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Modélisation Mathématique et Analyse Numérique

ERROR ANALYSIS OF A FULLY DISCRETE FINITE ELEMENT METHOD
FOR VARIABLE DENSITY INCOMPRESSIBLE FLOWS IN TWO DIMENSIONS*

WENTAO CAll, BUuYANG L1%2 AND YING L3

Abstract. An error estimate is presented for a fully discrete, linearized and stabilized finite element
method for solving the coupled system of nonlinear hyperbolic and parabolic equations describing
incompressible flow with variable density in a two-dimensional convex polygon. In particular, the error
of the numerical solution is split into the temporal and spatial components, separately. The temporal
error is estimated by applying discrete maximal LP-regularity of time-dependent Stokes equations,
and the spatial error is estimated by using energy techniques based on the uniform regularity of the
solutions given by semi-discretization in time.
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1. INTRODUCTION

The time-dependent incompressible flow with variable density is governed by the partial differential equations
(PDEs)

Op+V-(pu) =0, (1.1)
poru+ pu-Vu+ Vp — pAu =0, (1.2)
V-u=0, (1.3)

where p, u and p denote the density, velocity and pressure of the fluid, respectively, and p > 0 the viscosity
constant. We consider (1.1)-(1.3) in a convex polygon {2 C R? up to a given time T, with the following boundary
and initial conditions:

u=20 on 912 x [0,T],

1.4
p=p" and u=u’ at t=0, (14)
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where p° and u® are given functions, and 92 the boundary of the domain 2. For given smooth initial data p°
and u® with positive density, i.e.,
<0
min p°(z) > 0,
the existence and uniqueness of smooth solutions of (1.1)-(1.4) have been proved in [14,32,44]. In particular,
this hyperbolic-parabolic system does not generate shock wave (at least in 2D).

Many efficient numerical methods have been developed for solving (1.1)-(1.4), including the projection finite
element methods (FEMs) [5,7,24,41,46], the fractional-step methods with pressure Poisson equation [25,26], the
BDF stepping methods [40], the finite volume method [11], and the discontinuous Galerkin (DG) method [42].
However, there are very few work on rigorous error analysis of the numerical methods.

As mentioned in [46], the variable density introduces considerable difficulties for the analysis of the accuracy
of the numerical solutions, mainly due to the strong nonlinearities and the coupling of the equations. The
main difficulty in the error analysis of such nonlinear problems is to prove certain boundedness of the numerical
solutions uniformly with respect to the step size and mesh size, while the presence of the hyperbolic density
equation increases the difficulty: it requires the numerical solution uj of the velocity equation to be bounded
in a very strong norm, i.e.,

N
7Y IV uillieo) <c
n=1
where ¢ should be independent of the temporal step size 7 and spatial mesh size h.

An error estimate for the velocity equations (1.2)-(1.3) was presented in [27] for the numerical methods
developed in [25,26] by assuming that the numerical solutions p}, n = 1,..., N, of the density equation have
the following properties (cf. [27, Conjectures in Remark 4.2]):

(A1) Positivity and boundedness: ¢; < minpp(x) < maxpp(x) < ¢a, n = 1,2,..., N, where ¢; and ¢y are
9] z€R

e
positive constants independent of the step size and mesh size.

(A2) Error estimate of p}! in terms of u} (numerical solution of the velocity equation):

n__ n—1 9o
ot - A )

N
73 (Iotta) = il +]
n=1

T H-1(£02)
N
e+ 4Ty (cellu(~, tn) = Wpl|72) +ellul, ta) — U’ﬁllﬁp(m)v
n=1

where € € (0,1) can be arbitrarily small, and the constant c. depends on e.
However, a rigorous proof of (A1)-(A2) remains open. Thus a complete error estimate for the coupled system
(1.1)-(1.4) is still missing.
The stability of the numerical solutions was investigated in [24, 41, 46] for different discretizations of the
stabilized equations

1
Op+u-Vp+ §pV-u =0, (1.5)
1 1
pou+ pu-Vu + §6tpu—|— §V-(pu)u—Au+Vp:O, (1.6)
V-ou=0, (1.7)

which are theoretically equivalent to (1.1)-(1.3) but preserve the energy conservation upon discretization with
the FEMs. The stability property of numerical schemes does not imply error estimates, but can be used to
prove the convergence of DG via a compactness argument [12] (without explicit order of convergence).
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In this article, we present a complete error estimate for a linearized and stabilized FEM for solving the cou-
pled system (1.1)-(1.4). The techniques include discrete maximal LP-regularity of parabolic equations recently

established in [30] and an error splitting technique developed in [17,35, 36].

The discrete maximal LP-regularity, established in a series of articles [0, 18,30,33,34,38], is a mathematical
tool for analysis of both time discretizations [3,4,31] and finite element spatial d1scretlzat10ns [37] of nonlinear
parabolic equations. The technique used in this paper extends the result of [3,4] to parabolic equations with

a time-dependent coefficient in front of the time derivative (see Lemma 4.2). This extension is needed to treat
the velocity equation in the presence of the variable density p in front of the time derivative.

The Helmholtz—Weyl decomposition, also known as Hodge decomposition, decomposes a vector field into
a sum of its divergence-free and curl-free parts. It was used for numerical analysis of many different partial
differential equations, including the Maxwell equations [9], the Ginzburg-Landau equations [39], and the Navier-
Stokes equations with constant density [1,12,23,45,47-49]. In the presence of a variable density, the term pd;u is
no long divergence-free, and thus the projection of (1.2) onto the divergence-free subspace is more complicated.

The rest of this paper is organized as follows. In the next section, we introduce the notations, numerical
scheme and main theorem. We present an overview for the proof of the main theorem in Section 3 and present
the details in Sections 4 and 5. Numerical results are presented in Section 6 to support the theoretical analysis.

2. NOTATIONS AND MAIN RESULTS

2.1. Function spaces

For any integer & > 0 and real number 1 < p < oo, W*P(£2) denotes the conventional Sobolev space of
functions defined on the domain (2, with the abbreviations H*(£2) = W¥2(£2) and LP(£2) = W°P?(£2), and

LE(2) = {q € LP(92) : fQ gdx = 0}.

The space of continuous functions on {2 is denoted by C(£2), and the space of infinitely differentiable functions
with compact support in §2 is denoted by C§°(£2). The closure of C5°(§2) in WP (£2) is denoted by W(f’p(()),
with the abbreviation HY(£2) = Wok 2(£2). The vector-valued extensions of these function spaces are denoted by

WEP(2) = WEP(Q) x WHP(2), WP (Q) = WeP(2) x WyP(£2),

with the abbreviations H*(£2) = WF2(£2) and L?(£2) = WP(0).
For the simplicity of notations, the inner products of both L2(£2) and L2(£2) are denoted by (-, -), namely,

(w,v) = /Q u(z)v(z)de, Yw,v e L*(£2),

(w,v) = | w(z)-v(z)de, Vw,v e L*(0).
Q

Similarly, the norms of both W#?(£2) and W*?(£2) are denoted by || - ||yy#.»-
Following the notations of [1] (also see [3]), for any given sequence of functions v € W*4(2), n =1,2,...,m,
we define the norm

1
P
( ZHU |W,WQ> if 1<p< oo,

10" nsll Lo (wroa(2)) =

Hax [v™ [wra(e) if p=o0
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Similarly, for a function v defined on 2 x (0,7") we define the following Borchner norm:

T »
(/0 ||v(-7t)|€vk,q(mdt> if 1<p<oo,

HU”LP(O,T;W’C«Q(Q)) = (2.2)
ess sup [[v(-,)[[wr.a(o) if p=o0.
te(0,T)
2.2. Variational equations and stabilization
We define the bilinear form
B((u,p), (Va q)) = (/Lvua VV) - (pv V- V) + (V - u, Q)a V(u,p), (Vv Q) € Htl)(Q) X Lg(Q) (23)

3), where ¢ can be

Note that if (p,u, p) is a solution of (1.1)-(1.3) then (p,u,p + ¢) is also a solution of (1.1)-(1.
1.5)-(1.7) and thus the

an arbitrary constant. Besides, any sufficiently smooth solution of (1.1)-(1.3) satisfies (
following variational equations:

%(V up, ) =0, (2.4)

(0w, v) + (V- (pu)w,v) + B((,p), (v,4)) =0, (2.5)

(9ep, ) + (u-Vp, ) +

(pOu+ pu - Vu,v) +

l\D|P—‘

where ¢ € L?(£2) and (v, q) € H}(£2) x L3(£2) are arbitrary test functions.
In the equations above, the extra terms (V- u p,¢) and 3(d;pu,v) + $(V - (pu) u,v) vanish due to (1.3)
and (1.1), respectively. These extra terms will stabilize the finite element solutions to be defined in the next

subsection.

2.3. Spatial and temporal discretizations

Let .7, be a quasi-uniform triangulation of the convex polygon {2 into triangles 7;, j = 1,..., M, with mesh

size h =  max diam(7;). Let P.(7;) denote the space of polynomials of degree < r on the triangle 7;, and
<<

define the following finite element spaces:

h={un € Hy(2)* :un|7; € P(T;)?, VT € Th}, (2.6)
MI::{QhEHl( )'thTj EP(,Tj)v VEE%L (2'7)
M} = {qn € M, : Jo an(x)dz = 0}. (2.8)

Consequently, X7 x M A+ is the lowest order Taylor-Hood finite element space, which satisfies the following
inf-sup condition (cf. [8, Theorem 4.1])

Van, v
lanllzon < ¢ sup Avdm¥il

. Vaqne M. 2.9
S vl h 29)

We choose the finite element space M2 x X2 x M} for the approximation of the solution (p,u, p).
For any given function ¢, we define the truncated function

$ = max (lminpo(a:),tp>. (2.10)

el
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~ 1. . s L

Then @ > gmgpo(:z:) > 0. Let t, = nr, n = 0,1,..., N, be a uniform partition of the time interval
€S

[0,T] with step size 7 = T/N. Based on the variational equations (2.4)-(2.5), we approximate the solution

(p(-stn),u(-, tn),p(-, tn)) by the finite element function (p7, uy, pi) € M7Z x X2 x M, defined as the solution of
the following equations:

(V-up ™t pfton) =0, (2.11)

(Ph 1D7'uhvvh)+ §(Drﬁnﬁ Uy, Vi 5( (phuh l)uhavh)

+ (ppul ™t vup, vi) + B((ul, pp), (v, qn)) = 0, (2.12)

T n— T 1
(D-pj,on) + (up ™" - Vol on) + 5
) +

where (¢n, Vi, qn) € M7 x X2 x M,i are test functions, and D, p}! := (p} — p~ ") /7 denotes the backward Euler
difference. The initial data p9 and uf are defined as

P =TI,p° and uf = IT,u, (2.13)

where IIj, : C(£2) — M? and II;, : C(£2) — X2 denote the scalar- and vector-valued Lagrange interpolation
operators, respectively.

If (pf,uf) are given for k = 0,...,n — 1, then (p},u}) can be solved in the following order:

(1) ph can be solved from (2. 11)

(2) 7" and p} can be defined by (2.10);

(3) (uh,ph) can be solved from (2.12).

Remark 2.1. The stabilization terms (V- u} ™" pi', ) and (D, ppull,vy) + 2(V - (ppu) ") up,vy,) in the
numerical scheme (2.11)-(2.12) guarantees that the method is unconditionally stable, i.e., substituting @p = p}
and vy, = u}} into (2.11)-(2.12) yields the following energy equalities:

lohI1* = Nl "1

1 n n 1/“77/— n—
[ i+l Gu® = [ 55 g P,
Q Q

Since py and py~" are bounded from both below and above due to the truncation in (2.10), the two equalities
above prove that both pl' and u} are bounded in the L* norm for all time levels without any restriction on the
time stepsize T and spatial mesh size h.

