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Abstract. For characterizing the Brownian motion in a bounded domain: Ω, it is well-known4
that the boundary conditions of the classical diffusion equation just rely on the given information5
of the solution along the boundary of a domain; on the contrary, for the Lévy flights or tempered6
Lévy flights in a bounded domain, it involves the information of a solution in the complementary7
set of Ω, i.e., Rn\Ω, with the potential reason that paths of the corresponding stochastic process8
are discontinuous. Guided by probability intuitions and the stochastic perspectives of anomalous9
diffusion, we show the reasonable ways, ensuring the clear physical meaning and well-posedness of10
the partial differential equations (PDEs), of specifying ‘boundary’ conditions for space fractional11
PDEs modeling the anomalous diffusion. Some properties of the operators are discussed, and the12
well-posednesses of the PDEs with generalized boundary conditions are proved.13
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1. Introduction. The phrase ‘anomalous is normal’ says that anomalous dif-16

fusion phenomena are ubiquitous in the natural world. It was first used in the title17

of [24], which reveals that the diffusion of classical particles on a solid surface has18

rich anomalous behaviour controlled by the friction coefficient. In fact, anomalous19

diffusion is no longer a young topic. In the review paper [5], the evolution of par-20

ticles in disordered environments was investigated; the specific effects of a bias on21

anomalous diffusion were considered; and the generalizations of Einstein’s relation in22

the presence of disorder were discussed. With the rapid development of the study23

of anomalous dynamics in diverse field, some deterministic equations are derived,24

governing the macroscopic behaviour of anomalous diffusion. In 2000, Metzler and25

Klafter published the survey paper [22] for the equations governing transport dy-26

namics in complex system with anomalous diffusion and non-exponential relaxation27

patterns, i.e., fractional kinetic equations of the diffusion, advection-diffusion, and28

Fokker-Planck type, derived asymptotically from basic random walk models and a29

generalized master equation. Many mathematicians have been involved in the re-30

search of fractional partial differential equations (PDEs). For fractional PDEs in a31

bounded domain Ω, an important question is how to introduce physically meaningful32

and mathematically well-posed boundary conditions on ∂Ω or Rn\Ω.33

Microscopically, diffusion is the net movement of particles from a region of higher34

concentration to a region of lower concentration; for the normal diffusion (Brownian35

motion), the second moment of the particle trajectories is a linear function of the36

time t; naturally, if it is a nonlinear function of t, we call the corresponding diffu-37

sion process anomalous diffusion or non-Brownian diffusion [22]. The microscopic38

(stochastic) models describing anomalous diffusion include continuous time random39
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walks (CTRWs), Langevin type equation, Lévy processes, subordinated Lévy pro-40

cesses, and fractional Brownian motion, etc.. The CTRWs contain two important41

random variables describing the motion of particles [23], i.e., the waiting time ξ and42

jump length η. If both the first moment of ξ and the second moment of η are finite in43

the scaling limit, then the CTRWs approximate Brownian motion. On the contrary,44

if one of them is divergent, then the CTRWs characterize anomalous diffusion. Two45

of the most important CTRW models are Lévy flights and Lévy walks. For Lévy46

flights, the ξ with finite first moment and η with infinite second moment are inde-47

pendent, leading to infinite propagation speed and the divergent second moments of48

the distribution of the particles. This causes much difficulty in relating the models to49

experimental data, especially when analyzing the scaling of the measured moments50

in time [30]. With coupled distribution of ξ and η (the infinite speed is penalized by51

the corresponding waiting times), we get the so-called Lévy walks [30]. Another idea52

to ensure that the processes have bounded moments is to truncate the long tailed53

probability distribution of Lévy flights [19]; they still look like a Lévy flight in not54

too long a time. Currently, the most popular way to do the truncation is to use the55

exponential tempering, offering the technical advantage of still being an infinitely di-56

visible Lévy process after the operation [21]. The Lévy process to describe anomalous57

diffusion is the scaling limit of CTRWs with independent ξ and η. It is character-58

ized by its characteristic function. Except Brownian motion with drift, the paths of59

all other proper Lévy processes are discontinuous. Sometimes, the Lévy flights are60

conveniently described by the Brownian motion subordinated to a Lévy process [6].61

Fractional Brownian motions are often taken as the models to characterize subdiffu-62

sion [18].63

Macroscopically, fractional (nonlocal) PDEs are the most popular and effective64

models for anomalous diffusion, derived from the microscopic models. The solution65

of fractional PDEs is generally the probability density function (PDF) of the position66

of the particles undergoing anomalous dynamics; with the deepening of research, the67

fractional PDEs governing the functional distribution of particles’ trajectories are also68

developed [28, 29]. Two ways are usually used to derive the fractional PDEs. One69

is based on the Montroll-Weiss equation [23], i.e., in Fourier-Laplace space, the PDF70

p(X, t) obeys71

(1) p̂(k, u) =
1− φ(u)

u
· p̂0(k)

1−Ψ(u,k)
,72

where p̂0(k) is the Fourier transform of the initial data; φ(u) is the Laplace transform73

of the PDF of waiting times ξ and Ψ(u,k) the Laplace and the Fourier transforms of74

the joint PDF of waiting times ξ and jump length η. If ξ and η are independent, then75

Ψ(u,k) = φ(u)ψ(k), where ψ(k) is the Fourier transform of the PDF of η. Another76

way is based on the characteristic function of the α-stable Lévy motion, being the77

scaling limit of the CTRW model with power law distribution of jump length η. In78

the high dimensional case, it is more convenient to make the derivation by using the79

characteristic function of the stochastic process. According to the Lévy-Khinchin80

formula [2], the characteristic function of Lévy process has a specific form81

(2)

∫
Rn
eik·Xp(X, t)dX = E(eik·X) = etΦ(k),82

where

Φ(k) = ia · k− 1

2
(k · bk) +

∫
Rn\{0}

[
eik·X − 1− i(k ·X)χ{|X|<1}

]
ν(dX);
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Fig. 1: Sketch map for the physical environment suitable for Eq. (7).

here χI is the indicator function of the set I, a ∈ Rn, b is a positive definite symmetric83

n × n matrix and ν is a sigma-finite Lévy measure on Rn\{0}. When a and b are84

zero and85

(3) ν(dX) =
βΓ(n+β

2 )

21−βπn/2Γ(1− β/2)
|X|−β−ndX,86

the process is a rotationally symmetric β-stable Lévy motion and its PDF solves87

(4)
∂p(X, t)

∂t
= ∆β/2p(X, t),88

where F(∆β/2p(X, t)) = −|k|βF(p(X, t)) [26]. If replacing (3) by the measure of89

isotropic tempered power law with the tempering exponent λ, then we get the corre-90

sponding PDF evolution equation91

(5)
∂p(X, t)

∂t
= (∆ + λ)β/2p(X, t),92

where (∆ + λ)β/2 is defined by (32) in physical space and by (34) in Fourier space.93

In practice, the choice of ν(dX) depends strongly on the concrete physical envi-94

ronment. For example, Figure 1 clearly shows the horizontal and vertical structure.95

So, we need to take the measure as (if it is superdiffusion)96

(6)

ν(dX) = ν(dx1dx2) =
β1Γ( 1+β1

2 )

21−β1π1/2Γ(1− β1/2)
|x1|−β1−1δ(x2)dx1dx2

+
β2Γ( 1+β2

2 )

21−β2π1/2Γ(1− β2/2)
δ(x1)|x2|−β2−1dx1dx2,

97

where β1 and β2 belong to (0, 2). If a and b equal to zero, then it leads to diffusion98

equation99

(7)
∂p(x1,x2, t)

∂t
=
∂β1p(x1,x2, t)

∂|x1|β1
+
∂β2p(x1,x2, t)

∂|x2|β2
.100

Under the guidelines of probability intuitions and stochastic perspectives [15] of101

