫ tn+1

tn

es∂
3
x∂x

(
e−s∂3

x

(
vn + Fn[s; vn]

))2
ds

− 1

2

∫ tn+1

tn

es∂
3
x∂x

(
e−s∂3

xFn[s; vn]
)2

ds−Rn
2 [v

n]. (5.3)

We define a continuous function V (t), t ∈ [0, T ], which has the following expression for

t ∈ [tn, tn+1]:

V (t) = vn +
1

2

∫ t

tn

es∂
3
x∂x

(
e−s∂3

x

(
vn + Fn[s; vn]

))2
ds

− t− tn
τ

[
1

2

∫ tn+1

tn

es∂
3
x∂x

(
e−s∂3

xFn[s; vn]
)2

ds+Rn
2 [v

n]

]
. (5.4)

In particular, V (tn) = vn for n = 0, 1, · · · , N . For t ∈ [tn, tn+1] we further rewrite (5.4) as

V (t) = vn +
1

2

∫ t

tn

es∂
3
x∂x

(
e−s∂3

xV (s)
)2

ds

− 1

2

∫ t

tn

es∂
3
x∂x

(
e−s∂3

x
(
V (s)− vn − Fn[s; vn]

)
· e−s∂3

x
(
V (s) + vn + Fn[s; vn]

))
ds

− t− tn
τ

[
1

2

∫ tn+1

tn

es∂
3
x∂x

(
e−s∂3

xFn[s; vn]
)2

ds+Rn
2 [v

n]

]
, (5.5)

and then iterate this expression for n = 0, 1, . . . . This yields the following integral equation

in the continuous form:

V (t) = v0 +
1

2

∫ t

0
es∂

3
x∂x

(
e−s∂3

xV (s)
)2

ds+R(t) for t ∈ (tn, tn+1], (5.6)
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with a remainder

R(t) =− 1

2

∫ t

tn

es∂
3
x∂x

(
e−s∂3

x
(
V (s)− vn − Fn[s; vn]

)
· e−s∂3

x
(
V (s) + vn + Fn[s; vn]

))
ds

− t− tn
τ

[
1

2

∫ tn+1

tn

es∂
3
x∂x

(
e−s∂3

xFn[s; vn]
)2

ds+Rn
2 [v

n]

]
− 1

2

n−1∑
j=0

∫ tj+1

tj

es∂
3
x∂x

(
e−s∂3

x
(
V (s)− vj − F j

[
s; vj

])
· e−s∂3

x
(
V (s) + vj + F j [s; vj ]

))
ds

−
n−1∑
j=0

[
1

2

∫ tj+1

tj

es∂
3
x∂x

(
e−s∂3

xF j [s; vj ]
)2

ds+Rj
2[v

j ]

]
=: R∗

1(t) +R∗
2(t) +R∗

3(t) +R∗
4(t) for t ∈ (tn, tn+1]. (5.7)

The integral equation in (5.6) can be viewed as a perturbation of (5.1) by the remainder

R(t). This continuous integral formulation of the numerical scheme allows us to apply low-

frequency and high-frequency decomposition in estimating the stability with respect to the

perturbation, which can significantly weaken the regularity conditions compared with the

energy approach of stability estimates used in the literature for the numerical analysis of the

KdV equation.

In order to analyze the error of the numerical approximations, we consider the following

continuous and discrete error functions:

e(t) := v(t)− V (t) for t ∈ [0, T ], and en := v(tn)− vn,

which satisfy that e(tn) = en. Then, by comparing (5.1) and (5.6), we obtain the following

error equation:

e(t) = e0 +

∫ t

0
es∂

3
x∂x

(
e−s∂3

xe(s) e−s∂3
x
(
v(s)− 1

2
e(s)

))
ds−R(t) for t ∈ [0, T ]. (5.8)

To simplify the notation, we rewrite (5.8) as

e(t) = e0 + F(t)−R(t), (5.9)

with

F(t) :=

∫ t

0
es∂

3
x∂x

(
e−s∂3

xe(s) e−s∂3
x

(
v(s)− 1

2
e(s)

))
ds. (5.10)

In the next two sections, we present estimates for the local error Rn
2 [v

n] and the global

remainder R(t).

6. Estimates for the local error Rn
2 [v

n]

As an extended notation of the local error Rn
2 [v

n] defined in (4.17), we introduce the

following trilinear form:

Rn
2 [v1, v2, v3] = −F−1

k

∑
k1+k2+k3=k
k1+k2 ̸=0

τ

18ik
e−itnϕη(τ, k, k1, k2, k3)v̂1,k1 v̂2,k2 v̂3,k3 , (6.1)
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where the symbol η(τ, k, k1, k2, k3) is defined in (4.15). Thus Rn
2 [v

n] = Rn
2 [v

n, vn, vn]. The

main result of this section is the following proposition, where the estimate in (2) is not sharp

(in fact only one of the three functions v1, v2 and v3 need to be in Hγ) but is sufficient for

the purpose of this article.

Proposition 6.1. For the function Rn
2 [v1, v2, v3] defined in (6.1), the following estimates

hold:

(1) If v1, v2, v3 ∈ Hγ with γ ∈ [0, 1], then∥∥Rn
2 [v1, v2, v3]

∥∥
L2 ≲ τ1+γ ln(1/τ)∥v1∥Hγ∥v2∥Hγ∥v3∥Hγ .

(2) If v1 ∈ L2, v2 ∈ Hγ , v3 ∈ Hγ for some γ > 0, then∥∥Rn
2 [v1, v2, v3]

∥∥
L2 ≲ τ∥v1∥L2∥v2∥Hγ∥v3∥Hγ .

Moreover, the same result holds when v1, v2, v3 are permuted on the right-hand side.

Proof. For the simplicity of notation, we simply write Rn
2 = Rn

2 [v1, v2, v3] throughout the

proof of Proposition 6.1. According to the definition in (6.1), the Fourier coefficients of Rn
2

have the following expressions: F0[R
n
2 ] = 0 and

Fk[R
n
2 ] = −

∑
k1+k2+k3=k
k1+k2 ̸=0

τ

18ik
e−itnϕη(τ, k, k1, k2, k3)v̂1,k1 v̂2,k2 v̂3,k3 for k ̸= 0.

Similarly as the proof of Proposition 3.4, we may assume that v̂j,k ≥ 0 for j = {1, 2, 3} and

k ∈ Z. Otherwise we can replace v̂j,k by |v̂j,k| in the following argument and consider the

functions ṽj := F−1
k [ |v̂j,k| ], as in the proof of Lemma 3.1.

The proof of Proposition 6.1 relies on the following technical estimate for η(k, k1, k2, k3).

Lemma 6.2. Let (k, k1, k2, k3) ∈ Z4 with k1 + k2 + k3 = k, and denote by k∗1, k
∗
2, k

∗
3 a

permutation of k1, k2, k3 satisfying

|k∗1| ≥ |k∗2| ≥ |k∗3|.

Then the following estimate holds for γ̃ ∈ [0, 1]:

⟨k⟩−1
∣∣η(τ, k, k1, k2, k3)∣∣ ≲ {

τ γ̃ |k|−
1
2 |k∗1|γ̃ |k∗2|γ̃ |k∗3|γ̃−

1
2 + τ γ̃ |k∗1|γ̃ |k∗2|γ̃−

1
2 |k∗3|γ̃−

1
2 if kk1k2k3 ̸= 0,

0 if kk1k2k3 = 0.

Proof. In the case kk1k2k3 = 0 either ϕ1 = 0 or ϕ2 = 0, which together with Lemma 3.2

imply that η(τ, k, k1, k2, k3) = 0. Therefore, we focus on the case kk1k2k3 ̸= 0 in the proof.

According to Lemma 3.2, for any γj ∈ [0, γ̃] such that γ1 + γ2 = γ̃, the following result

holds: ∣∣η(τ, k, k1, k2, k3)∣∣ ≲ (
τ |ϕ1|)γ1

(
τ |ϕ2|)γ2

|ϕ2|1−γ̃

|ϕ1|1−γ̃
= τ γ̃ |ϕ1|γ1+γ̃−1|ϕ2|γ2+1−γ̃ .

In particular, setting γ1 = 0 and γ2 = γ̃ yields∣∣η(τ, k, k1, k2, k3)∣∣ ≲ τ γ̃ |ϕ1|γ̃−1|ϕ2|.
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Since the estimate in Lemma 3.2 is symmetric about α = ϕ1 and β = ϕ2, it follows that we

can switch ϕ1 and ϕ2 in the inequality above, i.e.,∣∣η(τ, k, k1, k2, k3)∣∣ ≲ τ γ̃ |ϕ1||ϕ2|γ̃−1.

By considering the geometric average of the two inequalities above, we obtain∣∣η(τ, k, k1, k2, k3)∣∣ ≲ τ γ̃ |ϕ1|a|ϕ2|b for all a, b ∈ [γ̃ − 1, 1] such that a+ b = γ̃.

By the definitions of ϕ1 and ϕ2 in (4.1)–(4.2), this implies that

|k|−1
∣∣η(τ, k, k1, k2, k3)∣∣ ≲ τ γ̃ |k|−1+b|k1|a|k2|a|k3|b|k1 + k2|γ̃ . (6.2)

Since the right-hand side of (6.2) is symmetric about k1 and k2, without loss of generality,

we may assume that |k1| ≥ |k2| (the case |k2| ≥ |k1| can be considered similarly by switching

k1 and k2 in the estimates below).

We consider the following several cases regarding whether |k3| is larger or smaller than |k1|.
(i) |k3| ≫ |k1|: In this case, since we have already assumed that |k1| ≥ |k2|, there must

be |k| ∼ |k3| ≳ |k1| ≥ |k2|. This is classified as Case 1 below.