2.4. Convergence of the numerical solutions

In this work, we assume that the initial density p"(z) is positive (no vacuum) and that problem (1.1)-(1.4)
has a sufficiently smooth solution, i.e.,

0 < minp°(z) < maxp(z) < oo, (2.14)
p € C([0,T]; H*(2) NnW**(2)) N C*([0, T); H*(£2)),
ue C([0,T); H3(2)) nC*([0,T]; W249(£2)) N C*([0, T]); L>(£2)) for some ¢ > 2, (2.15)

p € C([0,T]; H*(12)),

and investigate the convergence of the numerical solutions defined in Section 2.3. In particular, we prove the
following theorem.
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Theorem 2.1. Suppose that the solution of (1.1)-(1.4) is sufficiently smooth, satisfying (2.14)-(2.15). Then the
discrete problem (2.11)-(2.13) has a unique finite element solution (p},ull,py) € M x X2 x M}, n=1,2,...,N.
Moreover, there exist positive constants T« and h, such that for T < 1, and h < h, the following error estimates

hold:

max (o ta) = pilze + [l ta) = wflz2) < e+ b2), (2.16)

Al :
(TZ [p(,tn) —p2||%2> <eVT+h, (2.17)
n=1

where ¢ is some positive constant independent of the temporal step size T and spatial mesh size h (possibly
dependent on T').

Remark 2.2. For the Navier—Stokes equations with constant density, the finite element solutions with the
Taylor-Hood elements should have 3'-order convergence. However, for the model with variable density, finite
element solutions of the scalar hyperbolic density equation generally have lower-order convergence (cf. [15,
Remark 3.14], 2"d-order or 2.5'""-order convergence, depending on the stabilization techniques), which further
polluted the order of convergence of the velocity u} through the coupling of the equations.

Remark 2.3. The truncation pj in (2.12) is used only to guarantee the existence and uniqueness of finite
element solutions for large step size 7 and mesh size h. For sufficiently small 7 and h, we have p} = pj (see the
explanation in Section 5.3). Thus the truncation operation does not play a role in deriving the error estimates
(2.16)-(2.17).

Remark 2.4. On the one hand, we have assumed that the solution is sufficiently smooth and investigate the
convergence of numerical solutions. In particular, the H?® regularity of solution is essential (due to the hyperbolic
equation of p) in our analysis to obtain second-order convergence for the numerical solutions. On the other
hand, we have assumed that the domain is convex polygonal in order to avoid approximating the boundary by
piecewise linear lines (or quadratic curves), which leads to new errors that will make analysis more complicated.
It is known that the solution can have H? regularity when the initial value is sufficiently smooth in a convex
polygon such as rectangle. Whether the solution can have H? regularity in a convex polygon is not clear in
general. In some special cases, the solution can have H? regularity if there are additional source terms in the
equation (as shown in the numerical example of Section 6), which will not affect the error analysis in this paper.

Alternatively, if we assume that the domain is smooth and convex (instead of convex polygonal), then the
solution can be sufficiently smooth as assumed in (2.14). In this case, the triangulated domain €2, is not equal
to §. For a triangle 7; with two vertices on the boundary, we can define ’7~; to be the extension of 7; to a curved
triangle which fits the boundary 02 exactly. For a triangle 7; with at most one vertex on the boundary, we

simply denote 7; = 7;. We assume that a diffeomorphic map from G; : 7; — ’7~; is known, satisfying
IV'Gillp=r) < C and V' | w(zy <C, 1=1,....3. (2.18)

Such a map exists if the domain €2 is convex and the boundary 02 is sufficiently smooth. We denote by
G : Qp, — Q the corresponding global map such that G|, = G;. Then the finite element spaces

X}, = {un € Hy(2)? : (un 0 G)l7; € Po(T;)*, VT; € T}

My ={an € H'(2) : (an 0 G)|7; € P(T)), VT, € T}

Mj, = {an € M}, : [, an(w)de = 0}
have the same approximation properties (and satisfies the inf-sup condition) as the standard finite element

spaces on a convex polygon. As a result, the error analysis presented in this paper also holds for such special
finite elements in a smooth and convex domain.
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To prove Theorem 2.1, we investigate the temporal and spatial discretizations in Section 4 and Section 5,
separately. Throughout this paper, we denote by ¢ a generic positive constant and € is a generic small positive

constant, both are independent of n,h and 7, possibly different at each occurrence.

3. AN OVERVIEW FOR THE PROOF OF THEOREM 2.1

In this Section, we present an overview for the proof of Theorem 2.1 for the readers’ convenience. The proof
consists of analysis of temporal and spatial discretizations, respectively, which we briefly introduce below. The

details are presented in Sections 4 and 5.

3.1. Analysis of temporal discretization

We introduce a semi-discrete problem

Pt Dl 4 ptul vl + Vp? — pAu? =0,

with the boundary and initial conditions

ury =0 on 92, n=1,2,...,N,

2 =p" and u? =u’.

(3.4)

Then the fully discrete solution defined by (2.11)-(2.12) can be viewed as the finite element solution of (3.1)-(3.4).

The temporal discretization errors are denoted by

no.__ n n n o, n n no.__ n n
e, =p"—p}, ey:=u"—uyp and e, :=p" —p7,

where
pn = p('vtn)v u" = u(~,tn), pn = p('atn)-

(3.5)

In Section 4, we prove the following estimates for the temporal discretization errors, together with some

regularity estimates for p', u? and p? uniformly with respect to the step size 7.

Proposition 3.1. Under the assumptions of Theorem 2.1, there exists a positive constant 1y such that when
T < 70, the time-discrete system (3.1)-(3.4) has a unique solution (p,,u,,p;) satisfying the maximum principle

min p’(z) < pi(z) <maxp’(z), Vee, n=1,...,N,
xes? e

the error estimates

e (lep e + [l + lletlzos) < e

N
Y r(ID-elze + lledlde + leplin) < er,
n=1

and the following regularity estimates:

max ([lu7llzz + [[ulwre + P2 + 10712 + o7 wre + [ Druf|L=) <,

0<n<N

(3.6)

(3.7)

(3.8)

(3.9)
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N
> r(IDrap e + [D-pp 1 7) <, (3.10)
n=1

where the constant c is independent of the step size T.

3.2. Analysis of spatial discretization

Proposition 3.1 gives the H? and W1 regularity of the time-discrete solutions p” and u” uniformly with
respect to the step size 7. By using such uniform regularity of the time-discrete solutions, the following error
estimates for the fully discrete finite element solutions will be proved in Section 5.

Proposition 3.2. Under the assumption of Theorem 2.1, there exist positive constants T. < 1o and h, such
that the fully discrete solutions given by (2.11)-(2.12) satisfy the following estimates when 7 < 7, and h < hy:

1<n<N
< ch/T + h2. (3.11)

Propositions 3.1 and 3.2 together show that, in the case 7 < 7, and h < h,, the fully discrete finite element
solutions obey the following error estimates:

max (1 =iz + 0" — pbl2e) +h(TZ ||p¢—p;:|%z) n (TDuz—uzn%p)
n=1 n=1

n__ .n n__.n < 2 )
e ([0 = ufllze + 0" = pRll2) < el +b2), (312

v )
(TZIIP"-MII%) < VT +h2. (3.13)
n=1

The proof of Theorem 2.1 is complete up to the proofs of Propositions 3.1 and 3.2, which are presented in
Sections 4 and 5, respectively. O

Remark 3.1. The factor h (independent of T) in the energy error estimate (3.11) is the key to make the
analysis go through. In fact, in the proof of Proposition 3.2, the uniform boundedness (uniform with respect to
the step size T and mesh size h) of

N
o2 Wi  and T Z u?(|Z1,00 (for the time-discrete solutions) (3.14)
n=1
N
lonllLee, |lupllee and T Z (.- (for the numerical solutions) (3.15)

n=1

are needed to control the strong nonlinearities in the coupling of the equations. The boundedness of (3.14) is
proved in Proposition 3.1 by using discrete LP(W?>4) estimates. The boundedness of (3.15) can be proved by
applying the inverse inequality to the error estimates (3.11), e.g.,

1Prp = piill o < ch™HIPupl — pi e
< b (| Pugtt — o2z + o7 — lze)
< b~ k22l a + ch/7 + 2)
<o+, (3.16)
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where Ppp" denotes the L? projection of p* onto the finite element space M,% The last inequality requires the
factor h in the energy error estimate (3.11).

The proof of (3.11) requires (3.15) to hold at the (n — 1)th step, and implies (3.15) at the nth step via the
inverse inequality, e.g., (3.16). Thus both can be proved by using mathematical induction.

In order to have the error estimate (3.11), we need H? and W reqularity of the time-discrete solutions p»
and ul uniformly with respect to the step size 7. This is why we carry out the error estimates of p2 and u? in
Proposition 3.1 in such strong norms, rather than the standard L* norm.

4. PROOF OF PROPOSITION 3.1

The proof of Proposition 3.1 requires using the maximal LP-regularity of time-discrete Stokes equations,
which will be introduced in Section 4.2. The proof of Proposition 3.1 is presented in Section 4.3.

4.1. Helmholtz—Weyl decomposition

We define the divergence-free subspace and curl-free subspace of L%({2) as follows (cf. [16, Eq (II1.1.4) and
Theorem II1.2.3)):

Li(2)={weli(2):V-w=0, w-n=0ond}, (4.1)
LI(2)" ={Ve: 0 e WH(2)}, (4.2)

a

where n denotes the unit outward normal vector on the boundary 2. We say that the Helmholtz decomposition
exists on L(£2) if any function v € L7(f2) has a unique decomposition

v = Pgiyv + Vo (43)
with Pgiyv € L4(£2) and V¢ € LL(£2)* such that
IPaivvllLaco) + IVl Lao) < ClvlLa(e)- (4.4)

Here Pgiy : L1(§2) — LL(£2) is called the Helmholtz projection (if the Helmholtz decomposition exists).
In fact, the Helmholtz decomposition on L7({2) exists if and only if the Neumann problem

Ap=V- v in £, L
{V(;S-n:v-n on 012, (4.5)

has a unique weak solution ¢ € W1 4(Q2)\R satisfying
IVollra2y < Clvlpae), VYveLi(£). (4.6)

Then Pg;yv = v — V¢ with ¢ given by (4.5).

In a smooth and convex domain, the W4 solution of (4.5) exists (see [19, Theorem 1.2]) and the Helmholtz
decomposition (4.4) exists on L7({2) for all 1 < ¢ < oco. (see [19, Theorem 1.2] and [16, Lemma II1.1.2]).
Therefore, the operator Pgjy is a bounded linear projection onto the divergence-free subspace LZ((2), satisfying

IPaivviLe <c||v|pe, Vv eLi(£0).
In particular, we have

Paivv =, Vv e Li(0),
P4y (Vo) = 0, Ve Whi(n).
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4.2. Discrete maximal LP-regularity

In [14], it was shown that the operator Pgi, A has the maximal LP-regularity on L((2), for 1 < p,q < oc.
Then [30, Theorem 3.1] (for the initial term involving vy, see Remark 4.3) immediately implies the following
result of discrete maximal LP-regularity.

Lemma 4.1 (Discrete maximal LP-regularity). Let 1 < m < N, and let a(x) be a function defined on §2 such
that

(1) ko < a(x) < K1 for some positive constants ko and K1;

(2) lallwi.o(2) < K2 for some constants o > 2 and rky > 0.
Then the solutions of the equations

a(x)D;ve — Paiy AvE = f*, n=1,2,....m, (4.7)
satisfy the following estimate:
I(D-v2)niillLeray + [(PaivAVE)RL | Le(La)
nym 11,0 < 0
S C(H(f )n:1||L”(Lq) + TP HVTHLq +Tr HPdiVAVT”Lq)7 Vi< p,q < 00, (48)

where ¢ is independent of 7, m and a(x) (but may depend on kg, K1, K2, o, p and q).

However, Lemma 4.1 cannot be directly applied to the physical equations considered in this paper, which
requires analysis of the following type of equations:

Py ' Drul — PgiyAull = f7, (4.9)

with the coefficient p?~! depending on n. In the following lemma, we extend Lemma 4.1 to this setting by using
the ideas of [3,4].

Lemma 4.2 (Extension to time-dependent coefficients). Let 1 < m < N, and let a? *(z), n = 1,... be
functions defined on (2 such that
(1) ko < a? 1(x) < Ky for some positive constants ko and k1 ;

(2)  nax a2 w0y < K2 for some constants o > 2 and Kz > 0;
<n<m

m

3 7

m—1
(39S llat = a2 o < 1.

n=
Then the solution v of the equations

a’ DV — P AV = £ n=1,...,m, (4.10)
satisfies

(D-vi)niilloezey + [(PawAVy)nsy e (za)
< el (F) Py ooy + 75 VO Lo + 77 [Pai AVY| 1), W1 < p,q < oo, (4.11)

where the constant c is independent of T, m and a™ ', n=1,...,m, (but may depend on ko, k1, K2, 0, K, D, q
and T).