Lévy flights or tempered Lévy flights, we discuss the reasonable ways of defining102

fractional partial differential operators and specifying the ‘boundary’ conditions for103

their macroscopic descriptions, i.e., the PDEs of the types Eqs. (4), (5), (7), and104
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their extensions, e.g., the fractional Feynman-Kac equations [28, 29]. For the related105

discussions on the nonlocal diffusion problems from a mathematical point of view,106

one can see the review paper [10]. The divergence of the second moment and the107

discontinuity of the paths of Lévy flights predicate that the corresponding diffusion108

operators should defined on Rn, which further signify that if we are solving the equa-109

tions in a bounded domain Ω, the information in Rn\Ω should also be involved. We110

will show that the generalized Dirichlet type boundary conditions should be specified111

as p(X, t)|Rn\Ω = g(X, t). If the particles are killed after leaving the domain Ω, then112

g(X, t) ≡ 0, i.e., the so-called absorbing boundary conditions. Because of the dis-113

continuity of the jumps of Lévy flights, a particular concept ‘escape probability’ can114

be introduced, which means the probability that the particle jumps from the domain115

Ω into a domain H ⊂ Rn\Ω; for solving the escape probability, one just needs to116

specify g(X) = 1 for X ∈ H and 0 for X ∈ (Rn\Ω)\H for the corresponding time-117

independent PDEs. As for the generalized Neumann type boundary conditions, our118

ideas come from the fact that the continuity equation (conservation law) holds for119

any kinds of diffusion, since the particles can not be created or destroyed. Based on120

the continuity equation and the governing equation of the PDF of Lévy or tempered121

Lévy flights, the corresponding flux j can be obtained. So the generalized reflecting122

boundary conditions should be j|Rn\Ω ≡ 0, which implies (∇ · j)|Rn\Ω ≡ 0. Then, the123

generalized Neumann type boundary conditions are given as (∇ · j)|Rn\Ω = g(X, t),124

e.g., for (4), it should be taken as
(
∆β/2p(X, t)

)
|Rn\Ω = g(X, t). The well-posednesses125

of the equations under our specified generalized Dirichlet or Neumann type boundary126

conditions are well established.127

Overall, this paper focuses on introducing physically reasonable boundary con-128

straints for a large class of fractional PDEs, building a bridge between the physical and129

mathematical communities for studying anomalous diffusion and fractional PDEs. In130

the next section, we recall the derivation of fractional PDEs. Some new concepts are131

introduced, such as the tempered fractional Laplacian, and some properties of anoma-132

lous diffusion are found. In Sec. 3, we discuss the reasonable ways of specifying the133

generalized boundary conditions for the fractional PDEs governing the position or134

functional distributions of Lévy flights and tempered Lévy flights. In Sec. 4, we prove135

well-posedness of the fractional PDEs under the generalized Dirichlet and Neumann136

boundary conditions defined on the complement of the bounded domain. Conclusion137

and remarks are given in the last section.138

2. Preliminaries. For well understanding and inspiring the ways of specifying139

the ‘boundary constrains’ to PDEs governing the PDF of Lévy flights or tempered140

Lévy flights, we will show the ideas of deriving the microscopic and macroscopic141

models.142

2.1. Microscopic models for anomalous diffusion. For the microscopic de-143

scription of the anomalous diffusion, we consider the trajectory of a particle or a144

stochastic process, i.e., X(t). If
〈
|X(t)|2

〉
∼ t, the process is normal, otherwise it is145

abnormal. The anomalous diffusions of most often happening in natural world are146

the cases that
〈
|X(t)|2

〉
∼ tγ with γ ∈ [0, 1) ∪ (1, 2]. A Lévy flight is a random walk147

in which the jump length has a heavy tailed (power law) probability distribution,148

i.e., the PDF of jump length r is like r−β−n with β ∈ (0, 2), and the distribution149

in direction is uniform. With the wide applications of Lévy flights in characterizing150

long-range interactions [3] or a nontrivial “crumpled” topology of a phase (or con-151

figuration) space of polymer systems [27], etc, its second and higher moments are152

divergent, leading to the difficulty in relating models to experimental data. In fact,153
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Fig. 2: Random trajectories (1000 steps) of Lévy flight (β = 0.8), tempered Lévy
flight (β = 0.8, λ = 0.2), and Brownian motion.

for Lévy flights
〈
|X(t)|δ

〉
∼ tδ/β with 0 < δ < β ≤ 2. Under the framework of CTRW,154

the model Lévy walk [25] can circumvent this obstacle by putting a larger time cost155

to a longer displacement, i.e., using the space-time coupled jump length and waiting156

time distribution Ψ(r, t) = 1
2δ(r − vt)φ(t). Another popular model is the so-called157

tempered Lévy flights [16], in which the extremely long jumps is exponentially cut158

by using the distribution of jump length e−rλr−β−n with λ being a small modulation159

parameter (a smooth exponential regression towards zero). In not too long a time,160

the tempered Lévy flights display the dynamical behaviors of Lévy flights, ultraslowly161

converging to the normal diffusion. Figure 2 shows the trajectories of 1000 steps of162

Lévy flights, tempered Lévy flights, and Brownian motion in two dimensions; note163

the presence of rare but large jumps compared to the Brownian motion, playing the164

dominant role in the dynamics.165

Using Berry-Esséen theorem [12], first established in 1941, which applies to the
convergence to a Gaussian for a symmetric random walk whose jump probabilities
have a finite third moment, we have that for the one dimensional tempered Lévy
flights with the distribution of jump length Ce−rλr−β−1 the convergence speed is

5

2
√

2C

Γ(3− β)

Γ(2− β)3/2
λ−

1
2β

1√
m
,

which means that the scaling law for the number of steps needed for Gaussian behavior166

to emerge as167

(8) m ∼ λ−β .168

More concretely, letting X1, X2, · · · , Xm be i.i.d. random variables with PDF169

Ce−rλr−β−1 and E(|X1|2) = σ2 > 0, then the cumulative distribution function170

(CDF) Qm of Ym = (X1 + X2 + · · · + Xm)/(σ
√
m) converges to the CDF Q(X)171

of the standard normal distribution as172

|Qm(X)−Q(X)| < 5

2

〈|X|3〉
〈|X|2〉3/2

1√
m

=
5

2
√

2C

Γ(3− β)

Γ(2− β)3/2
λ−

1
2β

1√
m
,173

since174

〈|X|3〉 = C

∫ ∞
−∞
|X|3e−λ|X||X|−β−1d|X| = 2C

∫ ∞
0

e−λ|X||X|3−β−1d|X| = 2Cλβ−3Γ(3−β)175
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and176

〈|X|2〉 = C

∫ ∞
−∞
|X|2e−λ|X||X|−β−1d|X| = 2C

∫ ∞
0

e−λ|X||X|2−β−1d|X| = 2Cλβ−2Γ(2−β).177

From Eq. (8), it can be seen that with the decrease of λ, the required m for the178

crossover between Lévy flight behavior and Gaussian behavior increase rapidly. A179

little bit counterintuitive observation is that the number of variables required to the180

crossover increases with the increase of β.181

We have described the distributions of jump length for Lévy flights and tempered182

Lévy flights, in which Poisson process is taken as the renewal process. We denote the183

Poisson process with rate ζ > 0 as N(t) and its waiting time distribution between two184

events is ζe−ζt. Then the Lévy flights or tempered Lévy flights are the compound185

Poisson process defined as X(t) =
N(t)∑
j=0

Xj , where Xj are i.i.d. random variables with186

the distribution of power law or tempered power law. The characteristic function of187

X(t) can be calculated as follows. For real k, we have188

(9)

p̂(k, t) = E(eik·X(t))

=

∞∑
j=0

E(eik·X(t) |N(t) = j)P (N(t) = j)

=

∞∑
j=0

E(eik·(X0+X1+···+Xj) |N(t) = j)P (N(t) = j)

=

∞∑
j=0

Φ0(k)j
(ζt)j

j!
e−ζt

= eζt(Φ0(k)−1),

189

where Φ0(k) = E(eik·X0), being also the characteristic function of X1, X2, · · · , Xj190

since they are i.i.d.191

In the CTRW model describing one dimensional Lévy flights or tempered Lévy192

flights, the PDF of waiting times is taken as ζe−ζt with its Laplace transform ζ/(u+ζ)193

and the PDF of jumping length is c−βr−β−1 or e−λrr−β−1 with its Fourier transform194