(ii) |k3| ∼ |k1|: In this case, |k| = |k1 + k2 + k3| ≲ |k1|. There are two subcases:

Case 1: |k| ∼ |k3| ≳ |k1| ≥ |k2|.
Case 2: |k3| ∼ |k1| ≫ |k|.

(iii) |k3| ≪ |k1|: In this case, |k| = |k1 + k2 + k3| ≲ |k1|, and there are two subcases:

Case 3: |k| ∼ |k1| ≫ |k3|.
Case 4: |k1| ≫ |k|, |k3|. In this case, |k2| = |k1 + k3 − k| ∼ |k1|.

In the following, we estimate |k|−1
∣∣η(τ, k, k1, k2, k3) for the four different cases respectively.

Case 1: |k| ∼ |k3| ≳ |k1| ≥ |k2|. In this case, |k∗1| ∼ |k| ∼ |k3| and |k∗2| ∼ |k1|, |k∗3| ∼ |k2|.
By choosing a = 1 and b = γ̃ − 1 in (6.2) and using the relation |k1 + k2| ≲ |k1|, we obtain

|k|−1
∣∣η(τ, k, k1, k2, k3)∣∣ ≲ τ γ̃ |k|−2+γ̃ |k1|1+γ̃ |k2||k3|γ̃−1

= τ γ̃ |k|−
1
2 |k3|γ̃ |k1|γ̃ |k2|γ̃−

1
2 · |k|−

3
2
+γ̃ |k3|−1|k1||k2|

3
2
−γ̃

≲ τ γ̃ |k|−
1
2 |k3|γ̃ |k1|γ̃ |k2|γ̃−

1
2

∼ τ γ̃ |k|−
1
2 |k∗1|γ̃ |k∗2|γ̃ |k∗3|γ̃−

1
2 .

Case 2: |k3| ∼ |k1| ≫ |k|. In this case, |k∗1| ∼ |k∗2| ∼ |k1| ∼ |k3| and |k∗3| ∼ |k2|. By choosing

a = γ̃ − 1
2 and b = 1

2 in (6.2) and using the relation |k1 + k2| ≲ |k1|, we obtain

|k|−1
∣∣η(τ, k, k1, k2, k3)∣∣ ≲ τ γ̃ |k|−

1
2 |k1|2γ̃ |k2|γ̃−

1
2 ∼ τ γ̃ |k|−

1
2 |k∗1|γ̃ |k∗2|γ̃ |k∗3|γ̃−

1
2 .

Case 3: |k| ∼ |k1| ≫ |k3|. In this case, |k∗1| ∼ |k| ∼ |k1| and k∗2 = k2 or k3. We may assume

that k∗2 = k2 and k∗3 = k3 as the other case can be treated in the same way. By choosing

a = γ̃ − 1
2 , b =

1
2 in (6.2) and using the relation |k1 + k2| ≲ |k1|, we obtain

|k|−1
∣∣η(τ, k, k1, k2, k3)∣∣ ≲ τ γ̃ |k|−

1
2 |k1|γ̃−

1
2 |k2|γ̃−

1
2 |k3|

1
2 |k1|γ̃

≲ τ γ̃ |k1|−1+2γ̃ |k2|γ̃−
1
2 |k3|

1
2

≲ τ γ̃ |k1|γ̃ |k2|γ̃−
1
2 |k3|γ̃−

1
2 ∼ τ γ̃ |k∗1|γ̃ |k∗2|γ̃−

1
2 |k∗3|γ̃−

1
2 .
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Case 4: |k1| ∼ |k2| ≫ |k|, |k3|. In this case, |k∗1| ∼ |k∗2| ∼ |k1| ∼ |k2| and |k∗3| ∼ |k3|. By

choosing a = γ̃ − 1 and b = 1 in (6.2), we obtain

|k|−1
∣∣η(τ, k, k1, k2, k3)∣∣ ≲ τ γ̃ |k1|3γ̃−2|k3| ≲ τ γ̃ |k1|γ̃ |k2|γ̃−

1
2 |k3|γ̃−

1
2 · |k1|γ̃−

3
2 |k3|

3
2
−γ̃

≲ τ γ̃ |k1|γ̃ |k2|γ̃−
1
2 |k3|γ̃−

1
2 ∼ τ γ̃ |k∗1|γ̃ |k∗2|γ̃−

1
2 |k∗3|γ̃−

1
2 .

Finally, by collecting the estimates in the four cases above, we obtain the desired result. □

We continue with the proof of Proposition 6.1. Without loss of generality, we may assume

that |k1| ≥ |k2| ≥ |k3| in applying Lemma 6.2, which implies the following result for γ̃ ∈ [0, 1]:

∣∣Fk[R
n
2 ]
∣∣ ≲


τ1+γ̃

∑
k1+k2+k3=k

(
|k|−

1
2 |k1|γ̃ |k2|γ̃ |k3|γ̃−

1
2 + |k1|γ̃ |k2|γ̃−

1
2 |k3|γ̃−

1
2
)
v̂1,k1 v̂2,k2 v̂3,k3

if kk1k2k3 ̸= 0,

0 if kk1k2k3 = 0.

(6.3)

In view of (6.3), we only need to consider the case kk1k2k3 ̸= 0 when estimating |Fk[R
n
2 ]|.

Proof of (1): In the case γ ∈ (0, 1], we choose γ̃ = γ − θ in (6.3) with θ ∈ [0, γ2 ], i.e.,∣∣Fk[R
n
2 ]
∣∣ ≲ τ1+γτ−θ

∑
k1+k2+k3=k

|k|−
1
2 |k1|γ−θ|k2|γ−θ|k3|γ−

1
2
−θv̂1,k1 v̂2,k2 v̂3,k3

+ τ1+γτ−θ
∑

k1+k2+k3=k

|k1|γ−θ|k2|γ−
1
2
−θ|k3|γ−

1
2
−θv̂1,k1 v̂2,k2 v̂3,k3

≲ τ1+γτ−θ
∑

k1+k2+k3=k

|k|−
1
2
−θ|k3|−

1
2
−θ |k1|γ v̂1,k1 |k2|γ v̂2,k2 |k3|γ v̂3,k3

+ τ1+γτ−θ
∑

k1+k2+k3=k

|k2|−
1
2
−θ|k3|−

1
2
−θ |k1|γ v̂1,k1 |k2|γ v̂2,k2 |k3|γ v̂3,k3 .

Then, by applying Lemma 3.1 with A = τ−1 and θ0 =
γ
2 , we obtain∥∥Rn

2 [v1, v2, v3]
∥∥
L2 ≲ τ1+γ ln(1/τ)∥v1∥Hγ∥v2∥Hγ∥v3∥Hγ . (6.4)

In the case γ = 0, we decompose Fk[R
n
2 ] into two parts according to whether (k1, k2, k3) /∈

Γ(k) or (k1, k2, k3) ∈ Γ(k), where Γ(k) is defined in Section 3.3. Namely,

Fk[R
n
2 ] =

∑
k1+k2+k3=k
k1+k2 ̸=0

k1+k3=0 or k2+k3=0

iτ

18k
e−itnϕη(τ, k, k1, k2, k3)v̂1,k1 v̂2,k2 v̂3,k3 (6.5a)

+
∑

(k1,k2,k3)∈Γ(k)

iτ

18k
e−itnϕη(τ, k, k1, k2, k3)v̂1,k1 v̂2,k2 v̂3,k3 . (6.5b)

The summation in (6.5a) can be estimated as follows, where we focus on the case k2+ k3 = 0

(the case k1 + k3 = 0 can be treated in the same way): If k2 + k3 = 0 then k1 = k and

therefore

|(6.5a)| ≲ τ
∑

k2+k3=0

|k|−1|η(τ, k, k, k2, k3)|v̂1,k v̂2,k2 v̂3,k3
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≲ τF0[v2v3] v̂1,k (since |η| ≲ 1 and |k|−1 ≲ 1)

≲ τ∥v2v3∥L1 v̂1,k,

which implies that ∥∥F−1
k [(6.5a)]

∥∥
L2 ≲ τ∥v1∥L2∥v2∥L2∥v3∥L2 . (6.6)

According to Lemma 3.3 (2), Γ(k) can be decomposed into two parts, i.e., Γ(k) = Γ1(k) ∪
Γ2(k), with

|k| ∼ |k1| ∼ |k2| ∼ |k3| for (k1, k2, k3) ∈ Γ1(k),

|ϕ| ≥ |km|2 = |k1|2 for (k1, k2, k3) ∈ Γ2(k).

In view of (6.5) we can decompose Rn
2 into

Rn
2 = F−1

k [(6.5a)] + w1 + w2, (6.7)

with

wj = F−1
k

∑
(k1,k2,k3)∈Γj(k)

iτ

18k
e−itnϕη(τ, k, k1, k2, k3)v̂1,k1 v̂2,k2 v̂3,k3 .

By choosing γ̃ = 0 in Lemma 6.2, we have

|Fk[w1]| ≲ τ
∑

(k1,k2,k3)∈Γ1(k)

(
|k|−

1
2 |k3|−

1
2 + |k2|−

1
2 |k3|−

1
2
)
v̂1,k1 v̂2,k2 v̂3,k3

≲ τ
∑

k1+k2+k3=k

|k1|−
1
3 |k2|−

1
3 |k3|−

1
3 v̂1,k1 v̂2,k2 v̂3,k3 if kk1k2k3 ̸= 0,

where the last inequality uses the equivalence relation |k| ∼ |k1| ∼ |k2| ∼ |k3| for (k1, k2, k3) ∈
Γ1(k). By applying the Fourier inversion formula and using the Sobolev embedding L2(T) ↪→
W− 1

3
,6(T), we have

∥w1∥L2 ≲ τ∥|∂x|−
1
3 v1∥L6∥|∂x|−

1
3 v2∥L6∥|∂x|−

1
3 v3∥L6 ≲ τ∥v1∥L2∥v2∥L2∥v3∥L2 . (6.8)

For (k1, k2, k3) ∈ Γ2(k) ⊂ Γ(k) we have |ϕ| = |3(k1 + k2)(k1 + k3)(k2 + k3)| ̸= 0 and

|ϕ| ≥ |km|2 = |k1|2. In this case, by choosing α = ϕ1, β = ϕ2 and α + β = ϕ in (3.9), we

obtain

τ |k|−1|η(τ, k, k1, k2, k3)| ≲ τ |k|−1τ−1|ϕ|−1 ≲ |k1|−2.