Proof. For k =1,...,m, the equation (4.10) can be rewritten as

A" 1DV — Py AV = "+ (aF T — "D,V (4.12)
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Applying Lemma 4.1 to (4.12) yields

1DV )il pocray + | (Pav AV r | o0
1_ 1
< c(l(FE_llowey + 77 V2 lLe + 77 | Paiv AVY || ) (4.13)
+ell (@t —al ) DYy || Lo(ra)-

Let Fy := 0 and we define

By = [(Devi)nill e poy + 1Paw AV 1701y
k k (4.14)
=7Y DT+ 7Y PawAVE T, for k=1,...,m.
n=1 n=1

Then we have

k
_ _ k _ _
I ((@r = = a2 D)y =7 D (@™ = af D[,
n=1
k
<ty bt = ar G | DvE
n=1

k
<3 bt =l L (1D, + [Pai AVE[L,)
n=1

k
=5 b = @ (Bn — Ea)
n=1
k—1
=Y (laf ™ = ad e = llaf ™" = a? ) En
n=1
k—1
chHa’j_l —al||=Eny. (4.15)
n=1

P
By denoting Fy, := H(fn)fl:lHip(Lq) + (T%71||V9.HLQ v HPdivAV9-||Lq) and substituting the last inequality
into the p'" power of (4.13), we obtain

k—1
Br<c)y a2t —alllpeBEn +cFr, k=1,...,m. (4.16)

n=1
Then applying Gronwall’s inequality (cf. [28, Lemma 5.1]) yields
E,, < cFp,. (4.17)
The proof of Lemma 4.2 is complete. O

4.3. Proof of Proposition 3.1

First, we assume that p? € H?(£2) N L°°(2) and u? € WL*(02) N H?(2) N H{(2) are given for n =
0,...,m—1, such that V-u” = 0 and the following inequalities hold for 0 < n < m —1 (induction assumption):

[ullwree + 2 lwroe < flulleo.riwre) + llplleqo.rywre) + 1, (4.18)
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min ) (z) < pf(z) < maxpl(z), Ve Q.
e TEeS?

(4.19)

Under this assumption, for n = m the hyperbolic equation (3.1) and the parabolic equations (3.2)-(3.3) have a

unique solution (the proof is given in Appendix B)

Py € H?(82) N L™(92),
(u,py) € (H2(£2) N Hy(92)) x (H'(2) N L§(£2)),

respectively, obeying the following maximum principle:

min p"~H(z) < p(z) < maxp™ (z), V€ 0.

-
res? zef?

which shows that (4.19) also holds for n = m.

(4.22)

Next, we prove (4.18) for n = m to complete the mathematical induction. In the mean time, we also obtain
the estimates (3.6)-(3.10) in Proposition 3.1. To this end, we keep the generic constant ¢ of this Section to
be independent of m (but may depend on T'). The proof consists of two parts: L2-type estimates and W1

estimates.

Part I: L?, H' and H? estimates

We compare the time-discrete solution (p2, u?, p?') with the PDE’s solution (p™, u™,p™). The latter satisfies

the following equations:

DTpn + unfl . vpn _ En,
p"iDa" + ptu T Vat + V' — pAu” = F
V-u" =0,

where

E" =D p" — 0ip" + ("t —u") - Vp"
and

F" = p" 'D,u" — p"g,u™ + p"(u" ! —u") - Vu"
are truncation errors of the time discretization. Under the regularity assumption (2.15), we have

IE™ Lo + [I1E™|| 2 + [|F" || L < cT.
Using the notations of (3.5), subtracting (3.1)-(3.3) from (4.23)-(4.25) yields
Drey, + urt. Ve, + el . vy =E",

~1 ~1 ~1 ~1 ~1
pr " Dreg+e,  Dru" +eju " - Vu" +pley - Vu' + piur™ - Vey

+ Ve, — pley =F",

V-e; =0.

(4.23)
(4.24)
(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)
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For a positive number k > 1, integrating (4.29) against |eg|k_1e;‘ yields

lenl5ity — (en—?, |enfk=ten) 1
V. n—1 k+1) 4
—I—/Q u’ k+1| p| T

p
(B e T e )
B prsalleplFrs + leq™ e Vo™ | zoo llef G rra, (4.32)
where the last step is due to Holder’s inequality: |(f, g)| < || fllx+ ||gH . Since

.nl nkJrl _
[ s =o.

en||ktl en717 enlk—1lgn en||Ftl _|len—1 enl|k
Iepllpen = (= 1T ep) o, Nepllpns = g™ ol ”H”“, (Holder’s inequality again)
T T
it follows that (4.32) reduces to
e prrr — en—1 k41
leghuen 05 Nt o g + et o). (133)
By summing up the last inequality for n = 0,1,2,...,m, we obtain
m
o, [eploess < e 3018 s + I v (4.31)
n—

Taking k& — oo in the last inequality yields

Jmax legre < CZ (IE™ = + leg™ =)

m

<erte ey, (4.35)
n=1
where we have used (4.28) in the last inequality.
The maximum principle (4.22) implies
min p°(z) < pp < max p°(z). (4.36)
€S e

Since (Vey, Drey) = — (e, D-V - e) = 0, multiplying (4.30) by D-e;; and integrating the result over 2 yield

2
D, (SIveuls:) + |or'Dren|

<|(e""Dyu”, Dyel)| +|(enu " - Vu", Dyel)| + [(plel " - Vu, Del)
+l(pruz - Vel Doel)| + (7, Dyel)|

<el|Dreglliz +ce ™ (lep 72 Dru [T + lepllZe a2 VU7 )

+ee (11T len T IV T + o7 o luz ™ 7 [ VeRllZa) + ce™ B[22, (4.37)



14 TITLE WILL BE SET BY THE PUBLISHER

By choosing a sufficiently small constant e and using (4.18) and (4.36) to estimate |p?|| 1~ and ||[u? ||z, we
obtain

1 1Y n - n||2
sD-(5Iveills:) + ¢ et} (4.38)
< cllep ™ IZe +lleplZe + llen™ 2z + IVeRllze + [IF"]|72), n=1,...,m.

Then, substituting (4.34) (with & = 1) into the inequality above and summing up the resulting inequalities for
n=1,...,¢, (with £ < m) we have

¢
1213;(@ HVeﬁH%z + ;THDTeﬁH;

len "I72 + VeRllZ- + IE™172 + IF(132)
[VeRlZz + | E™32 + [|F"||32), (=1,...,m, (4.39)

4
SCZT(
n=1
J4
chT(
n=1

where we have used the inequality |l€" || 2 < ¢||Vel 1|,z to derive the last inequality. When the step size T
is smaller than some constant, the last inequality reduces to (through applying Gronwall’s inequality)

m m
max [VelF. + > 7 Drelllfe < e (1B e + [E72) < e, (4.40)
o n=1 n=1

where we have used (4.28) in the last inequality. Substituting the last inequality into (4.34) (with k& = 1) yields

n
< ecrT. .
onax leplice < er (4.41)

In order to derive an H? estimate of eI, we consider (4.30)-(4.31), which can be rewritten as

—pAel; + Vey =(F" — Tel . Vu" — pru ! Vey)
+ (- ej,}u"i1 -Vu" — ezleTu” —p?'Dre}), (4.42)
Vel =0. (4.43)

The standard H? estimate of Stokes equations (cf. [29]) implies

m m
> rlldenlis < || E - prent vt - pruzt - e,

n=1 n=1

n..n—1 n n—1 n n—1 n
—e,u -Vu" —e,;""Dyu" — pl " Drey

L2

m
< ZT(HF"IIL‘Z +1p7 | lleg™ I z2 | Va™|| L

n=1

+llpt e [~ e[ Veglle + llep ll e u™ ™ o[ Vu™ | oo

2
+llep T e[ Dru™ |z + Hp?’lllLoollDreﬁHLz)
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m
<> r(IF"I3e + llew™ 32 + Verllie + lepll3e + |1 Drell?2)
n=1

IN

cr?, (4.44)

where we have used the induction assumption (4.18) to control ||[u” ||, (4.36) to control ||p”|| L, and (4.40)-
(4.41) to obtain the last inequality. The inequality above implies the following H2-norm estimate via the elliptic
regularity (for the function el' satisfying the homogeneous Dirichlet boundary condition e} = 0 on 042):

Y rlleullt: < e TlAey|z < e, (4.45)
n=1 n=1
which further implies
m m 2
S lpnep < Y- el S2lek e o (1.46)

n=1 n=1

Note that (4.45) also implies ||el| 2z < c72 and, as a consequence,

ull
a3 < a3 + letllme < [lu"[3s +cr2 <e, (4.47)
which will be needed in Part II.

Part II: L™ and W1 estimates
Since H?(£2) < L*(£2), the H? estimate (4.45) implies

m m 1 m 1
2 2
Z Tllen]|lLe < < Z 7’> ( Z 7'||eﬁ||2Loo> (Holder’s inequality)

n=1 n=1 n=1
m 3

< cT? < > r|eﬁ|§,2) <er. (4.48)

n=1

Substituting the last inequality into (4.35) yields
o < .
(ax. leplln cT. (4.49)
In view of Section 4.1, we have

Paiv(pt 'Del) = p" D, el — Voo, (4.50)

where ¢ € Wh4(£2), with [, ¢" dz = 0, is the solution of the equation

Ap" =V - (p"'Drel) in £,
( . ) (4.51)
Vo™ -n=pl "D;e;-n on 92
Since V - el =0in {2 and e}, = 0 on 0f2, the last equation is equivalent to
A" =Vph~t.De” in £,
¢ Py u (4.52)
Vo™ -n=0 on 012,
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whose solution satisfies the following standard H? estimate (cf. [22, Theorem 3.1.3.1]):
19" |22 < e[ Vor™" - DregllLe.
By the two-dimensional Sobolev embedding H?(£2) — W14(2), V2 < ¢ < oo, we have
IVe™|la < cll@llm2 < cllp? ™ lw.< [ Dreg e

The last inequality, together with (4.18) and (4.40), implies

(Vo™ il Zany = D TIVE" (|7 <Y 7llDrepllze < e, V2 <g < oo
n=1 n=1

By using (4.50), equation (4.42) can be rewritten in the following form:

Pt D el — P gy Al =Py, (F" — pren . vu" — prurt. Vey)
+ Pdiv( — ezu"*1 -Vu” — e;}*

Applying Lemma 4.2 (with p = 2) to the above equation yields

[(Dreg)n=illzz(ze) + [[(PaivAey)niy |l L2(za)
< [(Vo™ )il o ey + ¢ (F" = plep™ - Vu™ — pful =t - Vel) " L2 0)
+ cH ( — ezu”*1 -Vu" — egleTu")

< c(IVe™)ryllre ey + 1(F™) iyl 2 (pa))
+ell(p e oo () ll(en™ s 2oy [ (VU™ oy [l os (e

+ell (P oo ooy (s [l oo ooy [ (Ve iy [l 2 Loy
+elllep)ni ez (@R oo poo) (V) || Loe (100
+cll(ep )yl oo ooy | (D™ 7y [l 2 (1)

=J1+ o+ Js+Js+ J5.

m
n=1 HL2(Lq)

By using the induction assumption (4.18) and (4.49), we have

J1 <er, (use (4.55) and (4.28))

Jo < cll(entallzzeay < clleq™)nisllzaqe) < e, (use (4.36) and (4.45))

Js < el(Ven ) ez < ell(en )iy e < er, (use (4.18), (4.36) and (4.45))
Jo < dll(eg)ntillaey < ell(ep)ninllzoe Loy < e, (use (2.15) and (4.49))

Js < cr. (use (4.49))

By substituting these estimates into (4.57), we obtain
[(Drew)niillza ey + [[(PaivAey)iiyllzpa) < cr
In any given smooth and convex domain (2, there exists ¢ > 2 such that ( [22])

leullwza < ¢l|[PaivAey] ra.

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)
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Consequently, (4.59) further yields

|(Dreq)neillz2(nay + [(€q)n=1llL2(w2q) < c7, for some ¢ > 2 (depending on the domain 2).

Then the Sobolev embedding W?2:4(£2) — W1°°(02) (for ¢ > 2) implies

[(ew)netllLzwioey < e

17

(4.60)

(4.61)

The last inequality implies " | 7|lel||3,1.« < c7?. Since u” = u™ — el with u” being the exact solution of

the PDEs, it follows that (for sufficiently small step size 7)

2l < [ lwroe + elllwroe < [ullpre +erf < [0 flwie +1, n=1,...,m.