1 − cβ |k|β or 1 − cβ,λ[(λ + ik)β − λβ ] − cβ,λ[(λ − ik)β − λβ ]. Substituting them into195

the Montroll-Weiss Eq. (1) with p̂0(k) = 1 (the initial position of particles is at zero),196

we get that p̂(k, u) of Lévy flights solves197

(10) p̂(k, u) =
1

u+ ζcβ |k|β
;198

and the p̂(k, u) of tempered Lévy flights obeys199

(11) p̂(k, u) =
1

u+ ζCβ,λ[(λ+ ik)β − λβ ] + ζCβ,λ[(λ− ik)β − λβ ]
.200

If the subdiffusion is involved, we need to choose the PDF of waiting times as201

c̃1+αt−α−1 with α ∈ (0, 1) and its Laplace transform 1 − c̃αuα. Then from (1),202

we get that203

(12) p̂(k, u) =
c̃α

u1−α(1− (1− c̃αuα)ψ(k))
.204
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For high dimensional case, the Lévy flights can also be characterized by Brow-205

nian motion subordinated to a Lévy process. Let Y(t) be a Brownian motion with206

Fourier exponent −|k|2 and S(t) a subordinator with Laplace exponent uβ/2 that is207

independent of Y(t). The process X(t) = Y(S(t)) is describing Lévy flights with208

Fourier exponent −|k|β , being the subordinate process of Y(t). In effect, denote the209

characteristic function of Y(t) as Φy(k) and the one of S(t) as Φs(u). Then the210

characteristic function of X(t) is as follows:211

(13)

p̂x(k, t) =

∫
Rn
eik·Xpx(X, t)dX

=

∫ ∞
0

∫
Rn
eik·Ypy(Y, τ)dY ps(τ, t)dτ

=

∫ ∞
0

e−τ(−Φy(k))ps(τ, t)dτ

= e−tΦs(−Φy(k)),

212

where px, py, and ps, are respectively the PDFs of the stochastic processes X, Y, and213

S. Similarly, in the following, we denote p with subscript (lowercase letter) as the214

PDF of the corresponding stochastic process (uppercase letter).215

This paper mainly focuses on Lévy flights and tempered Lévy flights. If one is216

interested in subdiffusion, instead of Poisson process, the fractional Poisson process217

should be taken as the renewal process, in which the time interval between each pair218

of events follows the power law distribution. Let Y(t) be a general Lévy process219

with Fourier exponent Φy(k) and S(t) a strictly increasing subordinator with Laplace220

exponent uα (α ∈ (0, 1)). Define the inverse subordinator E(t) = inf{τ > 0 : S(τ) >221

t}. Since t = S(τ) and τ = E(t) are inverse processes, we have P (E(t) ≤ τ) =222

P (S(τ) ≥ t). Hence223

(14) pe(τ, t) =
∂P (E(t) ≤ τ)

∂τ
=

∂

∂τ
[1− P (S(τ) < t)] = − ∂

∂τ

∫ t

0

ps(y, τ)dy.224

In the above equation, taking Laplace transform w.r.t t leads to225

(15) pe(τ, u) = − ∂

∂τ
u−1e−τu

α

= uα−1e−τu
α

.226

For the PDF px(X, t) of X(t) = Y(E(t)), there holds227

(16) px(X, t) =

∫ ∞
0

py(X, τ)pe(τ, t)dτ.228

Performing Fourier transform w.r.t. X and Laplace transform w.r.t. t to the above229

equation results in230

(17)

p̂x(k, u) =

∫ ∞
0

p̂y(k, τ)pe(τ, u)dτ

=

∫ ∞
0

e−τΦy(k)uα−1e−τu
α

dτ

=
uα−1

uα + Φy(k)
.

231
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Remark. According to Fogedby [14], the stochastic trajectories of (scale limited)232

CTRW X(Et) can also be expressed in terms of the coupled Langevin equation233

(18)

{
Ẋ(τ) = F (X(τ)) + η(τ),

Ṡ(τ) = ξ(τ),
234

where F (X) is a vector field; Et is the inverse process of S(t); the noises η(τ) and235

ξ(τ) are statistically independent, corresponding to the distributions of jump length236

and waiting times.237

2.2. Derivation of the macroscopic description from the microscopic238

models. This section focuses on the derivation of the deterministic equations gov-239

erning the PDF of position of the particles undergoing anomalous diffusion. It shows240

that the operators related to (tempered) power law jump lengths should be defined241

on the whole unbounded domain Rn, which can also be inspired by the rare but ex-242

tremely long jump lengths displayed in Figure 2; the fact that among all proper Lévy243

processes Brownian motion is the unique one with continuous paths further consol-244

idates the reasonable way of defining the operators. We derive the PDEs based on245

Eqs. (9), (13), and (16), since they apply for both one and higher dimensional cases.246

For one dimensional case, sometimes it is convenient to use (10), (11), and (12).247

When the diffusion process is rotationally symmetric β-stable, i.e., it is isotropic248

with PDF of jump length cβ,nr
−β−n and its Fourier transform 1 − |k|β , where n is249

the space dimension. In Eq. (9), taking ζ equal to 1, we get the Cauchy equation250

(19)
dp̂(k, t)

dt
= −|k|β p̂(k, t).251

Performing inverse Fourier transform to the above equation leads to252

(20)
∂p(X, t)

∂t
= ∆β/2p(X, t),253

where254

(21)

∆β/2p(X, t) = −cn,β lim
ε→0+

∫
CBε(X)

p(X, t)− p(Y, t)

|X−Y|n+β
dY

=
1

2
cn,β

∫
Rn

p(X + Y, t) + p(X−Y, t)− 2 · p(X, t)
|Y|n+β

dY

255

with [8]256

(22) cn,β =
βΓ(n+β

2 )

21−βπn/2Γ(1− β/2)
.257

For the more general cases of Eq. (9), there is the Cauchy equation258

(23)
dp̂(k, t)

dt
= (Φ0(k)− 1)p̂(k, t),259

so the PDF of the stochastic process X solves (taking ζ = 1)260

(24)

∂p(X, t)

∂t
= F−1{(Φ0(k)− 1)p̂(k, t)}

=

∫
Rn\{0}

[p(X + Y, t)− p(X, t)]ν(dY),
261

8



where ν(dY) is the probability measure of the jump length. Sometimes, to overcome
the possible divergence of the terms on the right hand side of Eq. (24) because of the
possible strong singularity of ν(dY) at zero, the term

Φ0(k)− 1 =

∫
Rn\{0}

[
eik·Y − 1

]
ν(dY)

is approximately replaced by262

(25)

∫
Rn\{0}

[
eik·Y − 1− i(k ·Y)χ{|Y|<1}

]
ν(dY);263

then the corresponding modification to Eq. (24) is264

(26)
∂p(X, t)

∂t
=

∫
Rn\{0}

[
p(X + Y, t)− p(X, t)−

n∑
i=1

yi(∂ip(X, t))χ{|Y|<1}

]
ν(dY),265

where yi is the component of Y, i.e., Y = {y1,y2, · · · ,yn}T . If ν(−dY) = ν(dY),266

the integration of the summation term of above equation equals to zero.267

If the diffusion is in the environment having a structure like Figure 1, the proba-268

bility measure should be taken as269

(27)
ν(dX) = ν(dx1dx2dx3 · · · dxn)

=
β1Γ( 1+β1

2 )

21−β1π1/2Γ(1− β1/2)
|x1|−β1−1δ(x2)δ(x3) · · · δ(xn)dx1dx2dx3 · · · dxn

+
β2Γ( 1+β2

2 )

21−β2π1/2Γ(1− β2/2)
|x2|−β2−1δ(x1)δ(x3) · · · δ(xn)dx1dx2dx3 · · · dxn + · · ·

+
βnΓ( 1+βn

2 )

21−βnπ1/2Γ(1− βn/2)
|xn|−βn−1δ(x1)δ(x2) · · · δ(xn−1)dx1dx2dx3 · · · dxn,

270

where β1, β2, · · · , βn belong to (0, 2). Plugging Eq. (27) into Eq. (24) leads to271

(28)
∂p(x1, · · · ,xn, t)

∂t
=
∂β1p(x1, · · · ,xn, t)

∂|x1|β1
+
∂β2p(x1, · · · ,xn, t)

∂|x2|β2
+· · ·+∂βnp(x1, · · · ,xn, t)

∂|xn|βn
,272

where

F
(
∂βjp(x1, · · · ,xn, t)

∂|xj |βj

)
= −|kj |βjp(x1, · · · ,xj−1,kj ,xj+1, · · · ,xn, t)

and ∂βj p(x1,··· ,xn,t)
∂|xj |βj

in physical space is defined by (21) with n = 1; in particular, when273

βj ∈ (1, 2), it can also be written as274

(29)
∂βjp(x1, · · · ,xn, t)