By choosing γ̃ = 0 in Lemma 6.2 we also have

τ |k|−1|η(τ, k, k1, k2, k3)| ≲ τ(|k|−
1
2 |k3|−

1
2 + |k2|−

1
2 |k3|−

1
2 ).

The geometric average of the two inequalities above yields that

τ |k|−1|η(τ, k, k1, k2, k3)| ≲ ττ−θ|k1|−2θ(|k|−
1
2
+ θ

2 |k3|−
1
2
+ θ

2 + |k2|−
1
2
+ θ

2 |k3|−
1
2
+ θ

2 )

≲ ττ−θ(|k|−
1
2
− θ

2 |k3|−
1
2
− θ

2 + |k2|−
1
2
− θ

2 |k3|−
1
2
− θ

2 ) ∀ θ ∈ [0, 1].

Then we can apply Lemma 3.1 with A = τ−2 and θ0 =
1
2 , which implies that

∥w2∥L2 ≲ τ ln(1/τ)∥v1∥L2∥v2∥L2∥v3∥L2 . (6.9)

Finally, substituting estimates (6.6), (6.8) and (6.9) into (6.7), we obtain

∥Rn
2∥L2 ≲ τ ln(1/τ)∥v1∥L2∥v2∥L2∥v3∥L2 .
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This, together with (6.4) for the case γ ∈ (0, 1], gives the desired estimate in (1).

Proof of (2): We may assume that |k1| ≥ |k2| ≥ |k3|, since the other cases can be reduced to

this case). By choosing γ̃ = 0 in (6.3), we have

|Fk[R
n
2 ]| ≲ τ

∑
k1+k2+k3=k

(
|k|−

1
2 |k3|−

1
2 + |k2|−

1
2 |k3|−

1
2
)
v̂1,k1 v̂2,k2 v̂3,k3

= τFk

(
|∂x|−

1
2
(
v1 v2 |∂x|−

1
2 v3

)
+ v1 |∂x|−

1
2 v2 |∂x|−

1
2 v3

)
.

Therefore, by the Plancherel identity and the Sobolev inequality, we obtain that

∥Rn
2∥L2 ≲τ

∥∥|∂x|− 1
2
(
v1 v2 |∂x|−

1
2 v3

)∥∥
L2 + τ

∥∥v1 |∂x|− 1
2 v2 |∂x|−

1
2 v3

∥∥
L2

≲τ
∥∥v1 v2 |∂x|− 1

2 v3
∥∥
L1+ + τ

∥∥v1 |∂x|− 1
2 v2 |∂x|−

1
2 v3

∥∥
L2

≲τ
∥∥v1∥∥L2

∥∥v2∥∥L2+

∥∥|∂x|− 1
2 v3

∥∥
L∞ + τ

∥∥v1∥∥L2

∥∥|∂x|− 1
2 v2

∥∥
L∞

∥∥|∂x|− 1
2 v3

∥∥
L∞

≲τ
∥∥v1∥∥L2

∥∥v2∥∥Hγ

∥∥v3∥∥Hγ .

This proves the desired result in (2). □

By choosing v1 = v2 = v3 = vn in Proposition 6.1, we obtain the following estimate for the

local error Rn
2 [v

n].

Corollary 6.3. Under the assumptions of Theorem 1.1, the following estimate holds:

∥Rn
2 [v

n]∥L2 ≲ τ1+γ ln(1/τ) + τ
(
∥en∥L2 + | ln(1/τ)|2∥en∥3L2

)
.

Proof. The assumptions of Theorem 1.1 guarantees that ∥v(tn)∥Hγ ≲ 1. By substituting the

expression vn = v(tn)− en into the trilinear form Rn
2 [v

n], we obtain

Rn
2 [v

n] = Rn
2 [v(tn)] +Rn

2 [e
n, v(tn), v(tn)] +Rn

2 [v(tn), e
n, v(tn)] +Rn

2 [v(tn), v(tn), e
n]

+Rn
2 [e

n, en, v(tn)] +Rn
2 [e

n, v(tn), e
n] +Rn

2 [v(tn), e
n, en]−Rn

2 [e
n, en, en].

We apply Proposition 6.1 (1) to the first term and last four terms on the right-hand side.

This yields

∥Rn
2 [v(tn)]∥L2 ≲ τ1+γ ln(1/τ)∥v(tn)∥3Hγ ,

∥Rn
2 [e

n, en, v(tn)]∥L2 ≲ τ ln(1/τ)∥en∥2L2∥v(tn)∥L2 ≲ τ∥en∥L2 + τ | ln(1/τ)|2∥en∥3L2 ,

∥Rn
2 [e

n, v(tn), e
n]∥L2 ≲ τ ln(1/τ)∥en∥2L2∥v(tn)∥L2 ≲ τ∥en∥L2 + τ | ln(1/τ)|2∥en∥3L2 ,

∥Rn
2 [v(tn), e

n, en]∥L2 ≲ τ ln(1/τ)∥en∥2L2∥v(tn)∥L2 ≲ τ∥en∥L2 + τ | ln(1/τ)|2∥en∥3L2 ,

∥Rn
2 [e

n, en, en]∥L2 ≲ τ ln(1/τ)∥en∥3L2 .

Furthermore, we apply Proposition 6.1 (2) to the rest terms in the above expression of Rn
2 [v

n].

Then we obtain the desired result in Corollary 6.3. □
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7. Estimates for the global remainder R(t)

The main result of this section is the following proposition, where R(t) is defined in (5.7).

Proposition 7.1. Under the assumptions of Theorem 1.1, the following estimate holds:

∥R(t)∥L2 ≲ tn+1τ
γ ln(1/τ) + tn+1 max

0≤j≤n

(
∥ej∥L2 + | ln(1/τ)|7∥ej∥8L2

)
for t ∈ (tn, tn+1].

Proof. For t ∈ (tn, tn+1], we consider the expression of R(t) in (5.7) and estimate R∗
1(t),

R∗
2(t), R∗

3(t) and R∗
4(t) separately in the following subsections.

7.1. Estimation of R∗
1(t)

In view of the definition in (5.7), we can decompose R∗
1(t) into the following two parts:

R∗
1(t) =−

∫ t

tn

es∂
3
x∂x

(
e−s∂3

x
(
V (s)− vn − Fn[s; vn]

)
· e−s∂3

x
(
vn + Fn[s; vn]

))
ds

− 1

2

∫ t

tn

es∂
3
x∂x

(
e−s∂3

x
(
V (s)− vn − Fn[s; vn]

))2
ds.

Then we can apply the integration-by-parts formula in Lemma 2.2 with V(tn) = vn and

Fn[tn; v
n] = 0. This yields the following expression of R∗

1(t):

R∗
1(t) =− 1

3
et∂

3
xP

(
e−t∂3

x∂−1
x

(
V (t)− vn − Fn[t; vn]

)
· e−t∂3

x∂−1
x

(
vn + Fn[t; vn]

))
+

1

3

∫ t

tn

es∂
3
xP

(
e−s∂3

x∂−1
x ∂s

(
V (s)− vn − Fn[s; vn]

)
· e−s∂3

x∂−1
x

(
vn + Fn[s; vn]

))
ds

+
1

3

∫ t

tn

es∂
3
xP

(
e−s∂3

x∂−1
x

(
V (s)− vn − Fn[s; vn]

)
· e−s∂3

x∂−1
x ∂sF

n[s; vn]
)
ds

− 1

2

∫ t

tn

es∂
3
x∂x

(
e−s∂3

x
(
V (s)− vn − Fn[s; vn]

))2
ds

=: R∗
11(t) +R∗

12(t) +R∗
13(t) +R∗

14(t). (7.1)

As an extended notation of the function Fn[s; v] defined in (4.6), we consider the following

bilinear form (for time-independent functions v1, v2 such that P0v1 = P0v2 = 0):

Fn[s; v1, v2] :=
1

2

∫ s

tn

et∂
3
x∂x

(
e−t∂3

xv1 e
−t∂3

xv2
)
dt (7.2)

=
1

6
et∂

3
x

(
e−t∂3

x∂−1
x v1 e

−t∂3
x∂−1

x v2

)∣∣∣t=s

t=tn
for s ∈ [tn, tn+1], (7.3)

where the last equality is obtained by using the integration-by-parts formula in Lemma 2.2.

This extended notation satisfies that Fn[s; v, v] = Fn[s; v]. The following bilinear estimate

for Fn[s; v1, v2] will be used.

Lemma 7.2. For v1, v2 ∈ Hγ with γ ∈ (0, 1], and s ∈ [tn, tn+1], the following result holds:∥∥Fn
[
s; v1, v2

]∥∥
Hβ ≲ τ

1+γ−β
1+γ−β0(γ) ∥v1∥Hγ∥v2∥Hγ for β ∈ [β0(γ), 1 + γ],
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where

β0(γ) =


2γ − 3

2
when γ ∈

(
0,

1

2

)
− 1

2
− when γ =

1

2

γ − 1 when γ ∈
(1
2
, 1
]
.