If we define €y, piecewise linear in time, such that

t—1t,—
—el (@) + —"el(a) for t€ (ta-1.tul,

ey(z,t) =
then (4.60) implies that
0c€ullL2(0,t,0;10) + €ullL2(0,t,sw200) < €T

Since €,(0) = 0, we can further define

eu(z,t) for t €[0,¢.],
Cu(r,t) = €u(x,2t,, —t) for t € [ty,2tn],
for t € [2t,, 00),

which is a function defined for all ¢ € R, satisfying
0@ullL2®y ey + [Cull L2k, w20y < c([|0r€ullL2(0,t,m529) + [[€ullL2(0,t,,:w200)) < €T
Then the inhomogeneous Sobolev embedding ( [43, Proposition 1.2.10]) implies

[8ullc((0,tm):(La(2).W24(2))1 )21 ,2) < C|0®ull L2y L0y + [[CullL2(ry w20)) < e,

(4.62)

(4.63)

(4.64)

(4.65)

where the real interpolation space (L9(£2), W2%(£2))1 2,12 coincides with the Besov space B™42(f2), which is

embedded into L*°(§2) for ¢ > 2 ( [2, §7.32 and §7.34]). Consequently, (4.65) implies

||EU||C([O,tm];L°°) <cT,
which is equivalent to

max |lep|lre < T
0<n<m

In the following, we estimate |[e}; ||y, and [[e}| g2

Let e}, 1= 0y,€, and eﬁ;i := 0,,el~!. By differentiating (4.29) with respect to ;, we have

D, e

P

+u"t.ve  +ul,t- Ve, + eﬁ;i V" et Vo, = E7

X T, X T

(4.66)

(4.67)

(4.68)
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Similar as (4.32)-(4.35), integrating (4.68) against [e} , |k ten », and taking k — oo, we have

1£nax lle” €p, || Lo (4.69)

<chHu” LVey ten, Vo' ten Vol — B |,

m
< CTZ IVar o= [Veplize +er > (IVer = + llef o) +er

n=1 n=1

<er Y |IVepll +er, (4.70)

n=1

where we have used (4.61) and (4.67) to estimate cr > (|[Vel ||z~ + ||€? Y| L=), and (4.62) to estimate
n=1

[Vu?=1||L. Since the last inequality holds for j = 1,2, it follows that

 max [Vep |l < et Zl [VepllLe + cr. (4.71)

By using the discrete Gronwall’s inequality, we obtain (for sufficiently small step size 7)

|nax [VepllLe < cT. (4.72)

In view of (4.62) and (4.72), for sufficiently small step size T the mathematical induction (4.18) is closed.
Consequently, the estimates (4.36), (4.40)-(4.41), (4.45)-(4.46), (4.67), (4.72) hold for m = N with the same
constants. These estimates can be summarized as follows:

min p°(z) < p” §ma3(p0(x), n=1,...,N, (4.73)
IS
e (el + el + edll=) < (a.74)
N
Z (ID-elllZ + llewlle) < er?, (4.75)
N
Z | Drel %2 < c. (4.76)

Dropping off the exact solutions p™ and u” from (4.74)-(4.75), and using (4.62), we have

max (e + o+ 1o e + D2l ) < . (4.77)

It remains to estimate |[e)| gz and [lej|[z:. To estimate the former, we consider the second-order partial
derivatives of (4.29), i.e

_ n 1 . n _ n _ 41 . n
D~ ep Tixy; ury wm Ve Ure; vep,wi T:m " Ve €pa; — Ur vep,wm
71 n
- eu x; zJ Vp j vpzl

— €y ml me] ! vpglzj + E;l z;° (478)
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Integrating the equation above against €p i, and summing up the results for n = 1,...,m, we obtain

2 n|2
max ([ V263

2 m
E E n—1 n n—1 n n—1 n
<7 HuT,IimJ‘ ' veP + uTvzj ’ vePaIi + uT@i ' veﬂ@j
i, j=1n=1
P Lentl Ly pentlypn
u,z;T; P u,z; Pz;

_ _ 2
+ eﬁ,m]; ’ vpg] + eﬁ L. vpglm] + E;im] HL2
m
<7 (VPR Ve[ + Va2 | V2ep17

n=1
+IVZey T IZaIVe [T + I Ver T~ V20" 122
+IVer 2 IV2o" 112 + lea ™ 7 V20" 122 + I V2E[|72)

=L+ L+ I3+ 14+ 15+ Ig + I7, (4.79)
where
I <cr? (use (4.47) and (4.72))
I, <ecr Z HV%:}H%Q (use (4.62))
n=1

I3 < cr? (use (4.45))

Iy < er? (use (4.61))

I; < cr? (the same as 1)

Is < er? (use (4.61))

I; < cr? (use (4.28))

Substituting these estimates into (4.79) yields

 max ||V2€Z||%2 <ecr Z HV%:}H%Q + cr?, (4.80)
- n=1
which holds for all m =1,..., N. By using Gronwall’s inequality, we derive (for sufficiently small step size 7)
max _||VZe}| 2 < e (4.81)

1<n<N

Finally, we estimate [|[Vey ||z 2. To this end, we rewrite (4.30) as

n __ n—1 n n—1 n n n,.n—1 n
Ve, =—p;  Drey—e,  Dyu" + pdey —eyu" " - Vu

—plen . vu" — pru! . Vel + F". (4.82)
By using (4.18), (4.36) and (4.62), we have
IVeplize <c(lp?~ |z [Drelllre + [Dru"|[Loellep™ [I2 + et
+ " o [Vu | eellepll oz + [lp7 ] oo | VU™ | oo ]|} | 2

Lo [0 oIVl ze + B 2)
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<c(||Dregllze + llepHlze + llegllaz + llepllzz + et lze + | Veyllze + [F" 2).

The last inequality, together with (4.40)-(4.41) and (4.45), implies

N
> |IVeplie < e, (4.83)
n=1
Part III: Summary of the proof
(4.73) implies (3.6).
(4.74) and (4.81) imply (3.7).
(4.75) and (4.83) imply (3.8).
(4.77), (4.81) and (4.83) imply (3.9).
(4.76) and (4.83) imply (3.10).
The proof of Proposition 3.1 is complete. O

5. PROOF OF PROPOSITION 3.2

In this section we estimate the spatial discretization errors by comparing the fully discrete finite element
solution (p},uy,py) with the semi-discrete solution (pJ,u?,p?). The solvability of the linear system (2.11)-
(2.12) is proved in the next subsection.

5.1. Solvability of the linear system

If (pk,uf,pk) e M? x X2 x M,% is given for k = 0,...,n — 1, then the discrete linear problem (2.11) has a
unique solution p! € M7 if and only if the corresponding homogeneous problem

_ n— 1 e
(77 @, on) + (up ! - VP, 0n) + §(q’hv cup~lop) =0, Ven € Mg, (5.1)
has only zero solution ®; = 0. Indeed, the equation above can be rewritten as, through integration by parts,
-1 1 n—1 1 n—1
(77 ®n,0n) + g(uh V&, p) — §(uh - Von, @) = 0. (5:2)

Substituting ¢y = @, into the equation above immediately yields ®; = 0. This proves the unique solvability of
equation (2.11).
After solving p} from (2.11), the truncated functions p)~' and p} can be defined by (2.10), and the discrete

linear problem (2.12) has a unique solution (u},pl) € X2 x M 4 if and only if the corresponding homogeneous
problem

1 1, - o 1 n. n—
(Pr'r 1Uh,Vh)+§(T Y(on — 1)Uhavh)+§(v'(phuh D Un,va)

h ™ Ph
+ (ppup ™ VU, v) + B(Up, Pr), (Vheqn)) =0, Y (vh.qn) € X} x M, (5.3)
has only zero solution (Up, P) = (0,0). Indeed, substituting (vp,qn) = (Up, Pp) into the equation above yields

1

;((ﬁ’,;*l + MU, vi) + (VU Vvy,) = 0. (5.4)

Since the truncation operation defined in (2.10) implies p;'~* > 0 and p} > 0, the last equation implies Uj, = 0.
Then (5.3) reduces to

(P,,V-vp) =0, Vv,eX3, (5.5)
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which implies || Py||z2 = 0 in view of the inf-sup condition (2.9). This proves the unique solvability of equation
(2.12).

5.2. Ritz projection, L? projections, and Lagrange interpolations

To obtain error estimates for the finite element spatial discretization, we need to use the Stokes—Ritz projec-
tion (Rp, Qp) : H§(2) x L?(2) — X3 x M}, defined by

B((Rh(uvp)u Qh(uvp))u (Vh7 Qh)) = B((uvp)u (Vh7 q}L))7 V(V}N qh) € X%z X Mf%
The L? projections Py, : L*(£2) — M7 and Py, : L?(£2) — X3 defined below will also be used:

(v—=Ppv,vy) =0 Vv e L3(12), Vv, € X3,
(v — Ppo,vp) =0 Yo € L*(0), Yo, € M7

It is well known that the Ritz projection and the L? projections defined above satisfy the following standard
estimates(cf. [10, Theorem 12.6.7], [21, Chapter II, Theorem 4.3], [20, Theorem 8.2], [13]):

IR (v, @) = vl|zz < ch™ ([[v]geer + llgll o), t=1,2, (5.6)
IRa(v,@) =Vl + 1Qn(v,q) — allz < b (vl eer + llallme)s t=1,2, (5.7)
[Ra(v, )lwree < c([V]iwre + llallz=), (5.8)
v =Prv|Lz < ch™ v ges, (=0,1,2, (5.9)
I = Prgllrz < ch™ ol e, 0=0,1,2, (5.10)
[ Prpllwrea < cllollwna, k=0,1,1<q< o0, (5.11)
[Prwllre < clwlrz,  [Prwllm < cllwllp, (5.12)

where (v,q) € (H1(02) N H(2)) x HY(N), ¢ € HF(N) and w € H(£2). Similarly, the Lagrangian
interpolation operators satisfy

M = ollz2 + AIV(ITap = )|z < ch™Hpllgerr, Ve HFY(), t=1,2,  (5.13)
TV — V|22 + VI — V)| 2 < P v] e,  ¥Yv e HTHQ)NH(02), (=1,2, (5.14)
T, v — v L= < chl|v]jwiee, Vv e WHe(0Q) nHj(2). (5.15)

The estimates (5.6)-(5.14) will be frequently used in this Section.
In view of (3.5), we also have the following estimates of the L? and Ritz projections:

107 = Prptllee < lley — Puegllrz + 0" — Prp™|| 2

< ch®|lepllmz + ch®|lp" || s

< ch®t +ch®,  (use (3.7) to estimate llepllz2) (5.16)
105 = Puplllee < e — Prepllar + o™ = Pup™ |

< chlleylluz + ch?[lp" | 1

< cht +ch?®,  (use (3.7) to estimate lep Il er2) (5.17)

[u? — R (u?, p7)|[L> < [leg — Ruley, ep)lz2 + [[u" — Ra(u”™, p")| L2



22 TITLE WILL BE SET BY THE PUBLISHER

< ch®(legllm + llegllm) + ch®(la" || s + " | 12)

< ch®77 +ch®, (use (3.8) to estimate ||€”|| 2 + llepll ) (5.18)
[u? = Ru(u?, p)|[ g < lleg — Raleg ep)llar + [[u" — Ry (u”, p")|[

< ch(llelllm= + lleplla) + ch®([u [ = + (1" || rr2)

< chr? + ch?. (use (3.8) to estimate |ley|[m2 + |lej || 1) (5.19)

5.3. Methodology

Instead of considering the original scheme (2.11)-(2.12) directly, we consider the following finite element
equations:

n— T 1 n—
(Drpiysion) + (™" Vi on) + 5 (V- wy ™" pjlon) =0, (5.20)
(pi ' Drujy,viy) + 2(D7'ph ujy, vi) + 2(V (phuy ) u, vi)
+ (PZ“Z% : VuZa Vh) + B((uZapZ)v (Vha qh)) = 07 (521)

which do not truncate pZ_l and pj in (5.21). We shall prove that, for sufficiently small 7 and h, the finite
element solutions given by (5.20)-(5.21) satisfy

1. .
S minp°(y) < pfp < Smaxp’(y), n=0,1,...,N, (5.22)
2 yen 2 yea

w

which implies pj = pj in view of the definition of the truncation (2.10). In other words, the solutions of (5.20)-
(5.21) coincide with the solutions of (2.11)-(2.12). Thus it suffices to present error estimates for the solutions
of (5.20)-(5.21).