∂|xj |βj
= − 1

2 cos(βjπ/2)Γ(2− βj)
∂2

∂x2
j

∫ ∞
−∞
|xj−y|1−βjp(x1, · · · ,y, · · · ,xn, t)dy.275

It should be emphasized here that when characterizing diffusion processes related
with Lévy flights the operators should be defined in the whole space. Another issue
that also should be stressed is that when β1 = β2 = · · · = βn = 1, Eq. (28) is still
describing the phenomena of anomalous diffusion, including the cases that they belong
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to (0, 1); the corresponding ‘first’ order operator is nonlocal, being different from the
classical first order operator, but they have the same energy in the sense that

F
(
∂p(x1, · · · ,xn, t)

∂|xj |

)
F
(
∂p(x1, · · · ,xn, t)

∂|xj |

)
= F

(
∂p(x1, · · · ,xn, t)

∂xj

)
F
(
∂p(x1, · · · ,xn, t)

∂xj

)
= (kj)

2p̂2(x1, · · · ,xj−1,kj ,xj+1, · · · ,xn, t);

F
(

∆1/2p(X, t)
)
F
(
∆1/2p(X, t)

)
= F (∇p(X, t)) · F (∇p(X, t)) = |k|2p̂2(k, t),

even though ∆1/2 and ∇ are completely different operators, where the notation v276

stands for the complex conjugate of v.277

If the subdiffusion is involved, the derivation of the macroscopic equation should278

be based on Eq. (17). For getting the term related to time derivative, the inverse279

Laplace transform should be performed on uαp̂(k, u)−uα−1. Since p̂(k, t = 0) is taken280

as 1, there exists281

(30) L−1(uαp̂(k, u)− uα−1) =
1

Γ(1− α)

∫ t

0

(t− τ)−α
∂p̂(k, τ)

∂τ
dτ,282

which is usually denoted as C0 D
α
t p̂(k, t), the so-called Caputo fractional derivative. So,283

if both the PDFs of the waiting time and jump lengths of the stochastic process X are284

power law, the corresponding models can be obtained by replacing ∂
∂t with C

0 D
α
t in285

Eqs. (20), (24), (26), and (28). Furthermore, if there is an external force F (X) in the286

considered stochastic process X, we need to add an additional term ∇· (F (X)p(X, t))287

on the right hand side of Eqs. (20), (24), (26), and (28).288

Here we turn to another important and interesting topic: tempered Lévy flights.289

Practically it is not easy to collect the value of a function in the unbounded area290

Rn\Ω. This is one of the achievements of using tempered fractional Laplacian. It is291

still isotropic but with PDF of jump length cβ,n,λe
−λrr−β−n. The PDF of tempered292

Lévy flights solves293

(31)
∂p(X, t)

∂t
= (∆ + λ)β/2p(X, t),294

where295

(32)

(∆ + λ)β/2p(X, t) = −cn,β,λ lim
ε→0+

∫
CBε(X)

p(X, t)− p(Y, t)

eλ|X−Y||X−Y|n+β
dY

=
1

2
cn,β,λ

∫
Rn

p(X + Y, t) + p(X−Y, t)− 2 · p(X, t)
eλ|Y||Y|n+β

dY

296

with297

(33) cn,β,λ =
−Γ(n2 )

2π
n
2 Γ(−β)

.298
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The choice of the constant as the one given in (33) leads to299

(34)

F
(

(∆ + λ)β/2p(X, t)
)

=
(
λβ− (λ2 + |k|2)

β
2 +O(|k|2)

)
p̂(k, t) with β ∈ (0, 1)∪ (1, 2).300

However, if λ = 0, one needs to choose the constant as the one given in (22) to make301

sure F
(
∆β/2p(X, t)

)
= −|k|β p̂(k, t). The reason is as follows.302

F
(

(∆ + λ)β/2p(X, t)
)

=
1

2
cn,β,λ

∫
Rn

eik·Y + e−ik·Y − 2

|Y|n+β
e−λ|Y|dY · F(p(X, t))

= −cn,β,λ
∫
Rn

1− cos(k ·Y)

|Y|n+β
e−λ|Y|dY · F(p(X, t)).

303

For β ∈ (0, 1) ∪ (1, 2), then we have304 ∫
Rn

1− cos(k ·Y)

eλ|Y||Y|n+β
dY =

∫
Rn

1− cos(|k|y1)

eλ|Y||Y|n+β
dY = |k|β

∫
Rn

1− cos(x1)

|X|n+β
e
− λ
|k| |X|dX

= C|k|β
∫ ∞

0

1

rn+β
e
− λ
|k| rrn−1

(∫ π

0

(
1− cos(r cos θ1)

)
sinn−2(θ1)dθ1

)
dr

=
1

(−β)(−β + 1)
C|k|β−2λ2

∫ ∞
0

e
− λ
|k| rr−β+1

(∫ π

0

(
1− cos(r cos θ1)

)
sinn−2(θ1)dθ1

)
dr

− 1

(−β)(−β + 1)
C|k|β−1λ

∫ ∞
0

e
− λ
|k| rr−β+1

(∫ π

0

sin(r cos θ1)
)

sinn−2(θ1) cos(θ1)dθ1

)
dr

− 1

−βC|k|
β

∫ ∞
0

e
− λ
|k| rr−β

(∫ π

0

sin(r cos θ1)
)

sinn−2(θ1) cos(θ1)dθ1

)
dr

= CΓ(−β)

√
πΓ(n−1

2
)

Γ(n
2

)
λβ
[
1− 2F1

(2− β
2

,
3− β

2
;
n

2
;−|k|

2

λ2

)
− 2− β

n

|k|2

λ2 2F1

(3− β
2

, 2− β

2
;
n

2
+ 1;−|k|

2

λ2

)
− 1− β

n

|k|2

λ2 2F1

(2− β
2

,
3− β

2
;
n

2
+ 1;−|k|

2

λ2

)]
= CΓ(−β)

√
πΓ(n−1

2
)

Γ(n
2

)

[
λβ − λβ2F1

(
− β

2
,

1− β
2

;
n

2
;−|k|

2

λ2

)]
= CΓ(−β)

√
πΓ(n−1

2
)

Γ(n
2

)

[
λβ − λβ

(
1 +
|k|2

λ2

) β
2

2F1

(
− β

2
,
n+ β − 1

2
;
n

2
;
|k|2

λ2 + |k|2
)]

= CΓ(−β)

√
πΓ(n−1

2
)

Γ(n
2

)

[
λβ − (λ2 + |k|2)

β
2 2F1

(
− β

2
,
n+ β − 1

2
;
n

2
;
|k|2

λ2 + |k|2
)]
,

305

where 2F1 is the Gaussian hypergeometric function and306

C =
(∫ π

0

sinn−3(θ2)dθ2

)
· · ·
(∫ π

0

sin(θn−2)dθn−2

)(∫ 2π

0

dθn−1

)
=

2π
n−1
2

Γ(n−1
2 )

.307

So308

cn,β,λ =
−Γ(n2 )

2π
n
2 Γ(−β)

.309

The PDEs for tempered Lévy flights or tempered Lévy flights combined with subdif-310

fusion can be similarly derived, as those done in this section for Lévy flights or Lévy311
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flights combined with subdiffusion. Here, we present the counterpart of Eq. (28),312

(35)
∂p(x1, · · · ,xn, t)

∂t
=
∂β1,λp(x1, · · · ,xn, t)

∂|x1|β1,λ
+
∂β2,λp(x1, · · · ,xn, t)

∂|x2|β2,λ
+· · ·+∂βn,λp(x1, · · · ,xn, t)

∂|xn|βn,λ
,313

where the operator
∂βj,λp(x1,··· ,xj ,t)

∂|xj |βj,λ
is defined by taking β = βj and n = 1 in Eq.314

(32). Again, even for the tempered Lévy flights, all the related operators should be315

defined on the whole space, because of the very rare but still possible unbounded316

jump lengths.317

All the above derived PDEs are governing the PDF of the position of particles. If318

one wants to dig out more deep informations of the corresponding stochastic processes,319

analyzing the distribution of the functional defined by A =
∫ t

0
U(X(τ))dτ is one of320

the choices, where U is a prespecified function. Denote the PDF of the functional A321

and position X as G(X, A, t) and the counterpart of A in Fourier space as q. Then322

Ĝ(X, q, t) solves [28]323

(36)
∂Ĝ(X, q, t)

∂t
= Kα,β∆β/2D1−α

t Ĝ(X, q, t) + iqU(X)Ĝ(X, q, t)324

for Lévy flights combined with subdiffusion; and [29]325

(37)
∂Ĝ(X, q, t)

∂t
= Kα,β(∆ + λ)β/2D1−α

t Ĝ(X, q, t) + iqU(X)Ĝ(X, q, t)326

for tempered Lévy flights combined with subdiffusion, where

D1−α
t Ĝ(X, q, t) =

1

Γ(α)

[
∂

∂t
− iqU(X)

] ∫ t

0

ei(t−τ)qU(X)

(t− τ)1−α Ĝ(X, q, τ)dτ.