Proof. On one hand, we consider the Hβ0(γ) norm of the expression in (7.2) and prove the

following result: ∥∥Fn
[
t; v1, v2

]∥∥
Hβ0(γ)

≲ τ∥v1∥Hγ∥v2∥Hγ . (7.4)

Indeed, the expression in (7.2) gives us the following inequality:

∥Fn[s; v1, v2]∥Hβ0(γ) ≲
∫ s

tn

∥∥e−t∂3
xv1 e

−t∂3
xv2

∥∥
Hβ0(γ)+1dt.

If γ ∈ (0, 14 ] then 2γ − 1
2 ≤ 0. In this case, we apply the Sobolev embedding Hγ ↪→ Lp and

L
p
2 ↪→ H− 1

2
+2γ with p = 2/(1− 2γ), i.e.,

∥Fn[s; v1, v2]∥Hβ0(γ) ≲
∫ s

tn

∥∥e−t∂3
xv1 e

−t∂3
xv2

∥∥
L

p
2
dt

≲
∫ s

tn

∥∥e−t∂3
xv1

∥∥
Lp

∥∥e−t∂3
xv2

∥∥
Lpdt

≲
∫ s

tn

∥∥e−t∂3
xv1

∥∥
Hγ

∥∥e−t∂3
xv2

∥∥
Hγdt

≲ τ∥v1∥Hγ∥v2∥Hγ .

If γ ∈ (14 ,
1
2) then 0 < −1

2 + 2γ ≤ γ. In this case, we apply the Kato–Ponce inequality in

Lemma 2.1 and the Sobolev embeddings Hγ ↪→ W− 1
2
+2γ,p1 , Hγ ↪→ Lp2 with 1

2 − γ = 1
2 − 1

p1

and 1
p1

+ 1
p2

= 1
2 , i.e.,

∥Fn[s; v1, v2]∥Hβ0(γ) ≲
∫ s

tn

∥∥e−t∂3
xv1

∥∥
W− 1

2+2γ,p1

∥∥ e−t∂3
xv2∥Lp2dt

+

∫ s

tn

∥∥e−t∂3
xv1

∥∥
Lp2

∥∥ e−t∂3
xv2∥

W− 1
2+2γ,p1

dt

≲
∫ s

tn

∥∥e−t∂3
xv1

∥∥
Hγ

∥∥ e−t∂3
xv2∥Hγdt

≲ τ∥v1∥Hγ∥v2∥Hγ .

If γ = 1
2 , then β0(γ) + 1 = 1

2− and therefore, by the Kato–Ponce inequality in Lemma 2.1

and the Sobolev embedding H
1
2 ↪→ Lp for all p ∈ [1,∞), we have

∥Fn[s; v1, v2]∥Hβ0(γ) ≲
∫ s

tn

∥∥e−t∂3
xv1 e

−t∂3
xv2

∥∥
H

1
2−dt

≲
∫ s

tn

∥∥e−t∂3
xv1

∥∥
H

1
2

∥∥e−t∂3
xv2

∥∥
H

1
2
dt

≲ τ∥v1∥
H

1
2
∥v2∥

H
1
2
.
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If γ ∈ (12 , 1], then β0(γ) + 1 = γ and therefore, by the Kato–Ponce inequality in Lemma 2.1

and the Sobolev embedding Hγ ↪→ L∞, we have

∥Fn[s; v1, v2]∥Hβ0(γ) ≲
∫ s

tn

∥∥e−t∂3
xv1 e

−t∂3
xv2

∥∥
Hγdt

≲
∫ s

tn

∥∥e−t∂3
xv1

∥∥
Hγ

∥∥e−t∂3
xv2

∥∥
Hγdt

≲ τ∥v1∥Hγ∥v2∥Hγ .

On the other hand, we consider the H1+γ norm of the expression in (7.3), which gives us

the following inequality:

∥Fn[s; v1, v2]∥H1+γ ≲ ∥v1∥Hγ∥v2∥Hγ .

By considering the complex interpolation between the estimates for ∥Fn[s; v1, v2]∥Hβ0(γ)

and ∥Fn[s; v1, v2]∥H1+γ , we obtain the result of Lemma 7.2. □

By using the result of Lemma 7.2, we manage to obtain the following several useful estimates

for V (t)− vn − Fn[t; vn].

Lemma 7.3. Under the assumptions of Theorem 1.1, the following estimates hold for t ∈
[tn, tn+1]:

(1)
∥∥∂−1

x

(
V (t)− vn − Fn[t; vn]

)∥∥
L2 ≲ τ1+γ ln(1/τ) + τ

(
∥en∥L2 + | ln(1/τ)|3∥en∥4L2

)
.

(2)
∥∥∂−1

x ∂t
(
V (t)− vn − Fn[t; vn]

)∥∥
L2 ≲ τγ ln(1/τ) +

(
∥en∥L2 + | ln(1/τ)|3∥en∥4L2

)
.

(3)
∥∥V (t)− vn − Fn[t; vn]

∥∥
L2 ≲ τγ + ∥en∥L2 + ∥en∥4L2 .

Proof. By comparing the expressions of V (t) and Fn[t; vn] in (5.4) and (4.5), respectively, we

can derive the following expression:

V (t)− vn − Fn[t; vn] =

∫ t

tn

es∂
3
x∂x

(
e−s∂3

xvn · e−s∂3
xFn[s; vn]

))
ds (7.5a)

+
1

2

∫ t

tn

es∂
3
x∂x

(
e−s∂3

xFn[s; vn]
))2

ds (7.5b)

− t− tn
τ

[
1

2

∫ tn+1

tn

es∂
3
x∂x

(
e−s∂3

xFn[s; vn]
)2

ds+Rn
2 [v

n]

]
. (7.5c)

Proof of (1): Although the three terms in (7.5a), (7.5b) and (7.5c) should be estimated

separately, we focus on the estimation of (7.5a) as the other terms can be treated similarly.

By applying ∂−1
x to (7.5a) and substituting vn = v(tn)− en into the result, we obtain

∂−1
x (7.5a) =

∫ t

tn

es∂
3
xP

(
e−s∂3

xv(tn) · e−s∂3
xFn[s; vn]

))
ds (7.6a)

−
∫ t

tn

es∂
3
xP

(
e−s∂3

xen · e−s∂3
xFn[s; vn]

)
ds. (7.6b)

The expression in (7.6a) can be estimated by applying inequality (2.2), i.e.,

∥(7.6a)∥L2 ≲ τ∥v(tn)∥Hγ sup
s∈[tn,tn+1]

∥Fn[s; vn]∥Ha(γ) , (7.7)
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where ∥Fn[s; vn]∥Ha(γ) can be decomposed into the following two parts using the triangle

inequality:

∥Fn[s; vn]∥Ha(γ) ≤ ∥Fn[s; v(tn)]∥Ha(γ) + ∥Fn[s; vn]− Fn[s; v(tn)]∥Ha(γ) . (7.8)

The first term on the right-hand side of (7.8) can be estimated by choosing β = a(γ) in

Lemma 7.2, which implies that

∥Fn[s; v(tn)]∥Ha(γ) ≲ τ
1+γ−a(γ)
1+γ−β0(γ) ∥v(tn)∥2Hγ ≲ τγ∥v(tn)∥2Hγ , (7.9)

where the last inequality follows from the fact that 1+γ−a(γ)
1+γ−β0(γ)

≥ γ for γ ∈ (0, 1] for the

expression of a(γ) in (2.3).

The second term on the right-hand side of (7.8) can be estimated as follows:

∥F [s; vn]− F [s; v(tn)]∥Ha(γ) = ∥F [s; en, 2v(tn)− en]∥Ha(γ)

≲ ∥F [s; en, 2v(tn)− en]∥H1 (since a(γ) ≤ 1)

≲ ∥en∥L2(∥v(tn)∥L2 + ∥en∥L2), (7.10)

where the last inequality can be obtained from expression (7.3) directly. Hence, by substitut-

ing (7.9)–(7.10) into (7.8), we obtain that

∥Fn[s; vn]∥Ha(γ) ≲ τγ + ∥en∥L2 + ∥en∥2L2 for s ∈ [tn, tn+1], (7.11)

where we have omitted the dependence on ∥v(tn)∥2Hγ .

Substituting (7.11) into (7.7) yields

∥(7.6a)∥L2 ≲ τ1+γ + τ
(
∥en∥L2 + ∥en∥2L2

)
. (7.12)

The expression in (7.6b) can be estimated by

∥(7.6b)∥L2 ≲ τ∥en∥L2 sup
s∈[tn,tn+1]

∥Fn[s; vn]∥H1 . (7.13)

From expression (4.6) we see that

∥Fn[s; vn]∥H1 ≲ ∥vn∥2L2 = ∥v(tn)− en∥2L2 ≲ 1 + ∥en∥2L2 . (7.14)

Inserting (7.14) into (7.13), gives that

∥(7.6b)∥L2 ≲ τ
(
∥en∥L2 + ∥en∥3L2

)
. (7.15)

Then, substituting (7.12) and (7.15) into (7.6), we obtain

∥∂−1
x (7.5a)∥L2 ≲ τ1+γ + τ

(
∥en∥L2 + ∥en∥3L2

)
.