For the solution (p}, uf?, pi) of (5.20)-(5.21), we denote

'

eg,h = Php:_l - p;zla eﬁ,h = Rh(u:},p:}) - U’Za ez,h = Qh(u:’,p:’) — Ph-

If we can prove (5.22) and

1
2
max (|le} ullzz + llef ullz2) +h< Z|€ph”L2) < chV/T 4+ h?, (5.23)

1<n<N
then (p},u},py), n=1,..., N, coincide with the solutions of (2.11)-(2.12) and

o™ = pillez < c(llp™ = P2l + o7 = Pup?line + llep sl 2
< et 4 ch?||p |2 + ch/T + B2 (use (3.7), (3.9), (5.10) and (5.23))
<c(t 4+ h?),
a" —upllzz < c([[u™ —ufllz + [[uf — Ru(u?, p7)llrz + [l€f pllr2
< et 4 ch2(|u| g2 + |2 m) + ch/T + b2 (use (3.7), (3.9), (5.6) and (5.23))
< c(r + h?),
1p" = phllez < c(llp™ = pllLz + Ip7 — Qu(uz, p?)l L2 + llep nll L2
< cllepllm + ch(([ulllmz + [[PF|m1) +cllepplle (use (3.9) and (5.7))

<cllepllar + cllepnllez + ch.
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The last inequality, (3.8) and (5.23) imply
N 3
(7SI st ) < /7R
n=1

This proves the error estimate in Proposition 3.2.
It remains to prove (5.22) and (5.23). To this end, we integrate (3.1)-(3.3) against some test functions and
reformulate the equations as

1
(DTp:-Lv <Ph) + (u271 ' Vp:}v <Ph) + E(v ’ u:’il p:}v <Ph) =0, (524)
1 1
(2 Dot i) 4 (D) + (V- (v
+ (p:}u:}il -Vul, Vh) + B((u?,p?), (th Qh)) =0, (525)

where @, € M2 and (vi,, qn) € X2 x M} are arbitrary test functions. We have added the following stabilization
terms to (5.24)-(5.25):

SVourtpr =0, SDeptul 4 SV (pful T ul =0,

which are consequences of (3.3) and (3.1), respectively. Using integration by parts, (5.25) can be further written
as

1

(P2 ' Drul,vy) 4+ = (Drpl ull, vy) + Q(Pfuf_l -Vul, vi)

u:}_l - Vv, ufrl) + B((u?,pf), (Vha Qh)) =0. (5'26)

We shall prove (5.23) by considering the difference between (5.24)-(5.25) and (5.20)-(5.21).
The proof is by mathematical induction. Note that the initial data satisfy

lepnllzee = [1Pnp” = Tpp" | o < ch™H|Pup® = Tp® |2 < |0l 2t
e nllze = [Ra(u®,p”) — Iu’| L2 < c([[u’|ls2 + [p°] ),
e nllze = [IRn(u®,p°) = Tyl z < ch ™ [Rp(u®,p%) = a2 < c(|[u® sz + [[p°] ),

TlleqnllEn < IR (u’,p”) — |5 < c(l[ullfFe + 1p° 17 )7h?.

(5.27)

For sufficiently small 7 and h, the last four inequalities imply

1
0 -0
e Lee < —minp (z
H p,h” = 4x€§ ( )’

lednllzz < V7 +h2, (5.28)

e nlle <1,

T||eg)h||§11 < h2\/1+ h2.
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Let 1 < m < N, and assume that the data p’,fl and uzfl,, n=1,2,...,m, are given and satisfying the following
inequalities (induction assumption):

1
1

o <
(max lep e 7 o p( O(x),

max e}, Uiz < h(r + K24,

1<n
(5.29)
o <
1glax ler Ml <1,
S rllen g < BT+ h2.
n=1

Then we prove that the solution (p*, uy,pi*) € M}? x X3 x M,i given by (5.20)-(5.21) satisfies the following
inequalities:

len ullz~ < = min p°(a
o2, Il < min ),

Jmax el e < h(r+ k)3,

max |leg ,llr~ <1, (5.30)
0<n<m

m

> Tl sl < h2VT+ b2,

n=0

To use mathematical induction, we emphasize that all the generic constants below will be independent of m
(but may depend on T).
Note that the induction assumption (5.29) implies that

P2t = ph Mo < llop ™" = Prp? iz + llep e

1
<c|p? 1HW1 wh+ 4Hélnp ( ) (5.31)
1
< —min p°(x) when h is sufficiently small,
2 zen
which further implies
1
pi (@) 2 minp°(z) [l — oz = 5 min (@), Vees, n=1,...,m,
€0 €n
3
prH(x) < max pO(x) + [|p2 7t = pp e < §mal<p0(x), Vee 2, n=1,...,m,
e zes?
thus
1 . - 3
gming’(y) <ph ' < Smaxp’(y),  n=1,....m. (5.32)
yen yen

Besides, the induction assumption (5.29) implies that

[l P2

< IRa(} ™ o e + ey o=
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< [Rau(ul " p2 ) — Tl T = u? e o+ ule + el
< eh MR (wpr ) — Tl e+ T — o+ e + el o

< el laz + [1pF )k + cllf e h + [0 ™ e +1 (use (5.6), (5.15) and (5.29))

<c when h is sufficiently small, n=1,...,m.

The estimates (5.32) and (5.33) will be frequently used in the following subsections.
5.4. Estimates of e .
Subtracting (5.20) from (5.24) yields
(D7 (p7 — Pop?)son) + (Drey p, 0n)
n— n n 1 n— T n
+ (uh . v(p‘l' - Phpr)u SDh) + §(v -, 1(p7- - Php7)7 Qph)
n— n 1 n— n
+ (U.h L. Vepﬁa (Ph) + §(V -, 1ep7h, (ph)
n— n 1 n— 7
(eu1h1 : va, SDh) + §(v : eu1h1p7—7 Soh,)
uwpmt =Ry (0 ) - Vol on)

+ o+ o+

Since (D-(p} — Pup})n) = (D-p7 — PuD-p}, ¢n) = 0, taking @5, = e}, in the equation above yields

1 n n— n n n
5 Dr(lepallze) <™ - V(o7 = Pupp), ef)]

1 n— n n n
+ |§(v A 1(p7' - Php‘r)7ep,h)|

1
+ [(up " Veyn,epn) + §(V ‘ U-Zilez,ha €pn)

n— n o_n 1 n—1 n _n
+ |(eu,h1 : vaﬂep,h) + §(v : eu7hlpruep7h)|
+((up ™t =Ry (™ pr ) - Vol ep )|

(p"V - (0"t = Ry (u ™t pn ), epn)l

where

Ji < Mo IV (0 = Prp) |2 llep ull 2

S|y~ lz= (chr +ch®)|lep pllz (use (5.17))

<(cht + ch?)[|e} 4 L2 (use (5.33))

<ce 'h? (7'2 + h2) + 6”67;1}1”%2, (use Holder’s inequality)
Jo <[[Vuy Ml 0 = Pupfll czllepnll e

<[[Vup Lo (ch?r + ch®)lep 2 (use (5.16))

1 — n— n—
S(PIV - (T =R (i) 0n) =0, Vo € M

25

(5.33)

(5.34)

(5.35)

(5.36)



26 TITLE WILL BE SET BY THE PUBLISHER

<c|lu} | o (chT + ch2)||eg)h||Lz, (use inverse inequality)
<(cht + Ch2)||ez,h||L2, (use (5.33))
ce 'h2 (% + h?) + 6||6Z1h||%2 (use Holder’s inequality)
Js =0,
Ji <lleqi ez IVt llep allze + 1Ven s zallofllzeslles pll 2
<c(llely 22 + IVey s lze)lep ullze (use (3.9))
Sce_1(||eﬁ;ll||%2 + ||Veﬁjhl||%2) + e||eg1h||%2, (use Holder’s inequality)

Js <lup™t = Rp(ay ™ pr Y| 2lIVorl Lo llef ull 2

<ch?(|u} gz + P2 eI Vopllc=lley nllz  (use (5.6))

<ch®|lej ulz2 (use (3.9))

<ce 'h* + e||egyh||%2, (use Holder’s inequality)
Jo <[pH LIV - (027" = R (a7 )| z2llef pll 2

<llpfllz=(chr? +ch®)llegallz  (use (5.19))

<(cht® + ch?)|len | 12 (use (3.6))

ce 'h3 (T + h?) + 6||6g1h||%2. (use Holder’s inequality)

Substituting J1, ..., Js into (5.35) yields, for n =1,...,m,
Dyllep lI72 <ce 'h*(r + h%) + e (llen ), 72 + Ven s, I7e) + ellef ull7z

which implies (by choosing a small € and applying Gronwall’s inequality)

k
max e, ullze Sch®(r 4+ 0%) + ) erllen i +clepulze,
n=1
k
<ch*(t +h?) + Z crllel i + cll Pup” — np°| 7
n=1
k
gchz(T+h2)+ZCT||eﬁ;ll||fp E=1,...,m.
n=1

From the last inequality and the induction assumption (5.29), we derive

1
2
max ||ep allze < (ch2 (7 + h?) + ZCTHG ||§{1) <ch(t+ h2)i,

1<n

1£nax ||€ph||Loo <ch~ 1lmax ||eph||L2

Nl

<e/ T+ h?+cht (Z T||eﬁ;ll||§11>

n=1

<c(r 4 BT,

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)
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For sufficiently small 7 and h the last inequality implies

1
nol o < = min p%(x). )
1ggfgmllep,h|h < jminp (z) (5.45)

Then the same argument as (5.31)-(5.32) shows that

1
—min p°(z) < pi(x) < §mal<p0(3:), Vee2, n=1,...,m. (5.46)

2 €0 2 2e0
5.5. Estimates of DTeZh.

We estimate || Dre]) ;|2 by taking pn = D-e}y ), in (5.34). Since
(D7 (p} — Pup?), Dreyy ) = (Drplt — PoDrp7, Drepy ) = 0,
we obtain
1Dl < V(2 = Pug)le + IV -0 — Pt 1o
I Vel + IV e e

~ 1 ~
et Vol + 29 - el ol e
+ [l = Ru(ul ™ pl ) - Vol e

1 n n— n— n—
+ ngTv (uT ! _Rh(uT 17p7' 1))”[/2

5
=:> Jp (5.47)
k=1

where

J7 <y o chllpf e + ellV - uh ™ [z [l o7 = Prp?lze
<[l e chll o a2 + ch [l Lo ch2]| | 12 (inverse inequality)
<ch, (use (3.9) to estimate ||p?| sz, and (5.33) to estimate ||u} | 1) (5.48)
I3 <lup iz IVep pllize + IV - uy ™ iz llep pll e
<l ek e 2 + ch U e e (iverse inequality)
<JJul Y peech ™ eh(T + B2)T 4 ch™[up Y| oo ch(r + h2)T
(use (5.43) to estimate [le} , [|2)
<c(r+ hQ)i, (use (5.33) to estimate [[u} ™" 1) (5.49)
I3 <llen i el Vorlle= + IV - g ezl o7l
< 2 IVol e + ch Y el pallotl e (inverse inequality)
<eh(r + W)Vl + ch™ ch(r + h)F |7 1
(use (5.29) to estimate |\eﬁ7_,11||L2)

<c(r + h2)i, (use (3.9) to estimate || Vp?||L and |[p]| L) (5.50)
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Tt <ch?(lut s+ IVt < b (use (39))

T <l e IV - (! — Ryl )
<cllppllzech(luz™ g + 07~ ) (inverse inequality)
<ch. (use (3.9) to estimate ||p?|| Lo, [[u? Y| g2 and [[p? | 1)

Substituting (5.48)-(5.52) into (5.47) yields
ID-enllze < elr+h2)3.

5.6. Estimates of e&h.

By using integration by parts, equation (5.21) can be rewritten as

n— n 1
(ph 1D7'uhavh) + 5

+ B((uy, pp)s (Vi gn)) = 0.