If one is only interested in the functional A (not caring position X), then ĜX0
(q, t)327

is, respectively, governed by [28]328

(38)
∂ĜX0

(q, t)

∂t
= Kα,βD

1−α
t ∆β/2ĜX0(q, t) + iqU(X)ĜX0(q, t)329

and [29]330

(39)
∂ĜX0(q, t)

∂t
= Kα,βD

1−α
t (∆ + λ)β/2ĜX0

(q, t) + iqU(X)ĜX0
(q, t)331

for Lévy flights and tempered Lévy flights, combined with subdiffusion; the X0 in332

ĜX0
(q, t) means the initial position of particles, being a parameter.333

3. Specifying the generalized boundary conditions for the fractional334

PDEs. After introducing the microscopic models and deriving the macroscopic ones,335

we have insight into anomalous diffusions, especially Lévy flights and tempered Lévy336

flights. In Section 2, all the derived equations are time dependent. From the process337

of derivation, one can see that the issue of initial condition can be easily/reasonably338

fixed, as classical ones, just specifying the value of p(X, 0) in the domain Ω. For Lévy339

processes, except Brownian motion, all others have discontinuous paths. As a result,340

the boundary ∂Ω itself (see Figure 3) can not be hit by the majority of discontinuous341

sample trajectories. This implies that when solving the PDEs derived in Section 2, the342

generalized boundary conditions must be introduced, i.e., the information of p(X, t)343

on the domain Rn\Ω must be properly accounted for. In the following, we focus on344

Eqs. (20), (28), (31), (35) to discuss the boundary issues.345
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Ω

∂Ω

Rn \ Ω

Fig. 3: Domain of solving equations given in Section 2.

3.1. Generalized Dirichlet type boundary conditions. The appropriate346

initial and boundary value problems for Eq. (20) should be347

(40)
∂p(X, t)

∂t
= ∆β/2p(X, t) =

−βΓ(n+β
2

)

21−βπn/2Γ(1− β/2)
lim
ε→0+

∫
CBε(X)

p(X, t)− p(Y, t)
|X−Y|n+β

dY in Ω,

p(X, 0)|Ω = p0(X),

p(X, t)|Rn\Ω = g(X, t).

348

In Eq. (40), the term349

(41)

lim
ε→0+

∫
CBε(X)

p(X, t)− p(Y, t)

|X−Y|n+β
dY

= lim
ε→0+

∫
(CBε(X)∩Ω)

p(X, t)− p(Y, t)

|X−Y|n+β
dY +

∫
Rn\Ω

p(X, t)− g(Y, t)

|X−Y|n+β
dY

= lim
ε→0+

∫
(CBε(X)∩Ω)

p(X, t)− p(Y, t)

|X−Y|n+β
dY + p(X, t)

∫
Rn\Ω

|X−Y|−n−βdY

+

∫
Rn\Ω

−g(Y, t)

|X−Y|n+β
dY.

350

According to Eq. (41), g(X, t) should satisfy that there exist positive M and C such351

that when |X| > M ,352

(42)
|g(X, t)|
|X|β−ε

< C for positive small ε.353

In particular, when Eq. (42) holds, the function
∫
Rn\Ω

−g(Y,t)
|X−Y|n+β dY of X has any order354

of derivative if g(X, t) is integrable in any bounded domain. One of the most popular355

cases is g(X, t) ≡ 0, which is the so-called absorbing boundary condition, implying356

that the particle is killed whenever it leaves the domain Ω. Another interesting case357

is for the steady state fraction diffusion equation358

(43)

{
∆β/2p(X) = 0 in Ω,

p(X)|Rn\Ω = g(X).
359

Given a domain H ⊂ Rn\Ω, if taking g(X) = 1 for X ∈ H and 0 for X ∈ (Rn\Ω)\H,360

then the solution of (43) means the probability that the particles undergoing Lévy361
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flights lands in H after first escaping the domain Ω [7]. If g(X) ≡ 1 in Rn\Ω, then362

p(X) equals to 1 in Ω because of the probability interpretation. This can also be363

analytically checked.364

For the initial and boundary value problem Eq. (28), it should be written as365

(44)



∂p(x1, · · · ,xn, t)
∂t

=
∂β1p(x1, · · · ,xn, t)

∂|x1|β1
+
∂β2p(x1, · · · ,xn, t)

∂|x2|β2

+ · · ·+ ∂βnp(x1, · · · ,xn, t)
∂|xn|βn

in Ω,

p(x1, · · · ,xn, 0)|Ω = p0(x1, · · · ,xn),

p(x1, · · · ,xn, t)|Rn\Ω = g(x1, · · · ,xn, t).

366

Similar to (41), in (44) the term367

(45)

lim
ε→0+

∫
CBε(xj)

p(x1, · · · ,xj , · · · ,xn, t)− p(x1, · · · ,yj , · · · ,xn, t)
|xj − yj |1+βj

dyj

= lim
ε→0+

∫
(CBε(xj)∩Ω)

p(x1, · · · ,xj , · · · ,xn, t)− p(x1, · · · ,yj , · · · ,xn, t)
|xj − yj |1+βj

dyj

+ p(x1, · · · ,xj , · · · ,xn, t)
∫
R\(Ω∩Rj)

|xj − yj |−1−βjdyj

+

∫
R\(Ω∩Rj)

−g(x1, · · · ,yj , · · · ,xn, t)
|xj − yj |1+βj

dyj .

368

From Eq. (45), for j = 1, · · · , n, g(x1, · · · ,xj , · · · ,xn, t) should satisfies that369

there exist positive M and C such that when |xj | > M ,370

(46)
|g(x1, · · · ,xj , · · · ,xn, t)|

|xj |βj−ε
< C for positive small ε.371

The discussions below Eq. (43) still makes sense for Eq. (44). If g(x1, · · · ,xj , · · · ,xn, t)372

satisfies Eq. (46), and it is integrable w.r.t. xj in any bounded interval. Then373 ∫
R\(Ω∩Rj)

−g(x1,··· ,yj ,··· ,xn,t)
|xj−yj |1+βj

dyj has any order of partial derivative w.r.t. xj .374

The initial and boundary value problem for Eq. (31) is375

(47)


∂p(X, t)

∂t
= (∆ + λ)β/2p(X, t) in Ω,

p(X, 0)|Ω = p0(X),

p(X, t)|Rn\Ω = g(X, t).

376

Like the discussions for Eq. (40), g(X, t) should satisfies that there exist positive M377

and C such that when |X| > M ,378

(48)
|g(X, t)|
e(λ−ε)|X| < C for positive small ε.379

If Eq. (48) holds and g(X, t) is integrable in any bounded domain, the function380 ∫
Rn\Ω

−g(Y,t)
eλ|X−Y||X−Y|n+β dY of X has any order of derivative.381

Again, the corresponding tempered steady state fraction diffusion equation is382

(49)

{
(∆ + λ)β/2p(X) = 0 in Ω,

p(X)|Rn\Ω = g(X).
383
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For H ⊂ Rn\Ω, if taking g(X) = 1 for X ∈ H and 0 for X ∈ (Rn\Ω)\H, then the384

solution of (49) means the probability that the particles undergoing tempered Lévy385

flights lands in H after first escaping the domain Ω. If g(X) ≡ 1 in Rn\Ω, then p(X)386

equals to 1 in Ω.387

The initial and boundary value problem (35) should be written as388

(50)



∂p(x1, · · · ,xn, t)
∂t

=
∂β1,λp(x1, · · · ,xn, t)

∂|x1|β1,λ
+
∂β2,λp(x1, · · · ,xn, t)

∂|x2|β2,λ

+ · · ·+ ∂βn,λp(x1, · · · ,xn, t)
∂|xn|βn,λ

in Ω,

p(x1, · · · ,xn, 0)|Ω = p0(x1, · · · ,xn),

p(x1, · · · ,xn, t)|Rn\Ω = g(x1, · · · ,xn, t).