The estimation of ∥∂−1
x (7.5b)∥L2 and ∥∂−1

x (7.5c)∥L2 are easier than ∥∂−1
x (7.5a)∥L2 . In fact,

employing (7.11), we have that

∥Fn[s; vn]∥L2 ≤ ∥Fn[s; vn]∥Ha(γ) ≲ τγ + ∥en∥L2 + ∥en∥2L2 for s ∈ [tn, tn+1], (7.16)

Hence, by applying ∂−1
x to (7.5b) and considering the L2 norm of the result, and then by

(7.16) and (7.14), we have

∥∂−1
x (7.5b)∥L2 ≲

∫ t

tn

∥Fn[s; vn]∥L2∥Fn[s; vn]∥H1ds

≲ τ1+γ + τ
(
∥en∥L2 + ∥en∥4L2

)
.
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Since ∂−1
x (7.5c) consists of Rn

2 [v
n] and a term similar as ∂−1

x (7.5b), it follows that we can

directly use the result in Corollary 6.3 and the above estimate for ∥∂−1
x (7.5b)∥L2 . Then we

obtain the following result:

∥∂−1
x (7.5c)∥L2 ≲ τ1+γ ln(1/τ) + τ

(
∥en∥L2 + | ln(1/τ)|2∥en∥3L2

)
+ τ1+γ + τ

(
∥en∥L2 + ∥en∥4L2

)
≲ τ1+γ ln(1/τ) + τ

(
∥en∥L2 + | ln(1/τ)|3∥en∥4L2

)
.

where the last inequality is obtained by considering the two cases | ln(1/τ)|∥en∥L2 ≤ 1 and

| ln(1/τ)|∥en∥L2 ≥ 1 separately. This proves the first result of Lemma 7.3.

Proof of (2): By applying ∂−1
x ∂t to the expression in (7.5), we have

∂−1
x ∂t

(
V (t)− vn − Fn[t; vn]

)
=et∂

3
xP

(
e−t∂3

xvn · e−t∂3
xFn[t; vn]

))
+

1

2
et∂

3
xP

(
e−t∂3

xFn[t; vn]
))2

(7.17)

− 1

τ

[
1

2

∫ tn+1

tn

es∂
3
xP

(
e−s∂3

xFn[s; vn]
)2

ds+ ∂−1
x Rn

2 [v
n]

]
,

which can be treated in the same way as (7.6). This proves the second result of Lemma 7.3.

Proof of (3): By using the integration-by-parts formula in Lemma 2.2 and the expression of

F [s; vn] in (4.5), we find that

(7.5a) = et∂
3
xP

(
e−t∂3

x∂−1
x vn · e−t∂3

x∂−1
x Fn[t; vn]

)
(7.18a)

−
∫ t

tn

es∂
3
xP

(
P
[(
e−s∂3

xvn
)2]

e−s∂3
x∂−1

x vn
)
. (7.18b)

The first term on the right-hand side of (7.18) can be estimated by using the Hölder and

Sobolev inequalities as follows:

∥(7.18a)∥L2 ≲ ∥e−t∂3
x∂−1

x vn∥L2∥e−t∂3
x∂−1

x Fn[t; vn]∥L∞

≲ ∥vn∥L2∥Fn[t; vn]∥L2 .

Then, by substituting (7.16) into the inequality above, we further obtain that

∥(7.18a)∥L2 ≲ (∥v(tn)∥L2 + ∥en∥L2)
(
τγ + ∥en∥L2 + ∥en∥2L2

)
≲ τγ + ∥en∥L2 + ∥en∥2L2 + ∥en∥3L2

≲ τγ + ∥en∥L2 + ∥en∥3L2 .

We rewrite (7.18b) as

(7.18b) =−
∫ t

tn

es∂
3
xP

(
P
[(
e−s∂3

xv(tn)
)2] · e−s∂3

x∂−1
x v(tn)

)
ds

+

∫ t

tn

es∂
3
xP

(
P
[(
e−s∂3

xv(tn)
)2] · e−s∂3

x∂−1
x v(tn)− P

[(
e−s∂3

xvn
)2] · e−s∂3

x∂−1
x vn

)
ds.

and apply Proposition 3.4 (2) with α = γ and α = 0 for the first and second term, respectively.

This yields the following result:

∥(7.18b)∥L2 ≲ τγ
∥∥v(tn)∥∥3Hγ +

(
∥en∥L2∥v(tn)∥2L2 + ∥en∥2L2∥v(tn)∥L2 + ∥en∥3L2

)
.
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Substituting the estimates of ∥(7.18a)∥L2 and ∥(7.18b)∥L2 into (7.18), we obtain

∥(7.5a)∥L2 ≲ τγ +
(
∥en∥L2 + ∥en∥3L2

)
.

The following result can be obtained similarly by using integration by parts as in (7.18):

∥(7.5b)∥L2 + ∥(7.5c)∥L2 ≲ τγ +
(
∥en∥L2 + ∥en∥4L2

)
.

Finally, substituting the above estimates of ∥(7.5a)∥L2 , ∥(7.5b)∥L2 and ∥(7.5c)∥L2 into (7.5)

yields the third result of Lemma 7.3. □

By applying Lemma 7.3 (1) to the expression of R∗
11(t) in (7.1) and using (7.16), we obtain∥∥R∗

11(t)
∥∥
L2 ≲

∥∥∂−1
x

(
V (t)− vn − Fn[t; vn]

)∥∥
L2

∥∥vn + Fn[t; vn]
∥∥
L2

≲
∥∥∂−1

x

(
V (t)− vn − Fn[t; vn]

)∥∥
L2

∥∥en + Fn[t; vn] + v(tn)
∥∥
L2

≲
[
τ1+γ ln(1/τ) + τ

(
∥en∥L2 + | ln(1/τ)|3∥en∥4L2

)]
(τγ + ∥en∥L2 + ∥en∥2L2 + 1)

≲ τ1+γ ln(1/τ) + τ
(
∥en∥L2 + | ln(1/τ)|5∥en∥6L2

)
for t ∈ (tn, tn+1].

Similarly, by applying Lemma 7.3 (2) to the expression of R∗
12(t) in (7.1), we obtain∥∥R∗

12(t)
∥∥
L2 ≲ τ

∥∥∂−1
x ∂t

(
V (t)− vn − Fn[t; vn]

)∥∥
L∞
t L2

x

∥∥vn + Fn[t; vn]
∥∥
L∞
t L2

x

≲ τ1+γ ln(1/τ) + τ
(
∥en∥L2 + | ln(1/τ)|5∥en∥6L2

)
for t ∈ (tn, tn+1].

We substitute expression (4.5) into the expression of R∗
13(t) in (7.1), i.e.,

R∗
13(t) =

1

3

∫ t

tn

es∂
3
xP

(
P
(
e−s∂3

xvn
)2

· e−s∂3
x∂−1

x

(
V (s)− vn − Fn[s; vn]

))
ds.

Then we apply Proposition 3.4 (1) to the expression above. This yields the following result:∥∥R∗
13(t)

∥∥
L2 ≲ τ∥vn∥2L2

∥∥V (t)− vn − Fn[t; vn]
∥∥
L∞
t L2

x

+ τ∥vn∥2L2

∥∥∂t(V (t)− vn − Fn[t; vn]
)∥∥

L∞
t H

− 23
14

x

+
∥∥vn∥∥2

L2

∥∥V (t)− vn − Fn[t; vn]
∥∥
L∞
t H

− 23
14

x

≲
[
τ1+γ ln(1/τ) + τ

(
∥en∥L2 + | ln(1/τ)|3∥en∥4L2

)]
∥vn∥2L2 ,

where the last inequality follows from Lemma 7.3. Since ∥vn∥2L2 ≲ ∥en∥2L2 + ∥v(tn)∥2L2 , it

follows that∥∥R∗
13(t)

∥∥
L2 ≲ τ1+γ ln(1/τ) + τ

(
∥en∥L2 + | ln(1/τ)|3∥en∥4L2 + | ln(1/τ)|3∥en∥6L2

)
≲ τ1+γ ln(1/τ) + τ

(
∥en∥L2 + | ln(1/τ)|5∥en∥6L2

)
.

The expression of R∗
14(t) can be rewritten as follows, by using the integration-by-parts

formula in Lemma 2.2, i.e.,

R∗
14(t) = − 1

6
et∂

3
xP

(
e−t∂3

x∂−1
x (V (t)− vn − Fn[t; vn]

))2

+
1

6

∫ t

tn

es∂
3
xP

(
e−s∂3

x∂−1
x

(
V (s)− vn − Fn[s; vn]

)
· e−s∂3

x∂−1
x ∂s

(
V (s)− vn − Fn[s; vn]

))
ds.
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Then, by the Hölder and Sobolev inequalities, we have that

sup
t∈(tn,tn+1]

∥∥R∗
14(t)

∥∥
L2

≲
∥∥V (t)− vn − Fn[t; vn]

∥∥
L∞(tn,tn+1;L2)

∥∥∂−1
x

(
V (t)− vn − Fn[t; vn]

)∥∥
L∞(tn,tn+1;L2)

+ τ
∥∥V (t)− vn − Fn[t; vn]

∥∥
L∞(tn,tn+1;L2)

∥∥∂−1
x ∂t

(
V (t)− vn − Fn[t; vn]

)∥∥
L∞(tn,tn+1;L2)

≲
(
τγ + ∥en∥L2 + ∥en∥4L2

)[
τ1+γ ln(1/τ) + τ

(
∥en∥L2 + | ln(1/τ)|3∥en∥4L2

)]
≲ τ1+γ + τ

(
∥en∥L2 + | ln(1/τ)|7∥en∥8L2

)
.