Subtracting (5.54) from (5.26), we obtain

(07 Dt o vi) + (o~ Do = R p2)). vi)
+ (7" = Pup ™) Drul, vi) + (€ Deat, v
+ 5[ (Drot el i) + Dy (0~ R, 1)), )

+ (Dr(p2 = Pupt) ujovi) + (Dref i, vi)|

2l ARV ) (0 R 57). 1)

(P (™ =R (w2~ p ™) - Vil vi) + (el - Yz, vi)
(o1 — Puplyu? 1~Vu¢,vh>+<ez,hu¢*1-Vuz,vm}
[(p;:uh Vi) + (pfup ! Vv, ul = R (ulph)
hur = R (wypl 1>>-Vvh,u¢>+<p2eﬁ#-Vvh,um
(o = Prpus ™ - Vv ul) + (e ,ut ™" - Vg, ut)|

B((ey €u,h» ph)’(vh7qh))

1
2
(p
(

=0.

Reformulating the last equation yields

n— n 1 n n
(ph 1D"'eu h’vh) + §(D~rph eu,havh) +B(( Jho ph) (Vh7Qh))
= — (pp " D-(u} = Ru(ul, p})), va)
— (P = Popt Do, vi) + (€252 Do, v
(

1
5 (D= (p = Pup) €4 p: Vi) —

DTeZJL €u.hs Vi) — 5

2

(Drppy upy; vn) + §(Phuh bV, vi) - §(Phuh L Vi, up)

1
5 (Do (w = Ry, (. p7)). v

)

(5.51)

(5.52)

(5.53)

(5.54)

(5.55)
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= N N e e N e Y I NN S O

(Dr(p7 = Prp?) uh,vi) + (Drep , up, vn))]

(pruy =" Vey ,vi) + (phu = V(u? — Ry (u?,p})), vi)]

- Rh(u:}_lvpf_l)) -VuZz, Vh) + (Pzeﬁ,}l -Vul, Vh)]

—
)
=3
—~
=]
43

Mul~t - vul vi) + (e ul Tt Vul, vy

+

(PR Vel ) + (pfup " - vi,ul — Ry (ul,pl)]

+

(o (" = Ry (w " pr ) - Vv, ul) + (el - Vva,ul)]

+
— — — — — — —
—
—
)
3
I
-
=
3

(7 — Pl Vvpoul) + (€ pul - Vv, )]

<.
Il
—

Substituting (vp,qn) = (eﬁyh, €y ,) and using the interpolation inequality

lep nllFs < c||eﬁﬁh||§{% (Sobolev embedding, cf. [51, Eq. (32.7)])

< cllegnllzzllen nllar, (interpolation inequality, cf. [51, Lemma 25.2])
we have

117 (0| =[ (0 D — R (0, p)), € )|

<Ilop = I Dru? — Ro (Do, Dopt)| 2 el 2

<c(IDral s + Dl W2 lel sl (use (5.46))

<ee (1D 3 + D23 0 + ellel e,

~|((p2 " — Papt ) Doul el y) + (€05 Doul el )|

<D = el ulla (o2 = Prpl oo + €7l 22)

<D = el s (B2 102 e + €l 1 2)

<cllel oz (0 + lef 22)  (use (3.9) to control [[p2 |z and [|Dru? 1)
See (W4 (e 130) + ellel all3s

<c| Dyl |zl s + el Dr (7 — Pupl)ll 2l l2s

+cl|Drplllpee [[0f — R (ut, pr) | 2 leq pll 22

|I;(eﬁ,h)

15 (ey,n)

l T T T n n
<e(r + h2)|el |21Vl yll e + ch?|| Dy pl || zllef ull 2l Vel , |l 2
(use (5.53) and (5.10))
+ || Depl || e 2 ([0 |2 + P2 )€l (use (5.6))
<e(r + h2)illel l|2e + c(r + h2) 7| Vel 122 + cllel ul|22 + ch?
(use (3.9) to control ||u?|| g2 and || D p2|| 1<)
<|(ppup=tven el ) + (ppup iV (u? — Ry (u?,pl)), el )|

<cllppllpe Iy~ e (Ve pllze + IV (a7 = Re(u, p?)) [ 22) e ullz2

15 (eq,n)

29

(5.56)

(5.57)

(5.58)

(5.59)
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117 (eq,n)

|I§(eﬁ,h)

5 (eq,n)

|Ifo(eﬁ,h)
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<c(IVepn pllzz + [IV(u} = Ru(u?, p1))llz2)lleq nllz  (use (5.33) and (5.46))

<(c| Vel itz + chr? + ch?)|lel 1 L2 (use (5.19))

<el|Vey ull7e + ce ey pll7e + ce A3 (r + h?),

<lorllzee (=" = Ra(u = pr Dz + lled s, lz2) [Vl o< el 4l 2

<c(lup~t = Ra(af L pr Yl + e lz2)llen nlle (use (3.9) for [Vup||pe)
(use (5.46) for [|pj|z=)

<c(P(luy Mgz + [1PF ) + llegt o) et nllee (use (5.6))

<c(h® + [len o) llennlle  (use (3.9) to control [[ur || = and [[pp= 51)

<ch? + c(lley ' 72 + lew nlZ2),

<(llp? = Pup?llee + lepnll o)l oo | Vul | o< el ]l 2

< ([P a2 + llep pll ) 10~ e [VUF | poellef ull2  (use (5.10))

<c(h® + ||ef ullz2)llel ullz2 (use (3.9) to control [|p?| > and [[Vu?| L)
<ch* +c(llep ull7e + llew nll72),

<|(ppup " - Vey pewn) + (ohug - Vey p,ur — Ry (uf,pl)|
<llopllzoellupy o< Vel ull (e s> + uf — Ra(uZ, pi))ll22)

<llphllzelap = Ve allzz(lleg allz + ek (= a2 + (17" )

<c[|[Veqnllzz(lleqnllz + hz) (use (5.33) and (5.46) to control ||pZ||Loo||uZ*1||Loo)

(use (3.9) to control [[u? | g2 and ||p=2~t| 1)
<e|| Vel ulliz +ce  (llef ull7e +h?),
<[(pp (™t = Ru(up ™ pi 1Y) - Vey o ul) + (phen s, - Veg . ur)|
<oz (0=t = Ra(u =" p2 ez + lleg ) Ver, e uf ]| oo
<llppllz=(eh®([ur e 4+ 102 ) + lleg s o) Vel e o | e
<(ch? + eyt lz2) Vel | o2
<e|Ver i lze +ceH(llens 172 + A%,

<|((p7 — Puptyul ™ - Vel ) + (e ul " - Vel ul)|

<(lpF = Puptllez + llep nllza) 0= | o[ Vey pll 2l [ 2o
<(ch?[l ozl + llepnll ) o=l oo [ Vel ull e [uf | oo
<(ch® + llep all o)1 VeR 4l 2

<el| Ve allZe + e (W' + [lep ullZ2).

(5.60)

(5.61)

(5.62)

(5.63)

(5.64)

(5.65)

It remains to estimate |/} (e}, ,)|. To this end, we substitute @), = Pp(uj - e}, ) into (5.34). Then we obtain

[(Drepyp, Pa(uyy - e )| <[(up™" - V(o = Puplt), Pu(uj; - ey 1))
1 n— n n n_.n
+ §|(v sy 1(p7' - Php7)7ph(uh : eu,h))l
(i Vep , Pa(ug - e )|

1 n— n n n
+ §|(V Sy, 16p,h7Ph(uh eun))l
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+|( LV, Pu(aj - el )l

—I(V eu n P Pu(ug e )]
(T = Ra (i pr ) - VoL, Pauy; ey )]

;|< 1V (= R ), Pl - )
8
Z (5.66)

By the decomposition uj; - e , = (Ru(u?,pl) —ep ;) - el = Ry(u?,pl) - el ), — lel: |, we have

Hy <[(up™ -V (p = Puplt), Pa(le n )]+ [(af =t - V(o) = Pup}), Po(Ra(u},pp) - €l )|

<cllup eIV (o7 = Prp)ll2 (e e + IRa(uZ, p2)l| Lo llef 4]l 22)

<cllup ™ poe (ch + ch®)(||ef all7« + el nllz2)  (use (5.17) and (5.8))

<(cht + ch?) ([ Vel yllzellel ullze + llef llz2)  (use (5.33) and (5.57))

<ch(T+ h)(|VeR ull72 + el all7z) + ch® (7% + h?) + cllel 117 (5.67)
Hy <|(V-ap ™ (o = Pupl), Pu(len n )]+ (V- up = (o — Pup?), Pa(Ri(u?, ) - €3 1)

<IVap e llpr = Pupfllce (et nll e + IRn(u?, pf)| oo llef 4llz2)

<[ Vup g (ch®r + ch®)(lled 171 + el ullz2) (use (5.16))

< poe (chr + ch®) ([ Vel pll 2 et nll 2 + el ullz2)

(use inverse inequality and (5.57))

<(chr + ch?)([Vel ullc2llen allzz + llew allz2) (use (5.33))
Sch(T + h)(HVe’J,hHiz +llef allZ) + ChQ(T2 +h%) +cllel 17 (5.68)
Hy <|(u™" - Vep p, Pa(lel *)] + |(uf Veph,Ph(Rh(u?,p?) “eun))l

=[(e} 1, V- (up Pullen h P+ [(€hn, V- (up ' Pu(Ra(u?, pl) - € )
(integration by parts)
=[(epn, V-up  Pu(len ) + (ef poup =t - VB (el 4]?))]
+ (e, V-up  Pu(Ru(a?, pl) - € p)) + (ef o up ™t - VP Ry (ul, pl) - e 1)
<cllep pllo< IV - up = s llen ull7e + cllep pllnellup = iz< 1V Ied 7 ot
(use (5.11))
el ll g 19w e R, 7) - €02
T ellem e oo [V (R (a2, 1) - €)1
<l Ve el 12 + el Vel Lozl ol 2
-1
eV o el el alls + el Vel e

<[V iz (el wllZe + lep allze) + e (el allZ + llep all7z) + ell Vel nl7, (5.69)
where the last inequality uses |Ry(u?, p™)||y 1., which is a consequence of (5.8) and (3.9). Since (5.8) implies

IVuh e < [[Veys e + [VRa(u? ™ pr )] pe
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< |IVegs iz +c
<ch Y Vey e + ¢, (5.70)

where the last step is due to the inverse inequality. Substituting the last inequality into the estimate of Hj
above, we obtain

Hy <c(h 1| Vel e + D (llefnllze + llepnllze) + ce (el ullze + llepnllze) + el Vey ull7e- (5.71)
Similarly, we have

Hy <|(e V- w ", Pullel )] + 1€V - ™", Pr(R (a2, p)el )

<e| Vg oo (le e e alZa + el ulzelie allz2)

<e(h ™|Vl e + D€l ul3e + ehul3s),  (use (5.44) and (5.70) (5.72)
Hs <|(ely} - Vol Pa(lel u2)] + (e Vo, P(Ra(ull, p)el )

<e|[ Vil (el ool + lens llzellel allz2)

<clllel 35 + el =), (use (3.9) and (5.30)) (5.73)
Hy <|(p2V - ey, Pulelu )] + 1029 - el Pa(Ra(ull gl el )|

<ellpll~ (Ve o ek allZe + Vel oz el ze)

<ellpllz~ (b Vel zellef all3e + Vel lellefnlle)  (inverse inequality)

<ch ™| Vel | ellel ull3a + el Vel e + cc el s, (use (5.46))
He <|(ul ™ = Ry (w2 p0)) - Vo, Pa(lel ) — Pu(Ra(ul, plel )|

<t = Ra(ul gt ) o Vo2 (e 3 + el o)

<eh? ([ e + 12 eIV e (1960l 21Tl = + lle allz2)

<ch?([Ve oz el e + lleplz2)

<ch? (Ve 3 + el ul22) + ellel 3 + ch, (5.74)
Hy <|(2V - (0" = Ry (w2, p2 ), Prlel ,?) — Pa(Ra(ul,p2)el )|

<[l [V = Ra(ul ™ pr Dl e (e all3e + lenlze)

<2l (ehr + ch?) (el + lelplle)  (use (5.19))

<(chr + ch?)([ Ve 2 llen e + el lliz)  (use (3.6) and (5.57))

<ch(r® + h)(IVel e + lenpl32) + ch(r + 1) + cllel 3. (5.75)