389

For j = 1, · · · , n, g(x1, · · · ,xj , · · · ,xn, t) should satisfy that there exist positive390

M and C such that when |xj | > M ,391

(51)
|g(x1, · · · ,xj , · · · ,xn, t)|

e(λ−ε)|xj |
< C for positive small ε.392

If g(x1, · · · ,xj , · · · ,xn, t) is integrable w.r.t. xj in any bounded interval and satisfies393

Eq. (51), then
∫
R\(Ω∩Rj)

−g(x1,··· ,yj ,··· ,xn,t)
eλ|xj−yj |xj−yj |1+βj

dyj has any order of partial derivative394

w.r.t. xj .395

The ways of specifying the initial and boundary conditions for Eqs. (36) and (38)396

are the same as Eq. (40). But for Eq. (36), the corresponding (42) should be changed397

as398

(52)
|U(X)g(X, t)|
|X|β−ε

< C for positive small ε.399

Similarly, the initial and boundary conditions of Eqs. (37) and (39) should be specified400

as the ones of Eq. (47). But for Eq. (37), the corresponding (48) needs to be changed401

as402

(53)
|U(X)g(X, t)|
e(λ−ε)|X| < C for positive small ε.403

For the existence and uniqueness of the corresponding time-independent equations,404

one may refer to [13].405

3.2. Generalized Neumann type boundary conditions. Because of the in-406

herent discontinuity of the trajectories of Lévy flights or tempered Lévy flights, the407

traditional Neumann type boundary conditions can not be simply extended to the408

fractional PDEs. For the related discussions, see, e.g., [4, 9]. Based on the mod-409

els built in Sec. 2 and the law of mass conservation, we derive the reasonable ways410

of specifying the Neumann type boundary conditions, especially the reflecting ones.411

Let us first recall the derivation of classical diffusion equation. For normal diffusion412

(Brownian motion), microscopically the first moment of the distribution of waiting413

times and the second moment of the distribution of jump length are bounded, i.e., in414

Laplace and Fourier spaces, they are respectively like 1− c1u and 1− c2|k|2; plugging415

them into Eq. (1) or Eq. (9) and performing integral transformations lead to the416

classical diffusion equation417

(54)
∂p(X, t)

∂t
= (c2/c1)∆p(X, t).418
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Ω

Fig. 4: Sketch map of particles jumping into, or jumping out of, or passing through
the domain: Ω.

On the other hand, because of mass conservation, the continuity equation states that419

a change in density in any part of a system is due to inflow and outflow of particles420

into and out of that part of system, i.e., no particles are created or destroyed:421

(55)
∂p(X, t)

∂t
= −∇ · j,422

where j is the flux of diffusing particles. Combining (54) with (55), one may take423

(56) j = −(c2/c1)∇p(X, t),424

which is exactly Fick’s law, a phenomenological postulation, saying that the flux goes425

from regions of high concentration to regions of low concentration with a magnitude426

proportional to the concentration gradient. In fact, for a long history, even up to427

now, most of the people are more familiar with the process: using the continuity428

equation (55) and Fick’s law (56) derives the diffusion equation (54). The so-called429

reflecting boundary condition for (54) is to let the flux j be zero along the boundary430

of considered domain.431

Here we want to stress that Eq. (55) holds for any kind of diffusions, including432

the normal and anomalous ones. For Eqs. (40,44,47,50) governing the PDF of Lévy433

flights or tempered Lévy flights, using the continuity equation (55), one can get the434

corresponding fluxes and the counterparts of Fick’s law; may we call it fractional435

Fick’s law. Combining (40) with (55), one may let436

(57) j∆ =

{
− 1

2n
cn,β

∫ xi

−∞

∫
Rn

p(X + Y, t) + p(X−Y, t)− 2 · p(X, t)
|Y|n+β

dYdxi

}
n×1

437

being the flux for the diffusion operator ∆β/2 with β ∈ (0, 2), or calling it fractional438

Fick’s law corresponding to ∆β/2. From (44) and (55), one may choose439

(58)

jhv =

{
−1

2
c1,βi

∫ xi

−∞

∫ +∞

−∞

p(X + Ỹi, t) + p(X− Ỹi, t)− 2 · p(X, t)
|yi|1+βi

dyidxi

}
n×1

,440

where Ỹi = {x1, . . . ,yi, · · · ,xn}T , being the flux (fractional Fick’s law) corresponding441

to the horizontal and vertical type fractional operators. Similarly, we can also get the442
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flux (fractional Fick’s law) corresponding to the tempered fractional Laplacian and443

tempered horizontal and vertical type fractional operators, being respectively taken444

as445

(59)

j∆,λ =

{
− 1

2n
cn,β,λ

∫ xi

−∞

∫
Rn

p(X + Y, t) + p(X−Y, t)− 2 · p(X, t)
eλ|Y||Y|n+β

dYdxi

}
n×1

446

and447

(60)

jhv,λ =

{
−1

2
c1,βi,λ

∫ xi

−∞

∫ +∞

−∞

p(X + Ỹi, t) + p(X− Ỹi, t)− 2 · p(X, t)
eλ|yi||yi|1+βi

dyidxi

}
n×1

448

with Ỹi = {x1, . . . ,yi, · · · ,xn}T .449

Naturally, the Neumann type boundary conditions of (40,44,47,50) should be450

closely related to the values of the fluxes in the domain: Rn\Ω; if the fluxes are451

zero in it, then one gets the so-called reflecting boundary conditions of the equations.452

Microscopically the motion of particles undergoing Lévy flights or tempered Lévy453

flights are much different from the Brownian motion; very rare but extremely long454

jumps dominate the dynamics, making the trajectories of the particles discontinuous.455

As shown in Figure 4, the particles may jump into, or jump out of, or even pass456

through the domain: Ω. But the number of particles inside Ω is conservative, which457

can be easily verified by making the integration of (55) in the domain Ω, i.e.,458

(61)
∂

∂t

∫
Ω

p(X, t)dX = −
∫

Ω

∇ · jdX = −
∫
∂Ω

j · nds = 0,459

where n is the outward-pointing unit normal vector on the boundary. If j |Rn\Ω=0,460

then for (40) ∆
β
2 p(X, t) = ∇ · j = 0 in Rn\Ω. So, the Neumann type boundary461

conditions for (40), (44), (47), and (50) can be, heuristically, defined as462

(62) ∆
β
2 p(X, t) = g(X) in Rn\Ω,463

464
(63)
∂β1p(x1, · · · ,xn, t)

∂|x1|β1
+
∂β2p(x1, · · · ,xn, t)

∂|x2|β2
+· · ·+∂βnp(x1, · · · ,xn, t)

∂|xn|βn
= g(X) in Rn\Ω,465

466

(64) (∆ + λ)β/2p(X, t) = g(X) in Rn\Ω,467

and468

(65)
∂β1,λp(x1, · · · ,xn, t)

∂|x1|β1,λ
+
∂β2,λp(x1, · · · ,xn, t)

∂|x2|β2,λ
+· · ·+∂βn,λp(x1, · · · ,xn, t)

∂|xn|βn,λ
= g(X) in Rn\Ω,469

respectively. The corresponding reflecting boundary conditions are with g(X) ≡ 0.470

Remark: The Neumann type boundary conditions (62)-(65) derived in this sec-471

tion are independent of the choice of the flux j, provided that it satisfies the condition472

(55).473
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4. Well-posedness and regularity of the fractional PDEs with general-
ized BCs. Here, we show the well-posedesses of the models discussed in the above

sections, taking the models with the operator ∆
β
2 as examples; the other ones can be

similarly proved. For any real number s ∈ R, we denote by Hs(Rn) the conventional
Sobolev space of functions (see [1, 20]), equipped with the norm