Combining with the estimates of
∥∥R∗

1j(t)
∥∥
L2 , j = 1, 2, 3, 4,∥∥R∗

1(t)
∥∥
L2 ≤ τ1+γ ln(1/τ) + τ

(
∥en∥L2 + | ln(1/τ)|7∥en∥8L2

)
. (7.19)

7.2. Estimation of R∗
2(t), R∗

3(t) and R∗
4(t)

For the remainder R∗
2(t) defined in (5.7), i.e.,

R∗
2(t) = − t− tn

τ

[1
2

∫ tn+1

tn

es∂
3
x∂x

(
e−s∂3

xFn[s; vn]
)2

ds+Rn
2 [v

n]
]
,

we rewrite
∫ tn+1

tn
es∂

3
x∂x

(
e−s∂3

xFn[s; vn]
)2

ds as∫ tn+1

tn

es∂
3
x∂x

(
e−s∂3

xFn[s; vn]
)2

ds

=

∫ tn+1

tn

es∂
3
x∂x

(
e−s∂3

xFn[s; v(tn)]
)2

ds

+

∫ tn+1

tn

es∂
3
x∂x

(
e−s∂3

x
(
Fn[s; vn]− Fn[s; v(tn)]

)
· e−s∂3

x
(
Fn[s; vn] + Fn[s; v(tn)]

))
ds.

and use inequality (2.2). Then we obtain∥∥R∗
2(t)

∥∥
L2 ≲ τ

∥∥∂xFn[s; v(tn)]
∥∥
L∞(tn,tn+1;Hγ)

∥∥Fn[s; v(tn)]
∥∥
L∞(tn,tn+1;Ha(γ))

+ τ
∥∥Fn[s; vn]− Fn[s; v(tn)]

∥∥
L∞(tn,tn+1;H1)

∥∥Fn[s; vn] + Fn[s; v(tn)]
∥∥
L∞(tn,tn+1;H1)

+
∥∥Rn

2 [v
n]
∥∥
L2 .

By using Lemma 7.2 with β = 1 + γ and β = a(γ), with 1+γ−a(γ)
1+γ−β0(γ)

≥ γ for γ ∈ (0, 1] for the

expression of a(γ) in (2.3), as well as inequalities (6.3) and (7.10), we obtain∥∥R∗
2(t)

∥∥
L2 ≲ τ1+γ ln(1/τ) + τ

(
∥en∥L2 + | ln(1/τ)|3∥en∥4L2

)
. (7.20)

According to the definitions in (5.7), R∗
3(t) and R∗

4(t) can be expressed in terms of R∗
1(tj+1)

and R∗
2(tj+1) as follows:

R∗
3(t) =

n−1∑
j=0

R∗
1(tj+1) and R∗

4(t) =
n−1∑
j=0

R∗
2(tj+1) for t ∈ (tn, tn+1].
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By substituting estimates (7.19) and (7.20) into relations above, we obtain the following

result:∥∥R∗
3(t)

∥∥
L2 +

∥∥R∗
4(t)

∥∥
L2 ≲ tn+1τ

γ ln(1/τ) + tn+1 max
0≤j≤n

(
∥ej∥L2 + | ln(1/τ)|7∥ej∥8L2

)
. (7.21)

Then, by combining the estimates in (7.19) and (7.20) and (7.21), we obtain the result of

Proposition 7.1. □

8. Stability estimates using low-high frequency decompositions

The main result of this section is the following proposition, which concerns the estimation

of the function F(t) defined in (5.10).

Proposition 8.1. Under the assumptions of Theorem 1.1, there exists a positive constant C,

which may depend on ∥v∥L∞(0,T ;Hγ) but is independent of τ , such that∥∥F(t)
∥∥
L2 ≤ Ctτγ + CN2t∥e∥L∞(0,t;L2)

(
1 + ∥e∥L∞(0,t;L2)

)
+ C

(
t+N− 23

14
)
∥e∥L∞(0,t;L2)

(
1 + | ln(1/τ)|96∥e∥96L∞(0,t;L2)

)
∀N ≥ 1.

In the proof of Proposition 8.1 we need to use the two estimates in the following lemma.

Lemma 8.2. Under the assumptions of Theorem 1.1, there exists a positive constant C,

which may depend on ∥v∥L∞(0,T ;Hγ) but is independent of τ , such that

(1) ∥∂tR∥
L∞(0,T ;H− 3

2−)
≤ Cτγ ln(1/τ) + C

(
∥en∥L2 + | ln(1/τ)|7∥en∥8L2

)
.

(2) ∥∂te∥
L∞(0,T ;H− 3

2−)
≤ Cτγ ln(1/τ) + C

(
∥en∥L2 + | ln(1/τ)|7∥en∥8L2

)
.

Proof. By differentiating (5.7) with respect to t ∈ (tn, tn+1], we can find the following expres-

sion:

∂tR(t) = − 1

2
et∂

3
x∂x

(
e−t∂3

x
(
V (t)− vn − Fn[t; vn]

)
· e−t∂3

x
(
V (t) + vn + Fn[t; vn]

))
− 1

τ

[
1

2

∫ tn+1

tn

et∂
3
x∂x

(
e−t∂3

xFn[t; vn]
)2

dt+Rn
2 [v

n]

]
= − 1

2
et∂

3
x∂x

(
e−t∂3

x
(
V (t)− vn − Fn[t; vn]

)
· e−t∂3

x
(
V (t)− vn − Fn[t; vn]

))
− et∂

3
x∂x

(
e−t∂3

x
(
V (t)− vn − Fn[t; vn]

)
· e−t∂3

x
(
vn + Fn[t; vn]

))
− τ−1R∗

2(tn+1). (8.1)

Then, by applying the Sobolev embedding inequality L1 ↪→ H− 1
2
− and the Hölder inequality

∥fg∥L1 ≤ ∥f∥L2∥g∥L2 , we have∥∥∂tR∥∥
L∞(tn,tn+1;H

− 3
2−)

≲
∥∥V (t)− vn − Fn[t; vn]

∥∥2
L∞(tn,tn+1;L2)

+
∥∥V (t)− vn − Fn[t; vn]

∥∥
L∞(tn,tn+1;L2)

∥∥vn + Fn[t; vn]
∥∥
L∞(tn,tn+1;L2)

+ τ−1
∥∥R∗

2(tn+1)
∥∥
L2

≤
(
τγ + ∥en∥L2 + ∥en∥4L2

)2
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+
(
τγ + ∥en∥L2 + ∥en∥4L2

)
(1 + ∥en∥2L2)

+ τγ ln(1/τ) + ∥en∥L2 + | ln(1/τ)|3∥en∥4L2

≤ τγ ln(1/τ) + ∥en∥L2 + | ln(1/τ)|7∥en∥8L2 ,

where the second to last inequality follows from Lemma 7.3 and (7.20), together with the

following estimate of ∥vn + Fn[t; vn]∥L∞(tn,tn+1;L2) by using the expression in (4.6):

∥vn + Fn[t; vn]∥L∞(tn,tn+1;L2) ≲ ∥vn∥L2 + ∥vn∥2L2 ≲ 1 + ∥en∥L2 + ∥en∥2L2 ≲ 1 + ∥en∥2L2 .

(8.2)

This proves the first result of Lemma 8.2.

By differentiating (5.8) with respect to t ∈ (tn, tn+1], we can find the following expression:

∂te(t) = ∂x

[
e−t∂3

xe(t) e−t∂3
x

(
v(t)− 1

2
e(t)

)]
+ ∂tR(t).

Then, by applying the Sobolev embedding L1 ↪→ H− 1
2
− and the Hölder inequality ∥fg∥L1 ≤

∥f∥L2∥g∥L2 , we have∥∥∂te(t)∥∥
H− 3

2− ≲ ∥e(t)∥L2

(
∥v(t)∥L2 + ∥e(t)∥L2

)
+
∥∥∂tR(t)

∥∥
H− 3

2−

≤ τγ ln(1/τ) +
(
∥e∥L∞(0,t;L2) + | ln(1/τ)|3∥e∥6L∞(0,t;L2)

)
.

This proves the second result of Lemma 8.2. □

Proof of Proposition 8.1. We first consider the low-frequency part of F(t), i.e.,∥∥P≤NF(t)
∥∥
L2 ≲

∥∥∥∥∫ t

0
es∂

3
xP≤N∂x

[
e−s∂3

xe(s) e−s∂3
x

(
v(s)− 1

2
e(s)

)]
ds

∥∥∥∥
L2

≲
∫ t

0
N2

∥∥∥∂−1
x

[
e−s∂3

xe(s) e−s∂3
x

(
v(s)− 1

2
e(s)

)]∥∥∥
L2

ds

≲N2t∥e∥L∞(0,t;L2)

(
∥v∥L∞(0,t;L2) + ∥e∥L∞(0,t;L2)

)
≲N2t

(
∥e∥L∞(0,t;L2) + ∥e∥2L∞(0,t;L2)

)
. (8.3)

We then consider the high-frequency part of F(t) by using the integration-by-parts formula

in Lemma 2.2, which implies that

F(t) =
1

3
et∂

3
xP

[
e−t∂3

x∂−1
x e(t) e−t∂3

x∂−1
x

(
v(t)− 1

2
e(t)

)]
(8.4a)

− 1

3

∫ t

0
es∂

3
xP

[
e−s∂3

x∂−1
x ∂se(s) e

−s∂3
x∂−1

x

(
v(s)− e(s)

)]
ds (8.4b)

− 1

3

∫ t

0
es∂

3
xP

[
e−s∂3

x∂−1
x e(s) e−s∂3

x∂−1
x ∂sv(s)

]
ds. (8.4c)

The first term on the right-hand side of (8.4) can be estimated by using the Sobolev and

Bernstein inequalities, i.e.,∥∥P≥N (8.4a)
∥∥
L2 ≲ N−1

∥∥∥e−t∂3
x∂−1

x e(t) e−t∂3
x∂−1

x

(
v(t)− 1

2
e(t)

)∥∥∥
H1

≲ N−1∥e∥L2

(
∥v∥L2 + ∥e∥L2

)
≲ N−1

(
∥e∥L2 + ∥e∥2L2

)
.
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In view of the relation e(t) = e0 + F(t) + R(t), as shown in (5.9), the second term on the

right-hand side of (8.4) can be decomposed into the following two parts:

(8.4b) = − 1

3

∫ t

0
es∂

3
xP

(
e−s∂3

x∂−1
x ∂sF(s) e−s∂3

x∂−1
x

(
v(s)− e(s)

))
ds (8.5a)

− 1

3

∫ t

0
es∂

3
xP

(
e−s∂3

x∂−1
x ∂sR(s) e−s∂3

x∂−1
x

(
v(s)− e(s)

))
ds. (8.5b)

where (8.5a) can be furthermore expressed as follows by using relation (5.10):

(8.5a) =− 1

3

∫ t

0
es∂

3
xP

(
P
[
e−s∂3

xe(s) e−s∂3
x

(
v(s)− 1

2
e(s)

)]
e−s∂3

x∂−1
x

(
v(s)− e(s)

))
ds.