Substituting (5.67)-(5.75) into (5.66) yields

|(Dref s Pr(ufy - € p))| < (e+chr® +ch?)([Vey 172 + Vel [ 72) + ce ' h2(r + )

pho
+ (ch M IVer e + e (el nllZz + lepnlle + llen s 7z + llehs I7z),
and therefore

|15 (enn)| < (D7 (pF — Pupl)uy,eq )| +[(Drep g, Pr(uy - ey )]
<||D-p7 = PoDrpl < llup |z lleq nllzz + [(Drep py Pu(uy - e )l

< (e chrd 4 ch®)([Ve al3a + Vel [32) + e B2 (r + h2)
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4 (ch Y IVen g + e V) (leh pll2a + lemyl2a + el 72 + 7 Bs),  (5.76)
where [[u}|| 12 is bounded as explained in Remark 2.1.
Then substituting (5.58)-(5.65) and (5.76) into (5.56) yields
1 n AT 2 n 2
§DT Ph eu,hHL2 +1IVeqallze
n— n n 1 n n
<|(pp IDTeu,h’eu,h” + |§( 7Pk €uns € )| + [ B((eqnsepn)s (€qnsepn))l
< (e+chr® +ch? + (1 + 1) F)([Vel 122 + | Vel I32)
+ e 'hA(1 + h?) + ce (|| Doul |3 + || Depl|3 )R
4 (ch Y Ven g + e V) (el pll2a + el 22 + e 72a + e 22). (5.77)

By summing up the last inequality times 7 for n = 1,...,k, and choosing sufficiently small ¢, h and 7, we

have (the first term on the right-hand side of (5.77) is absorbed by the left-hand side, except a starting term
involving 7(|Vey, ,117-)

k
1 2
sIVekeba]| , + D riven sl
n=0

1 2
< EHw/p?l eﬂthL2 + CT||Ve?17hH%2 + ch?(t + h?) (5.78)

k
+7 Z(Ch_l IVen s

n=1

iz +)(llegnllEs + llep allZs + llegs 72 + lleps 1172)

for k =1,...,m, where we have used (3.10) to estimate the third term on the right-hand side of (5.77), i

k
S (Dl 3 + D23 )bt < ch.

Since ey, ;, = Ry (u’,p") — I,u’, the estimates (5.6)-(5.7) and (5.14) imply

2
SVl < et U3 + 150130,
7 Vel 32 < erh3(lu s + 1p°30).

Substituting the last two inequalities into (5.78) and considering €(5.42)+(5.78), we have

cllek 3 + 3| /ok ek, +
k

<ed 7lVertis + ch®(r + 17

n=1

> Tlvenuliz:
=0

k
7Y (ch M Ve e +o)llel nlie + llepnlie + lefs 172 + g l7e), &
n=1

=1,...,m.
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Again, by choosing a sufficiently small parameter ¢ and using (5.46), the first term on the right-hand side above
can be absorbed by the left-hand side. Then we obtain

k
lepallZe + llebnlie + > 7lIVel,liZ:

n=0
< ch*(1 + h?) (5.79)
k
+7Y (ch M Ver e + o)(llewnlie + lepallie + lens 172 + ey 172)

n=1

for k = 1,...,m. The fourth inequality of (5.29) implies ngzl(ch’1|\Veﬁ;llHLz + ¢) < c. Substituting this
inequality into (5.79) and applying Gronwall’s inequality, we obtain

m
| ax (lepnllze + llewnllz) + ZJTHVeﬁ,hH%z < ch?(1 4+ h?). (5.80)
-

For sufficiently small mesh size h and 7, the inequality above implies
letallze < h(r+h?)3,

letnllze < ch™flelyllze < evT+h2 <1,

S rlVen 2. < ch?(7 + h?) < 2T+ h2.
n=0

This, together with the induction assumption (5.29), proves the second, third and fourth inequalities of (5.30).
The first inequality of (5.30) has already been proved in (5.45). The mathematical induction is closed. Conse-
quently, the estimates (5.30) and (5.80) hold for mm = N (with the same constants). These estimates imply

| 7 oo o) < .
Jmax (ol + [ufll o) < e (5:81)
and
N
| nax. (lepnllzz + llew nllz2) + Z_;JTHVeﬁ,hHiz < ch?(T + h?). (5.82)

This proves (5.22) in view of the first inequality of (5.30) and the derivation of (5.32).

5.7. Improving the estimate of DTeZ he

By using (5.82), we re-estimate |[Dre} ,[|12 by taking ¢, = Dre}) ), in (5.34). Since
(D‘r(p:—l - Php:—l)a D7—€Z7h) = (Drp:} - PhDTp:—lu D‘rez,h) =0,
we obtain
n n— n n 1 n— n n
HDTePJz”LZ S”uh t v(pT - PhpT)||L2 + §Hv “uy 1(p7' - PhpT)HLQ

_ 1 _
g Vel + 31V wh e s
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_ 1 _
et Vol + 519 el ol
T = Rl ) - Vel

1 — n— n—
+5lerV - (ur - Ru(af )l e
5
=:> Jr (5.83)
k=1

where

< chll g e + ch= | 210 (inverse inequality)

<ch, (use (3.9) to estimate ||p?| z2, and (5.81) to estimate |u} " z) (5.84)
I3 <llup o= Vep pllze + IV - up ™ e llef ull 2

<luppweh e e + ch™Hlup e lepllz (inverse inequality)

<|up [ pech T eh(T2 + h) + ch 7 uf " | pech(r2 + k) (use (5.82) to estimate ||” | 12)

<c(r? +h), (use (5.81) to estimate |[u} " 1) (5.85)

J5 <lleg i ez 1Vopllzee + 1V - eyt Izl o7l e

*

<lleg s 2 IVoR I + ch™ [leg Izl o2 [ oo (inverse inequality)

§ch(7'% + W)V L~ + chilch(ré + W) p2| oo (use (5.82) to estimate HeﬁTthp)

SC(T% + h), (use (3.9) to estimate |VpZ| = and ||p2| L) (5.86)
J; <cR? (e + [0 ) IVolllw <2, (use (3.9)) (5.87)
T <ell gl 9 - (it — Ry, g 1)) e

<ellp < e + 12 ) (use (5.7))

<ch. (use (3.9) to estimate ||p?|| Lo, [[u? 7Y g2 and |[p2 Y| ) (5.88)

Substituting (5.84)-(5.88) into (5.83) yields

n 1
 ax, | Drepplle: < e(t2 +h). (5.89)

which improves the estimate (5.53) obtained in Section 5.5.
5.8. Estimates of ¢ .

We estimate || Drey, ;|12 by taking v, = D-ej, , and g, = 0 in (5.56). We obtain

(pZ‘lDTeﬁ,h, D-ey 1) + B((ey s epn): (Drey 1, 0))

10
1 non n * n
= ( - §D‘rph Cu,hs DTeu,h) + Z Ij (D"'euxh)
j=1
1 10
— (= §Dost et Del ) + S5 Do) (5.90)

j=1
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where (K, vy) = I7(vy) for j # 3 and

1 * 1 n n n n
(Raovn) = (5Drlo8 = ) elinewn ) + 5 vn) = (= 5(Dopt (2 = Rafu )i )

Thus

13D.p0 e

n
u,hHL2

K]z

1 Kal| 2

1K 2

[ Kall 2

K5 2

<5l1D=p7 [l Llle} ullz2
<5(ID-ej Lo + |1 D-p"[|>)lleg all 22
<c(||D-egllaz + 1 D-p" | m2)lleg pll L2

<ch(r? +h), (use (3.7) and (5.82))
=llph ™" Dr(u} — Ry(u}, o)) 2
<lloh~ Hlpee 1D (0} = R (ult, p)) | 22
=lloh e || D-u} = Ry (Druf, Doplt)|| 2
<llpp ML ch® (| D-uf g2 + | Drpl | 1)

<C’”L2(||Dru?||H2 +1Deplan), (use (5.46) to control [|o~"[|z)
=2~ = Pupr ™) Druy + e Doy e

<(1pm1 = Pap Yo + €5 ]| D

<(ch?|pn g + len 7 ) | Dru s

<c(h? + ||ep;ll||L2) (use (3.9) to control ||p2 1| g2 and ||Dyu”|| )
<ch(r? + h), (use (5.82) to estimate [[e”} ! 2)

=l5(D-p} (u} — Ry (u?, p7))|l 2

<cl|Drp7 | Lo [0f — Ra(a?, pf)| L2
<c(l[Drepllnes + [[Drp" || Lo ) [0 — R (0, pT)l| >
<c(|Drepllmz + | Dep™ || m2) ([0} |2 + P71 11)
<ch?, (use (3.7) to control || Dre}| s2)
(use (3.9) o control a2 + [p7]} 1)

=||D-p? — PoD:p})up + Drey jap|| 2
<(|D7p? = PaDrp7llL2 + | Drep pllL2)llup |
<(ch?|| Drp | 2 + | Drey pll o)y [ £
<ch® + c[[Dreypllee  (use (3.7) to estimate || Drpl||z2)

(use (5.81) to estimate ||u}||z)
<c(r? +h), (use (5.89))
=llpiu Vel , + prup TV (up — Ry(ul, p}))l| e
<llphllzs llay ™ Hlzee (1Vel ullze + [V (0} = Ra(u?, p?)] c2)
<llpplleelup oo Vel ulle +chr? +¢h®)  (use (5.19))
<|lppll L= ||uZ_1||Loo(ch*1||eﬁ7h||L2 + chr? +ch?) (use inverse inequality)

SC(T% +h), (use (5.82) for [le}; ,[|r2, and (5.81) for ||p} L~ and [uf | pe)

(5.91)

(5.92)

(5.93)

(5.94)

(5.95)

(5.96)

(5.97)
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1Kol 2 =llpp (F™! = Ry (a2~ pp™h)) - Vul + plrel ! - Val | 2

<l oo (2 = R, p2 )|z + el o) [V

<7 e (ch2 (a2 g + 02 ) + el )|Vl e

<c(h* + ||eﬁ7_hl||L2) (use (5.81) to estimate ||p}|| L)

(use (3.9) to estimate [|[Vu?||pe)

<ch(r® + h), (use (5.82)) (5.98)
1572 =[l(p7 — Pupf)uy™" - Vi +eppur™ - Vul

<(1p% = Pupllcz + llep pllze) oy~ e [ Vur |

<(ch®|lppll + llep pllz)lluf ™ oo [ VU | oo

<c(h? + llepnllze)  (use (3.9) to estimate ||p} |2, [uy ™" and [Vur||z~)

<ch(r? + h), (use (5.82)) (5.99)

1K z2 %HV (Pt @el ) + Ve (phup Tt @ (uf = Ra(ul,pl))|l e
<llpruy " o= (IVegallze + IV (W} = Ru(u, p})] 22)
+ IV (oruy = (lled pllze + [u? = Ra(u, p7)llz2)
<[y e (ch ™ e pll2 + ch(r? + ) (
IV - (ppa ™) || pee (Ch(T% +h) +ch?(r? + h))  (use (5.80) and (5.18))
(use (5.80))
+ |l ppul | poe (C(T% +h) +ch(r? + h)) (inverse inequality)

use inverse inequality and (5.19))
<llppup =YL (72 + h+ ch(r® + h))

SC(T% +h), (use (5.81) to estimate ||p}!||r~ and ||} | 1) (5.100)

1Ko 2 :énv (P = Ry () @ul) + V- (phelt @ul)|e
<[V (pp (! = Ry (2t p2 ) 2l | e + [V (ohel ;I ze ul ] oo

+ o = Ry (w2t p ) e [Vl e + [lpfefs e [ Vul | L
<[lppll oo IV (2™t = Ry (2= p2 =) | o ul| oo

+ Vo e un ™t = Ry (u = ) | o ul | e

+ ol L= Vel el e + 1Vl e ]2 | e

+ ot = Ry (w2t p ) 2 [Vl | oo + [|pfelis e Vul | o
<cllphll s (ch® + ch?)|ul| L~ (use (5.19))

+ | Vol o (ch®r2 + ch®)|[ul[z~  (use (5.18))

+ellppllLe (72 + h)[ul ] e + | Vil Leh(r? + h)[ul] = (use (5.82))

43 33

u

+ellpfllne (eh*r® + eh) | Va|| o + el llph(r® + h)[[Vu?|r=
(use (5.18) and (5.82))
SC(T% + h), (use (3.9) to estimate [[u?| L~ and ||VuZ||r=)
(use inverse inequality to estimate |V} | o)
(use (5.81) to estimate ||p}]| ), (5.101)
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1K ollzz =IIV - (07 = Pup)ur " @ul) + V- (e 0~ @ uy)|e