‖u‖Hs(Rn) :=

(∫
Rn

(1 + |k|2s)|û(k)|2dk
) 1

2

,

The notation Hs(Ω) denotes the space of functions on Ω that admit extensions to
Hs(Rn), equipped with the quotient norm

‖u‖Hs(Ω) := inf
ũ
‖ũ‖Hs(Rn),

where the infimum extends over all possible ũ ∈ Hs(Rn) such that ũ = u on Ω (in474

the sense of distributions). The dual space of Hs(Ω) will be denoted by Hs(Ω)′. The475

following inequality will be used below:476

C−1(‖∆
β
4 u‖L2(Rn) + ‖u‖L2(Ω)) ≤ ‖u‖

H
β
2 (Rn)

≤ C(‖∆
β
4 u‖L2(Rn) + ‖u‖L2(Ω)).(66)477

478

Let Hs
0(Ω) be the subspace of Hs(Rn) consisting of functions which are zero in479

Rn\Ω. It is isomorphic to the completion of C∞0 (Ω) in Hs(Ω). The dual space of480

Hs
0(Ω) will be denoted by H−s(Ω).481

For any Banach space B, the space L2(0, T ;B) consists of functions u : (0, T )→ B482

such that483

‖u‖L2(0,T ;B) :=

(∫ T

0

‖u(·, t)‖2Bdt
) 1

2

<∞,(67)484
485

and H1(0, T ;B) = {u ∈ L2(0, T ;B) : ∂tu ∈ L2(0, T ;B)}; see [11].486

4.1. Dirichlet problem. For any given g ∈ R∪(L2(0, T ;H
β
2 (Rn))∩H1(0, T ;H−

β
2 (Rn))) ↪→487

C([0, T ];L2(Rn), consider the time-dependent Dirichlet problem488 
∂p

∂t
−∆

β
2 p = f in Ω,

p = g in Rn\Ω,

p(·, 0) = p0 in Ω,

(68)489

490

The weak formulation of (68) is to find p = g + φ such that491

φ ∈ L2(0, T ;H
β
2

0 (Ω)) ∩H1(0, T ;H−
β
2 (Ω)) ↪→ C([0, T ];L2(Ω))(69)492493

and494 ∫ T

0

∫
Ω

∂tφ q dXdt+

∫ T

0

∫
Rn

∆
β
4 φ∆

β
4 q dXdt =

∫ T

0

∫
Ω

(f + ∆
β
2 g − ∂tg)q dXdt(70)495

∀ q ∈ L2(0, T ;H
β
2

0 (Ω)).496497

It is easy to see that a(φ, q) :=
∫
Rn ∆

β
4 φ∆

β
4 q dX is a coercive bilinear form498

on H
β
2

0 (Ω) ×H
β
2

0 (Ω) (cf. [31, section 30.2]) and `(q) :=
∫

Ω
(f + ∆

β
2 g − ∂tg)q dX is a499
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continuous linear functional on L2(0, T ;H
β
2

0 (Ω)). Such a problem as (70) has a unique500

weak solution (cf. [31, Theorem 30.A]).501

The weak solution actually depends only on the values of g in Rn\Ω, independent502

of the values of g in Ω. To see this, suppose that g, g̃ ∈ R ∪ (L2(0, T ;H
β
2 (Rn)) ∩503

H1(0, T ;H−
β
2 (Rn))) ↪→ C([0, T ];L2(Rn)) are two functions such that g = g̃ in Rn\Ω,504

and p and p̃ are the weak solutions of505 
∂p

∂t
−∆

β
2 p = f in Ω,

p = g in Rn\Ω,

p(·, 0) = p0 in Ω,

and


∂p̃

∂t
−∆

β
2 p̃ = f in Ω,

p̃ = g̃ in Rn\Ω,

p̃(·, 0) = p0 in Ω,

(71)506

507

respectively. Then the function p− p̃ ∈ L2(0, T ;H
β
2

0 (Ω))∩H1(0, T ;H−
β
2 (Ω)) satisfies508

∫ T

0

∫
Ω

∂t(p− p̃) q dXdt+

∫ T

0

∫
Rn

∆
β
4 (p− p̃) ∆

β
4 q dXdt = 0 ∀ q ∈ L2(0, T ;H

β
2

0 (Ω)).

(72)

509
510

Substituting q = p − p̃ into the equation above immediately yields p − p̃ = 0 a.e. in511

Rn × (0, T ).512

4.2. Neumann problem. Consider the Neumann problem513 
∂p

∂t
−∆

β
2 p = f in Ω,

∆
β
2 p = g in Rn\Ω,

p(·, 0) = p0 in Ω.

(73)514

515

Definition 1 (Weak solutions). The weak formulation of (73) is to find p ∈516

L2(0, T ;H
β
2 (Rn)) ∩ C([0, T ];L2(Ω)) such that517

∂tp ∈ L2(0, T ;H
β
2 (Ω)′) and p(·, 0) = p0,(74)518519

satisfying the following equation:520

(75)

∫ T

0

∫
Ω

∂tp(X, t)q(X, t)dXdt+

∫ T

0

∫
Rn

∆
β
4 p(X, t)∆

β
4 q(X, t)dXdt

=

∫ T

0

∫
Ω

f(X, t)q(X, t)dXdt−
∫ T

0

∫
Rn\Ω

g(X, t)q(X, t)dXdt

∀ q ∈ L2(0, T ;H
β
2 (Rn)).

521

Theorem 2 (Existence and uniqueness of weak solutions). If p0 ∈ L2(Ω), f ∈522

L2(0, T ;H
β
2 (Ω)′) and g ∈ L2(0, T ;H

β
2 (Rn\Ω)′), then there exists a unique weak so-523

lution of (73) in the sense of Definition 1.524

Proof Let tk = kτ , k = 0, 1, . . . , N , be a partition of the time interval [0, T ], with525

step size τ = T/N , and define526

fk(X) :=
1

τ

∫ tk

tk−1

f(X, t)dt, k = 0, 1, . . . , N,(76)527

gk(X) :=
1

τ

∫ tk

tk−1

g(X, t)dt, k = 0, 1, . . . , N.(77)528

529
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Consider the time-discrete problem: for a given pk−1 ∈ L2(Rn), find pk ∈ H
β
2 (Rn)530

such that the following equation holds:531

1

τ

∫
Ω

pk(X)q(X)dX +

∫
Rn

∆
β
4 pk(X)∆

β
4 q(X)dX532

=
1

τ

∫
Ω

pk−1(X)q(X)dX +

∫
Ω

fk(X)q(X)dX−
∫
Rn\Ω

gk(X)q(X)dX ∀ q ∈ H
β
2 (Rn).

(78)

533

534

In view of (66), the left-hand side of the equation above is a coercive bilinear form535

on H
β
2 (Rn)×H

β
2 (Rn), while the right-hand side is a continuous linear functional on536

H
β
2 (Rn). Consequently, the Lax–Milgram Lemma implies that there exists a unique537

solution pk ∈ H
β
2 (Rn) for (78).538

Substituting q = pk into (78) yields539

‖pk‖2L2(Ω) − ‖pk−1‖2L2(Ω)

2τ
+ ‖∆

β
4 pk‖2L2(Rn)540

≤ ‖fk‖
H
β
2 (Ω)′

‖pk‖
H
β
2 (Ω)

+ ‖gk‖
H
β
2 (Rn\Ω)′

‖pk‖
H
β
2 (Rn\Ω)

541

≤ (‖fk‖
H
β
2 (Ω)′

+ ‖gk‖
H
β
2 (Rn\Ω)′

)‖pk‖
H
β
2 (Rn)

542

≤ (‖fk‖
H
β
2 (Ω)′

+ ‖gk‖
H
β
2 (Rn\Ω)′

)(‖∆
β
4 pk‖2L2(Rn) + ‖pk‖2L2(Ω)).(79)543

544

Then, summing up the inequality above for k = 1, 2, . . . , n, we have545

max
1≤k≤n

‖pk‖2L2(Ω) + τ

n∑
k=1

‖∆
β
4 pk‖2L2(Rn)546

≤ ‖p0‖2L2(Ω) + Cτ

n∑
k=1

(‖fk‖2
H
β
2 (Ω)′

+ ‖gk‖2
H
β
2 (Rn\Ω)′

+ ‖pk‖2L2(Ω)),(80)547

548

which holds for n = 1, 2, . . . , N . By applying Grönwall’s inequality to the last esti-549

mate, there exists a positive constant τ0 such that when τ < τ0 we have550

max
1≤k≤N

‖pk‖2L2(Ω) + τ

N∑
k=1

‖pk‖2
H
β
2 (Rn)