By considering P≥N (8.5a), the frequency of at least one of the three terms e(s), v(s)− 1
2e(s)

and v(s)− e(s), should be greater than or equal to N/3. Then, by applying Proposition 3.4

(1) to the high-frequency part of the expression above and using Bernstein’s inequality for

high-frequency functions, i.e., the second inequality of (2.1) with s0 = −23
14 and s = 0, we

obtain ∥∥P≥N (8.5a)
∥∥
L2 ≲ t∥e∥X0([0,t])∥v − 1

2e∥X0([0,t])∥v − e∥X0([0,t])

+N− 23
14 ∥e∥L∞(0,t;L2)∥v − 1

2e∥L∞(0,t;L2)∥v − e∥L∞(0,t;L2)

≲ t∥e∥X0([0,t])

(
∥v∥2X0([0,t]) + ∥e∥2X0([0,t])

)
+N− 23

14 ∥e∥L∞(0,t;L2)

(
∥v∥2L∞(0,t;L2) + ∥e∥2L∞(0,t;L2)

)
.

From (4.3) it is straightforward to derive that ∥v∥X0([0,t]) ≲ 1, and from Lemma 8.2 (2) we

know that

∥e∥X0([0,t]) ≲ τγ ln(1/τ) +
(
∥e∥L∞(0,t;L2) + | ln(1/τ)|7∥e∥8L∞(0,t;L2)

)
. (8.6)

Therefore, we have that∥∥P≥N (8.5a)
∥∥
L2 ≲ tτγ ln(1/τ) + (t+N− 23

14 )
(
∥e∥L∞(0,t;L2) + | ln(1/τ)|23∥e∥24L∞(0,t;L2)

)
.

We substitute expression (8.1) into (8.5b). This yields

(8.5b) =R∗
5(t) +

n−1∑
j=0

R∗
5(tj+1) for t ∈ (tn, tn+1], (8.7)

where

R∗
5(t) =

1

6

∫ t

tn

et∂
3
xP

(
P
(
e−s∂3

x
(
V (s)− vn − Fn[s; vn]

)
· e−s∂3

x
(
V (s) + vn + Fn[s; vn]

))
· e−s∂3

x∂−1
x

(
v(s)− e(s)

))
ds

+
1

3
τ−1

∫ t

tn

P
(
e−s∂3

x∂−1
x R∗

2(tn+1) · e−s∂3
x∂−1

x

(
v(s)− e(s)

))
ds for t ∈ (tn, tn+1].

which can be estimated by using Proposition 3.4 (1), i.e.,∥∥R∗
5(t)

∥∥
L2 ≲ τ∥V (s)− vn − Fn[s; vn]∥X0([tn,tn+1])

· ∥V (s) + vn + Fn[s; vn]∥X0([tn,tn+1])

(
∥v∥X0([0,t]) + ∥e∥X0([0,t])

)
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+ ∥V (s)− vn − Fn[s; vn]∥
L∞(tn,tn+1;H

− 23
14 )

· ∥V (s) + vn + F j [s; vn]∥L∞(tn,tn+1;L2)

(
∥v∥L∞(0,t;L2) + ∥e∥L∞(0,t;L2)

)
+ ∥R∗

2(tn+1)∥L2

(
∥v∥L∞(0,t;L2) + ∥e∥L∞(0,t;L2)

)
.

Lemma 7.3 says that∥∥V (s)− vn − Fn[s; vn]
∥∥
X0([tn,tn+1])

≲ τγ ln(1/τ) +
(
∥en∥L2 + | ln(1/τ)|3∥en∥4L2

)
,∥∥V (s)− vn − Fn[s; vn]

∥∥
L∞(tn,tn+1;H

− 23
14 )

≲ τ1+γ ln(1/τ) + τ
(
∥en∥L2 + | ln(1/τ)|3∥en∥4L2

)
.

The above result and (8.2), together with the triangle inequality, imply that∥∥V (s) + vn + Fn[s; vn]
∥∥
X0([tn,tn+1])

≲
∥∥V (s)− vn − Fn[s; vn]∥X0([tn,tn+1]) + 2

∥∥vn + Fn[s; vn]
∥∥
X0([tn,tn+1])

≲ τγ ln(1/τ) + ∥en∥L2 + | ln(1/τ)|3∥en∥4L2 + 1 + ∥en∥2L2

≲ 1 + | ln(1/τ)|4∥en∥4L2 .

From (8.6) we also know that

∥v∥X0([0,t]) + ∥e∥X0([0,t]) ≲ 1 + | ln(1/τ)|8∥en∥8L2 .

These estimates, together with (8.6) and Proposition 7.20, give the the following result:∥∥R∗
5(t)

∥∥
L2 ≤

[
τ1+γ ln(1/τ) + τ∥en∥L2

(
1 + | ln(1/τ)|3∥en∥3L2

)]
· (1 + | ln(1/τ)|4∥e∥4L∞(0,t;L2))(1 + | ln(1/τ)|8∥e∥8L∞(0,t;L2)).

Substituting this into (8.7) yields that∥∥(8.5b)∥∥
L2 ≲ tτγ ln(1/τ) + t∥e∥L∞(0,t;L2)

(
1 + | ln(1/τ)|96∥e∥96L∞(0,t;L2)

)
.

By substituting the estimates of
∥∥P≥N (8.5a)

∥∥
L2 and

∥∥(8.5b)∥∥
L2 into (8.5), we obtain∥∥P≥N (8.4b)

∥∥
L2 ≲ tτγ ln(1/τ) +

(
t+N− 23

14
)
∥e∥L∞(0,t;L2)

(
1 + | ln(1/τ)|96∥e∥96L∞(0,t;L2)

)
.

Finally, by using the expression of ∂tv(s) in (4.3), the last term on the right-hand side of

(8.4) can be rewritten as follows:

(8.4c) = −1

6

∫ t

0
es∂

3
xP

(
P
(
e−s∂3

xv(s)
)2

e−s∂3
x∂−1

x e(s)

)
ds.

Again, by considering P≥N (8.4c), the frequency of at least one of the three terms v(s), v(s)

and e(s), should be greater than or equal to N/3. Then, by applying Proposition 3.4 (1) to

the high-frequency part of the expression above together with (8.6), and using Bernstein’s

inequality for high-frequency functions, i.e., the second inequality of (2.1) with s0 = −23
14 and

s = 0, we obtain∥∥P≥N (8.4c)
∥∥
L2 ≲ t∥e∥X0([0,t])∥v∥2X0([0,t]) +N− 23

14 ∥e∥L∞(0,t;L2)∥v∥2L∞(0,t;L2)

≤ tτγ ln(1/τ) + (t+N− 23
14 )∥e∥L∞(0,t;L2)

(
1 + | ln(1/τ)|7∥e∥7L∞(0,t;L2)

)
.
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Combining the estimates of P≥N (8.4a), (8.4b) and P≥N (8.4c), yields a desired estimate of∥∥P≥NF(t)
∥∥
L2 , which together with the estimate of

∥∥P≤NF(t)
∥∥
L2 in (8.3) implies the result

of Proposition 8.1. □

9. Error estimates (Proof of Theorem 1.1)

By using the relation e(t) = e0 +F(t)−R(t) in (5.9), and the estimates of R(t) and F(t)

in Propositions 7.1 and 8.1, respectively, we obtain

∥e(t)∥L2 ≤ ∥e0∥L2 + C(t+ τ)τγ ln(1/τ) + CtN2∥e∥L∞(0,t;L2)

(
1 + ∥e∥L∞(0,t;L2)

)
+ C

(
t+ τ +N− 23

14
)
∥e∥L∞(0,t;L2)

(
1 + | ln(1/τ)|96∥e∥96L∞(0,t;L2)

)
∀ t ∈ [0, T ].

Choosing N = (t+ τ)−
1
4 in the inequality above, we have

∥e(t)∥L2 ≤ ∥e0∥L2 + C1τ
γ ln(1/τ) + C2(t+ τ)

1
4 ∥e∥L∞(0,t;L2)

(
1 + | ln(1/τ)|96∥e∥96L∞(0,t;L2)

)
.

(9.1)

Since e0 = 0 and ∥e∥L∞(0,t;L2) is a continuous function of t ∈ [0, T ], we may assume that

t∗ ∈ (0, T ] is the maximal time such that

∥e∥L∞(0,t∗;L2) ≤ τ
γ
2 .

If t∗ = T then we set δ = 0.

If t∗ < T then there exists a positive constant δ > 0 such that ∥e∥L∞(0,t∗+δ;L2) ≤ 2τ
γ
2

according to the continuity of ∥e∥L∞(0,t;L2) with respect to t ∈ [0, T ].

In either case, we can rewrite (9.1) as follows (regarding s as the initial time):

∥e∥L∞(s,t;L2) ≤ ∥e(s)∥L2 + C1τ
γ ln(1/τ) + C3(t− s+ τ)

1
4 ∥e∥L∞(s,t;L2)

≤ ∥e∥L∞(0,s;L2) + C1τ
γ ln(1/τ) + C3(t− s+ τ)

1
4 ∥e∥L∞(s,t;L2), 0 ≤ s ≤ t ≤ t∗ + δ,

which implies that

∥e∥L∞(0,t;L2) ≤ ∥e∥L∞(0,s;L2) + C1τ
γ ln(1/τ) + C3(t− s+ τ)

1
4 ∥e∥L∞(0,t;L2), 0 ≤ s ≤ t ≤ t∗ + δ.