<V = Popt) ez lluz™ oo ol + [ Vep pllpalluf =" | o] o

+1p% = Pupfllze [V oo [u o + llep pll 2l VR = [ poe Jug | e

e = Prpr ez llay ™ oo VUl Lo + lleg pllzellur | [Vur | e
<c(ht + h?) + (77 + h)

(use (5.16) to estimate ||p}! — Pnp7||r2 and (5.82) to estimate [le]) ;[ z2)
(use (3.9) to estimate |[[u”|| L~ and ||[Vu?| )

<c(T7 +h). (5.102)

Since

B((eﬁ,hv eﬁ,h)a (Dfeﬁ,ha 0)) Veﬁ,ha VDTeﬁ,h) - (eﬁ,m V- DTeﬁ,h)
e

=
= (Vegn, VDrey 1)

1
> = Dr|[Vel 2, (5.103)

substituting (5.92)-(5.102) into (5.90) yields

n— n n 1 n
(ph 1'l)‘l'eu,fw DTeu,h) + §D7Hveuqh||%2

10
< el Dreulife + D eI 17e
§=0

< €| Drey yll7e + ce N+ h?) + ce (| Drut | Fa + [|D7p} [0,
which further implies (by choosing a sufficient small ¢ and using (5.32), and summing up the inequalities for
n=1,...,N)
N

T2 IDrealls + w9l
=
N
< | Vel l + el + %) +er 3 (ID,u2 3 + | Depl 3 )0t

n=1

<c(r+h?).  (use (5.27) and (3.10)) (5.104)

Finally, we estimate (e, ;,, V- vj,) by taking g, = 0 in (5.56). By using the K;; defined in (5.90), we have
(CREAD]

10
- n n 1 n n
= (pz 1DTeu,h7Vh) + (veu,hvvvh) + (§D‘rp-r eu,ha"h) - § (Kj,Vh)
j=1

IN

_ 1
<||pZ 1DTeﬁ7h||Lz + Ve nllze + HEDTpZ eun

10
+Z|Kj||L2)|vh||H1
2 le

10
'y ||Kj|Lz>||Vvh||L2
2

j=1

L

1
< (cADrelalle + Vel + | 30r0t et

L
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1
SGW#MW+W%MmﬂvHﬂ+wm&ﬂmHWMﬂm»me,

where we have used (5.92)-(5.102) in the last inequality. The last inequality, together with the inf-sup condition
(2.9), implies

lepullzz < (| Drel llez + Vel ullzz) + (72 + h) + ch*(IDral |z + | D).

By summing up the inequality above for n = 1,..., N, and using (5.104) and (3.10), we have

N
> rllennllze < ol + h2). (5.105)

n=1

To summarize, (5.22) has been proved at the end of Section 5.6, and (5.82) and (5.105) imply (5.23). The
proof of Proposition 3.2 is completed. O

6. NUMERICAL RESULTS

In this section, we present numerical tests to support the theoretical result proved in Theorem 2.1. To this
end, we solve the equations

dup+ V- (pu) = |, (6.1)
pou+ pu-Vu+ Vp — pAu =g,
V.-u=0,

with g = 0.001, in the unit square 2 = [0, 1] x [0, 1] by the proposed method up to time 7' = 0.5, where f and
g are determined by substituting the following exact solution into the equations (6.1)-(6.3):

p(x,y,t) =2+ xz(x — 1) cos(sin(t)) + y(y — 1) sin(sin(t)),

o= (73,
plz,y,t)=te+y— (t+1)/2.

To illustrate the spatial order of convergence, we present the errors of the numerical solutions in Table 6.1
for different mesh size h with 7 = h?, where we see that the numerical solutions has second-order convergence.
To illustrate the temporal order of convergence, the computations are done for different step sizes 7, with a
fixed sufficiently small mesh size h such that the error from the spatial discretization is negligible in observing
the temporal order of convergence. The numerical results are presented in Table 6.2, where we see that the
temporal order of convergence is also consistent with the error estimate presented in Theorem 2.1.

TABLE 6.1. Rates of convergence and error for different mesh size h with 7 = h2.

1o — o [l 2 [u” —up e PN — o [l 2
L L2 b L2
1/8 4.870E-04 / 9.748E-03 / 3.72E-03

1/16 1.216E-04 2.00 2.505E-03 1.96 9.30E-04 2.00
1/32 3.039E-05 2.00 6.285E-04 1.99 2.33E-04 1.99
1/64 7.595E-06 2.00 1.598E-04 1.97 5.94E-05 1.97
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TABLE 6.2. Rates of convergence and error in time.

AT = AT
i T Tl I i il A Al P

01| 5.931E-03 / 2.940E-02 i 3.436E-02 /
21 x0.1 2.983E-03 0.99 1.477E-02 0.99 1.750E-02 0.97
272 x 0.1 1.496E-03 0.99 7.403E-03 0.99 8.834E-03 0.98
273 x 0.1 7.492E-04 0.99 3.707E-03 0.99 4.438E-03 0.99
274 x 0.1 3.747E-04 0.99 1.855E-03 0.99 2.225E-03 0.99

275 % 0.1 1.872E-04 1.00 9.273E-04 0.99 1.114E-03 0.99

order

APPENDIX A. EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR (3.1)-(3.4)

We assume that p? € H?(£2) N L>°(£2) and u? € Wh>°(2) "H?(2) NH{(£2) are given for n =0,...,m —1,
such that V- ul? =0 and (4.18)-(4.19) hold. Under this assumption, we prove the existence and uniqueness of
the solution (p, u™, p™).

Part I: Well-posedness of (3.1)

For the given p™~1 € H2(2)N L>*(N2) and u”~! € Wh(Q) N H?(2) N H{(2), with V-u™~! =0, we can
extend p™~! to p7~! € H'(R?) such that p”~! = p™~! in 2 and the following estimates hold (cf. [50, Chapter
VI, Theorem 5, pp. 181)):

157 L2y < cllp? 2o, (A1)
197 e ey < ellpHlmo)- (A.2)
The truncated function
o) = min (i 7). 7 0) ) g ) ) 0 € R, (43)
yen yen

satisfies p7'~* € H'(R?) and

min p7 " (y) < PPt (z) <maxplTH(y), VoeR% (A4)
yes? yen
Similarly, the function
S u™ ! (z) x € {2,
ult(x) = ) (A.5)
0 x € R\ {2,

extends u"~t € WHo(2) NH{(2) to u~! € WHo(R?).
With the extensions above, we define the bilinear form

a(op, ) == /R? (771¢+ﬁ;”*1~v¢)<pdx+/Rz Vo -Vedr, Vé,oc H (R?),

which is coercive on H'(R?) for any fixed € € (0,1), i.e.,

a(g, ¢) = 7|l F2(re) + €| VOl T2(me) > cell Bl mey-
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Consequently, the Lax—Milgram lemma implies that the equation
alpe) = [ T pdn, Vo€ HED), (A.6)
R2

has a unique solution p7', € H L(R?). In other words, the second-order elliptic equation
T_lp:ffe +art. Vool —eApl, = r71pmt i R? (A7)
has a unique weak solution p7', € H 1(R?). The equation above also implies
€Al =7l +ul Vel — 7 e LP(R?). (A.8)

Then the elliptic regularity (cf. [22, Theorem 3.2.1.2]) further implies p™. € H?(R?).

T,€

Integrating (A.7) against the test function ¢ = max (0, p’, — malcﬁf_l(y)) yields
’ yeN

Tl ey + €llVllT@e) =0,

which implies ¢ = 0. In other words, pJ’, — maxpy" '(y) < 0. Similarly, Integrating (A.7) against the test
yes?
function ¢ = min (0, p!’, — min ﬁ:.”_l(y)) yields p™. — min 7™ '(y) > 0. This proves that the weak solution of
' yenR ’ yen

(A.7) obeys the maximum principle:

min 7' (y) < pl(z) < maxplTl(y), VaeR% (A.9)
yeR2 yeR2

Integrating (A.7) against p} _ yields

o7l L2 @2y < 17l 2eey < ellpr sz, (A.10)

where the last inequality is due to (A.1). By differentiating (A.7) with respect to x;, we see that

T 0, p AT VO, Pl — €ADy, Pl
= =0y, ul -Vl + 70, P (A.11)

Integrating (A.11) against 0., p}". yields

2 2 2
> M0 0 NG 22y < D N0, WM I o ) I VAT T2y + D7 100,07 12 2y

j=1 j=1 j=1
2 2
<D 0,0 o () IV T ey + > 77 100,50 122y, (A12)
j=1 j=1

where the last inequality is due to (A.2) and (A.3). For sufficiently small 7, i.e.,

1
T < poen
2[|Vu? 1”200(9

)

)
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the first term on the right-hand side of (A.12) can be absorbed by the left-hand side. Consequently, we obtain
IV T2y < ellVRF 220 (A.13)

Since the estimates (A.10) and (A.13) are independent of €, there exists a sequence ¢; — 0 such that pJ_
converges strongly in L?(B) and weakly in H!(B), for any bounded domain B C R2 The limit function

mo__

pr = lim p7'. would satisfy
e;—0 e
/ (r7 o +ur Tt V) pdr = / " odr, Ve O (R?). (A.14)
R? R?
Since both 771 pm +am 1. Vp™ and 771 p" ! are in L?(£2) and C§°(£2) C C§°(R?) is dense in L2(£2), it follows
that

/ (r " +ul VM) pda = / T rode, Yo e L2(0). (A.15)
Q 2

This proves the existence of a strong solution p™ € H'(£2) N L°°(£2) of (3.1), obeying the maximum principle
(in view of (A.4) and (A.9)):

min p7' " (y) < pf(z) < maxplH(y), Ve 2 (A.16)

-
yeS? yen

If there exist two such solutions p™, p™ € H'({2) for the equation (3.1), then we have

T e = )+ N () = ) = 0. (A17)

T

m—1

=1, we immediately

Integrating the above equation against p!" — p* and using the divergence-free property of u
obtain

Pl - e =0, (A.18)
which implies p* = p™. The uniqueness is proved.

Part IT: Well-posedness of (3.2)-(3.3)

For the given p™~1 p™ € H?(2) N L>(N2) and u™~! € Wh(0Q) N H?(2) N H}(2), with pm~! > 0 and
p™ >0 (proved in Part I), we define the bilinear form

b ) =g [ N = ) Vv
+/ (r7'pl w + ptal Vw) - vde
Q
+ u/ Vw-Vvdz, Yw,veH} (), (A.19)
e

where HL. (2) = {v € H{(£2) : V-v = 0}. Tt is easy to see that the bilinear form b(-,-) is coercive on HJ, (£2),
i.e.,

1
bowaw) = 3 [ e+ e+ | OwlEde > cwl. (A.20)
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Consequently, the Lax—Milgram lemma implies that the equation
b(ul',v) := / T tam T ovde, Vv e Hy (9), (A.21)
0
has a unique solution ul’* € IiIéiV(Q), satisfying

/ (r7 ' al + plul T Vul) cvde + u/ vu!' - Vvdz
2 2

= / Tflp:_nfluzlil -vde, Vv e Iiléw(“o) (A.22)
2

By using the notation of Section 4.1, the last equation implies, for v € C§°(12),

—(pAul’, v) = —(pul, Av)

—(pul’, Paiy Av)
= —(pul", APgiyv)
= (uVul’, VPgiyv)

= / T lam Tl Py vde —/ (T_lpT_luT + pmum Tt vu?') - Pgiyvdz
Q Q

T

= / Pai (r7pr et — - pma T V) v da, (A.23)
2

where the last equality is due to the self-adjointness of the projection operator Pg;,. This last equality implies
he following equations:

—pAu" + Vo =1 tpr et — o tpme iy gl yu € LE(0), (A.24)

T T

Vou = 0. (A.25)
The standard H? estimate for the Stokes equations (cf. [20]) implies u” € H?(£2) N H}(§2), and (A.22) implies
Paiv (7~ Dyul + plup ™! - V' — pAul’) = 0.
By the Helmoholtz-Weyl decomposition (4.4), there exists a unique pI* € H'(£2) such that [, p*dz = 0 and
PP Dol 4 plra TV — pAut = —Vpl (A.26)
This proves the existence and uniqueness of the solution
(wr, ) € (H3(2) N HY(@) x (H'(2) 0 L3(2))
for (3.2)-(3.3) with n = m. O
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