551

≤ C‖p0‖2L2(Ω) + Cτ

N∑
k=1

(‖fk‖2
H
β
2 (Ω)′

+ ‖gk‖2
H
β
2 (Rn\Ω)′

).(81)552

553

Since any q ∈ H
β
2 (Ω) can be extended to q ∈ H

β
2 (Rn) with ‖q‖

H
β
2 (Rn)

≤ 2‖q‖
H
β
2 (Ω)

,554

choosing such a q in (78) yields555 ∣∣∣∣ ∫
Ω

pk(X)− pk−1(X)

τ
q(X)dX

∣∣∣∣556

=

∣∣∣∣ ∫
Ω

fk(X)q(X)dX−
∫
Rn\Ω

gk(X)q(X)dX−
∫
Rn

∆
β
4 pk(X)∆

β
4 q(X)dX

∣∣∣∣557

≤ C(‖fk‖
H
β
2 (Ω)′

+ ‖gk‖
H
β
2 (Rn\Ω)′

+ ‖∆
β
4 pk‖L2(Rn))‖q‖

H
β
2 (Rn)

558

≤ C(‖fk‖
H
β
2 (Ω)′

+ ‖gk‖
H
β
2 (Rn\Ω)′

+ ‖∆
β
4 pk‖L2(Rn))‖q‖

H
β
2 (Ω)

.559
560
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which implies (via duality)561 ∥∥∥∥pk − pk−1

τ

∥∥∥∥
H
β
2 (Ω)′

≤ C(‖fk‖
H
β
2 (Ω)′

+ ‖gk‖
H
β
2 (Rn\Ω)′

+ ‖∆
β
4 pk‖L2(Rn)).(82)562

563

The last inequality and (81) can be combined and written as564

max
1≤k≤N

‖pk‖2L2(Ω) + τ

N∑
k=1

(∥∥∥∥pk − pk−1

τ

∥∥∥∥2

H
β
2 (Ω)′

+ ‖pk‖2
H
β
2 (Rn)

)
565

≤ C‖p0‖2L2(Ω) + Cτ

N∑
k=1

(‖fk‖2
H
β
2 (Ω)′

+ ‖gk‖2
H
β
2 (Rn\Ω)′

).(83)566

567

If we define the piecewise constant functions568

f (τ)(X, t) := fk(X) =
1

τ

∫ tk

tk−1

f(X, t)dt for t ∈ (tk−1, tk], k = 0, 1, . . . , N,(84)569

g(τ)(X, t) := gk(X) =
1

τ

∫ tk

tk−1

g(X, t)dt for t ∈ (tk−1, tk], k = 0, 1, . . . , N,(85)570

p
(τ)
+ (X, t) := pk(X) for t ∈ (tk−1, tk], k = 0, 1, . . . , N,(86)571572

and the piecewise linear function573

p(τ)(X, t) :=
tk − t
τ

pk−1(X) +
t− tk−1

τ
pk(X) for t ∈ [tk−1, tk], k = 0, 1, . . . , N,

(87)

574
575

then (78) and (83) imply576 ∫ T

0

∫
Ω

∂tp
(τ)(X, t)q(X, t)dXdt+

∫ T

0

∫
Rn

∆
β
4 p

(τ)
+ (X, t)∆

β
4 q(X, t)dXdt

=

∫ T

0

∫
Ω

f (τ)(X, t)q(X, t)dXdt−
∫ T

0

∫
Rn\Ω

g(τ)(X, t)q(X, t)dXdt

∀ q ∈ L2(0, T ;H
β
2 (Rn)),

577

and578

‖p(τ)‖C([0,T ];L2(Ω)) + ‖∂tp(τ)‖
L2(0,T ;H

β
2 (Ω)′)

+ ‖p(τ)‖
L∞(0,T ;H

β
2 (Rn))

+ ‖p(τ)
+ ‖

L∞(0,T ;H
β
2 (Rn))

≤ C
(
‖f (τ)‖

L2(0,T ;H
β
2 (Ω)′)

+ ‖g(τ)‖
L2(0,T ;H

β
2 (Rn\Ω)′)

)
≤ C

(
‖f‖

L2(0,T ;H
β
2 (Ω)′)

+ ‖g‖
L2(0,T ;H

β
2 (Rn\Ω)′)

)
,

579

respectively, where the constant C is independent of the step size τ . The last in-580

equality implies that p(τ) is bounded in H1(0, T ;H
β
2 (Ω)′) ∩ L2(0, T ;H

β
2 (Rn)) ↪→581

C([0, T ];L2(Ω)). Consequently, there exists p ∈ H1(0, T ;H
β
2 (Ω)′)∩L2(0, T ;H

β
2 (Rn)) ↪→582
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C([0, T ];L2(Ω)) and a subsequence τj → 0 such that583

p(τj) converges to p weakly in L2(0, T ;H
β
2 (Rn),(88)584

p
(τj)
+ converges to p weakly in L2(0, T ;H

β
2 (Rn),(89)585

∂tp
(τj) converges to ∂tp weakly in L2(0, T ;H

β
2 (Ω)′),(90)586

p(τj) converges to p weakly in C([0, T ];H
β
2 (Ω)′) (see [17, Appendix C]).(91)587588

By taking τ = τj → 0 in (88), we obtain (75). This proves the existence of a weak589

solution p satisfying (74).590

If there are two weak solutions p and p̃, then their difference η = p − p̃ satisfies591

the equation592

∫ T

0

∫
Ω

∂t(p− p̃)q dXdt+

∫ T

0

∫
Rn

∆
β
4 (p− p̃)∆

β
4 q dXdt = 0 ∀ q ∈ L2(0, T ;H

β
2 (Rn)).

(92)

593
594

Substituting q = p− p̃ into the equation yields595

‖p(·, t)− p̃(·, t)‖2L2(Ω) + ‖∆
β
4 (p− p̃)‖2L2(0,T ;L2(Rn)) = ‖p(·, 0)− p̃(·, 0)‖2L2(Ω) = 0,

(93)

596
597

which implies p = p̃ a.e. in Rn × (0, T ). The uniqueness is proved.598

Remark: From the analysis of this section we see that, although the initial data599

p0(X) physically exists in the whole space Rn, one only needs to know its values in Ω600

to solve the PDEs (under both Dirichlet and Neumann boundary conditions).601

5. Conclusion. In the past decades, fractional PDEs become popular as the602

effective models of characterizing Lévy flights or tempered Lévy flights. This paper603

is trying to answer the question: What are the physically meaningful and mathe-604

matically reasonable boundary constraints for the models? We physically introduce605

the process of the derivation of the fractional PDEs based on the microscopic mod-606

els describing Lévy flights or tempered Lévy flights, and demonstrate that from a607

physical point of view when solving the fractional PDEs in a bounded domain Ω, the608

informations of the models in Rn\Ω should be involved. Inspired by the deriva-609

tion process, we specify the Dirichlet type boundary constraint of the fractional610

PDEs as p(X, t)|Rn\Ω = g(X, t) and Neumann type boundary constraints as, e.g.,611

(∆β/2p(X, t))|Rn\Ω = g(X, t) for the fractional Laplacian operator.612

The tempered fractional Laplacian operator (∆ + λ)β/2 is physically introduced613

and mathematically defined. For the four specific fractional PDEs given in this paper,614

we prove their well-posedness with the specified Dirichlet or Neumann type boundary615

constraints. In fact, it can be easily checked that these fractional PDEs are not616

well-posed if their boundary constraints are (locally) given in the traditional way;617

the potential reason is that locally dealing with the boundary contradicts with the618

principles that the Lévy or tempered Lévy flights follow.619
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pp. 1657–1660, https://doi.org/10.1103/physreve.50.1657.653

[15] Q.-Y. Guan and Z.-M. Ma, Boundary problems for fractional Laplacians, Stoch. Dyn., 5654
(2005), pp. 385–424, https://doi.org/10.1142/s021949370500150x.655

[16] I. Koponen, Analytic approach to the problem of convergence of truncated Lévy flights towards656
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