Let T0 = 1
2(2C3)

−4, τ ∈ (0, T0], and consider a sequence of intervals [kT0, (k + 1)T0],

k = 0, . . . ,m, such that mT0 < T ≤ (m + 1)T0. The maximal number of such intervals

is bounded, i.e., m ≤ T/T0, which is independent of the stepsize τ . On every subinterval

[kT0, (k + 1)T0] such that [kT0, (k + 1)T0] ∩ [0, t∗ + δ] ̸= ∅, we have

∥e∥L∞(0,t;L2) ≤ ∥e∥L∞(0,kT0;L2) + C1τ
γ ln(1/τ) +

1

2
∥e∥L∞(0,t;L2) ∀ t ∈ [kT0, (k + 1)T0] ∩ [0, t∗ + δ],

which implies that

∥e∥L∞(0,t;L2) ≤ 2∥e∥L∞(0,kT0;L2) + 2C1τ
γ ln(1/τ) ∀ t ∈ [kT0, (k + 1)T0] ∩ [0, t∗ + δ].

Iterating this inequality for k = 0, 1, . . . , yields that

∥e∥L∞(0,t∗+δ;L2) ≤ 2m+1∥e0∥L2 + 2m+2C1τ
γ ln(1/τ) = 2m+2C1τ

γ ln(1/τ).
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Since m and C1 are independent of τ , it follows that there exists a positive constant τ0 such

that for τ ≤ τ0 we have

∥e∥L∞(0,t∗+δ;L2) ≤ τ
γ
2 .

This contradicts the maximality of t∗ ∈ (0, T ] unless t∗ = T . Therefore, t∗ = T , δ = 0, and

∥e∥L∞(0,T ;L2) ≤ 2m+2C1τ
γ ln(1/τ).

This proves the error estimate in Theorem 1.1. □

10. Numerical experiments

In this section, we present numerical experiments on the convergence of the proposed low-

regularity integrator for the KdV equation with Hγ initial data, for γ = 0.2, 0.4, 0.6 and 0.8,

respectively. The computations are performed by Matlab with double precision.

We consider the KdV equation ∂tu(t, x) + ∂3
xu(t, x) =

1

2
∂x(u(t, x)

2) for x ∈ T and t > 0,

u(0, x) = u0(x) for x ∈ T,
(10.1)

with the following initial value:

u0(x) =
1

10

∑
0̸=k∈Z

|k|−0.51−γeikx. (10.2)

which is in Hγ(T) but not in Hγ+0.01(T). We compare the numerical solution given by the

proposed method with several pre-existing methods, including the Crank–Nicolson method,

i.e.,

un+1 − un

τ
+

1

2

(
∂3
xu

n+1 + ∂3
xu

n
)
=

1

4
∂x

(
(un+1)2 + (un)2

)
,

the resonance based scheme in [6] (referred to as hs16), i.e.,

un+1 = e−τ∂3
xun +

1

6

(
e−τ∂3

x∂−1
x un

)2
− 1

6
e−τ∂3

x
(
∂−1
x un

)2
,

and the following filtered time discretization methods (with filtering operator Πτ := χ
(
−

i∂xτ
1
3

)
using cut-off function χ = 1[−1,1], see [24]):

• The filtered resonance based scheme (referred to as Filtered-hs16)

un+1 = e−τ∂3
xun +

1

6
Πτ

(
e−τ∂3

x∂−1
x Πτu

n
)2

− 1

6
Πτe

−τ∂3
x
(
∂−1
x Πτu

n
)2

,

• The filtered exponential integrator (referred to as Filtered-EI)

un+1 = e−τ∂3
x

[
un +

τ

2
φ(τ∂3

x)Πτ∂x(Πτu
n)2

]
, φ(δ) =

eδ − 1

δ
,

• The filtered Lie splitting (referred to as Filtered-Lie)

un+1 = e−τ∂3
x

[
un +

τ

2
Πτ∂x(Πτu

n)2
]
, φ(δ) =

eδ − 1

δ
.
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We present the errors of the numerical solutions at T = 1 in Figure 10.1 for several Hγ

initial values with γ = 0.2, 0.4, 0.6 and 0.8, respectively, with sufficiently large degrees

of freedom (i.e., dof=214) in the spatial discretization by a Fourier spectral method. The

reference solution is obtained by using the proposed low-regularity integrator with a much

smaller time step size. The numerical results in Figure 10.1 show that the proposed method

has convergence order γ in approximating the rough solutions with the Hγ initial values.

Figure 10.1. L2 errors of several methods for Hγ initial data with γ ∈ (0, 1).
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Figure 10.2. An example of rough solutions to the KdV equation.

Figure 10.3. Comparison of several methods for computing the rough solu-

tion.

Next, we compare several numerical methods for the KdV equation in (10.1) with the

following piecewise smooth discontinuous initial state:

u0(x) =


10, for x ∈

[3π
8
,
5π

8

]
,

−10, for x ∈
[11π

8
,
13π

8

]
,

0, else where.

(10.3)

The evolution of the solution is presented in Figure 10.2 (given by a reference solution with

sufficiently small step size), which shows that the solution is highly rough and possibly discon-

tinuous. The graph of the numerical solutions at time T = π/32 ≈ 0.0981747704 produced

by the Crank–Nicolson method and several other low-regularity integrators with step size
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τ = 2−4T are presented in Figure 10.3 (right). Figure 10.3 (left) shows that the proposed

method is sufficiently accurate with τ = 2−4T , while Figure 10.3 (right) shows that the other

methods with the same step size have observable errors in approximating the discontinuous

solution in this example.

11. Conclusions and extended studies

We have presented several new tools for the construction and analysis of low-regularity

integrators for the KdV equations, including the averaging approximation technique for ex-

ponential functions with imaginary powers (Lemma 3.2), the new estimates for the symbol

ϕ = k3 − k31 − k32 − k33 (Lemma 3.3), and new trilinear estimates associated to the KdV op-

erator (Proposition 3.4). These new techniques have played essential roles in analyzing the

local error, global remainder, and the stability estimates. We have also introduced a new

technique, which reformulates the numerical scheme into a perturbed integral formulation of

the continuous KdV equation globally posed on the time interval [0, T ], instead of locally

posed on [tn, tn+1], for analyzing the stability of numerical approximations to solutions below

H1. By combining the several new techniques, we have constructed a new time discretiza-

tion which is convergent with order γ in L2 (up to a logarithmic factor) under the regularity

condition u ∈ C([0, T ];Hγ), with γ ∈ (0, 1] possibly approaching zero.

This paper focuses on the development of low-regularity integrators that could improve

the convergence rates of time discretization without the necessity of using filters. Typically,

filters necessitates a stepsize that correlates with the degrees of freedom in space discretization,

similar to a CFL condition. Our approach increases the flexibility in choosing the degrees of

freedom for space discretization, which enables the design of a fully discrete numerical scheme

that operates independently of any CFL condition. We believe that rigorous analysis of the

full discretization, when coupled with the Fourier spectral method in space, can be conducted

within the theoretical framework proposed in this paper, which provides a foundation for such

future research.

The algorithm constructed in this paper improves the error from O(τγ/3) to O(τγ ln(1/τ)),

with a logarithmic factor ln(1/τ) arising from technical estimates detailed within our paper.

The optimality of the logarithmic factor ln(1/τ) is uncertain since the numerical tests cannot

reveal the logarithmic influence on convergence rates. Typically, if the theoretical error is

expressed as O(τγ−ϵ) for any ϵ in the range (0, γ), numerical tests would generally reflect a

convergence order of γ. Hence, further study is required to determine if the logarithmic term

can be refined in future analyses.

The methodologies and theoretical framework introduced in this article can be extended

to develop low-regularity integrators for a variety of nonlinear dispersive equations. These in-

clude the modified KdV equation, the generalized KdV equation, and the nonlinear Schrödinger

(NLS) equation. For instance, consider the NLS equation given by

i∂tu+ ∂xxu = |u|2u (11.1)
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This equation can be decomposed into low- and high-frequency components as follows:{
i∂tu≤N = ∂xxu≤N + λ|u≤N |2u≤N +N1(u≤N , u>N ),

i∂tu>N = ∂xxu>N + 4πλM0u>N +N2(u≤N , u>N ),
(11.2)

where u≤N = Π≤Nu and u>N = Π>Nu. The remainder terms Nj(u≤N , u>N ) for j = 1, 2 can

be addressed by adopting the trilinear estimate strategies developed in Section 3.3 (refer to

the definition of T (v1, v2, v3) and subsequent discussions). Furthermore, the low-frequency

component can be approximated using the averaging approximation techniques described in

this paper. Thus, we can design a low-regularity integrator for the NLS equation that sep-

arately computes the high- and low-frequency parts of the solution, as elaborated in [28].

Employing the framework proposed in Section 5, the numerical scheme can be reduced to

a perturbed integral formulation of the continuous NLS equation. This adaptation enables

the proof of convergence rates using the Strichartz estimates for the continuous NLS equa-

tion, leading to a low-regularity integrator whose L2-norm error is O(τ
4γ
4+γ ) for solutions in

C([0, T ];Hγ). For small values of γ, this convergence rate surpasses those of pre-existing

algorithms; see [28] for more details.

The construction and analysis of more rapidly convergent algorithms based on the pro-

posed framework and techniques, for nonlinear dispersive equations in both one- and higher-

dimensional spaces, will be studied in our future work.
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