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In this work, we present numerical analysis for a distributed optimal control problem, with box con-
straint on the control, governed by a subdiffusion equation which involves a fractional derivative of order
o € (0,1) in time. The fully discrete scheme is obtained by applying the conforming linear Galerkin
finite element method in space, L1 scheme/backward Euler convolution quadrature in time, and the con-
trol variable by a variational type discretization. With a space mesh size h and time stepsize T, we
establish the following order of convergence for the numerical solutions of the optimal control prob-
lem: O(gmin(l/2+a=&.1) L p2) in the discrete L2(0,7;L2(£2)) norm and O(t% ¢ + £2h?) in the discrete
L=(0,T;L*(2)) norm, with any small £ > 0 and £, = In(2 + 1/k). The analysis relies essentially on the
maximal LP-regularity and its discrete analogue for the subdiffusion problem. Numerical experiments
are provided to support the theoretical results.

Keywords: optimal control, time-fractional diffusion, L1 scheme, convolution quadrature, pointwise-in-
time error estimate, maximal regularity.

1. Introduction

Let Q C R? (d = 1,2,3) be a convex polyhedral domain with a boundary 9. Consider the distributed
optimal control problem

: _1 2 Y0012
qrgb?df(u,q) = QHM—“dHLz((),T;H(Q)) + f”qHLz(O,T;Lz(Q))’ (1.1)

subject to the following time-fractional diffusion equation
00u—Au=f+q, 0<t<T, withu(0)=0, (1.2)

where 7 > 0 is a fixed final time, y > 0 a fixed penalty parameter, A : H} (Q) NH*(Q) — L*(Q) the
Dirichlet Laplacian, £ : (0,7) — L?>(£) a given source term, and u, : (0,7) — L*(£2) the target function.
The admissible set U,q for the control ¢ is defined by

U ={q€L*(0,T:L*(Q)): a<g<bae.inQx(0,T)},

with a,b € R and a < b. The notation od*u in (1.2) denotes the left-sided Riemann-Liouville fractional
derivative in time ¢ of order o € (0, 1), defined by (Kilbas ez al., 2006, p. 70)

09%u(t) = ﬁ% /Ot(t — )" %u(s)ds. (1.3)
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Since u(0) = 0, the Riemann-Liouville derivative od%u(z) is identical to the Caputo derivative (Kilbas
et al., 2006, p. 91). Further, when o = 1, od%u(t) coincides with the first-order derivative u/(¢), and
thus the model (1.2) recovers the standard parabolic problem.

The fractional derivative odu in the model (1.2) is motivated by a growing list of practical appli-
cations related to subdiffusion processes, in which the mean square particle displacement grows sublin-
early with time ¢, as opposed to linear growth for normal diffusion. The list includes thermal diffusion
in fractal media, protein transport in plasma membrane and column experiments etc (see, e.g., Adams &
Gelhar (1992); Hatano & Hatano (1998); Nigmatulin (1986)). The numerical analysis of the model (1.2)
has received much attention. However, the design and analysis of numerical methods for related optimal
control problems only started to attract attention (see, e.g., Antil et al. (2016); Du et al. (2016); Ye &
Xu (2013, 2015)). The controllability of (1.2) was discussed in Fujishiro & Yamamoto (2014) and Lii &
Zuazua (2016). Ye & Xu (2013, 2015) proposed space-time spectral type methods for optimal control
problems under a subdiffusion constraint, and derived error estimates by assuming sufficiently smooth
state and control variables. Antil et al. (2016) studied an optimal control problem with space- and
time-fractional models, and showed the convergence of the discrete approximations via a compactness
argument. However, no error estimate for the optimal control was given for the time-fractional case.
Zhou & Gong (2016) proved the well-posedness of problem (1.1)—(1.2) and derived L?(0,T;L*(Q))
error estimates for the spatially semidiscrete finite element method, and described a time discretiza-
tion method without error estimate. To the best of our knowledge, there is no error estimate for time
discretizations of (1.1)—(1.2). It is the main goal of this work to fill this gap.

This work is devoted to the error analysis of both time and space discretizations of (1.1)-(1.2). The
model (1.2) is discretized by the continuous piecewise linear Galerkin FEM in space and the L1 ap-
proximation (Lin & Xu (2007)) or backward Euler convolution quadrature (Lubich (1986)) in time, and
the control g by a variational type discretization due to Hinze (2005). The analysis relies crucially on
P (L?(£2)) error estimates for fully discrete solutions of the direct problem with a nonsmooth source
term. Such results are still unavailable in the literature. We derive such estimates in Theorems 2.2 and
2.3, and use them to derive an O(t™"(1/2+@=&1) 4 j2) error estimate in the discrete L2(0,7;L2(£2))
norm for the numerical solutions of problem (1.1)—(1.2), where /& and 7 denote the mesh size and time
stepsize, respectively, and € > 0 is small, cf. Theorems 3.2 and 3.4. The O(t™"(1/2+@=€1)) rate con-
trasts with the O(7) rate for the parabolic counterpart (see, e.g., Meidner & Vexler (2008); Chrysafinos
& Karatzas (2014); Gong et al. (2014)). The lower rate for o < 1/2 is due to the limited smoothing
property of problem (1.2), cf. Theorem 2.1. This also constitutes the main technical challenge in the
analysis. Based on the error estimate in the discrete L*(0,T; L?(£2)) norm, we further derive a pointwise-
in-time error estimate O(t% ¢ + £2h?) (with £, = log(2+ 1/h), cf. Theorems 3.3 and 3.5). Our analysis
relies essentially on the maximal LP-regularity of fractional evolution equations (Bajlekova (2001)) and
its discrete analogue (Jin et al. (2018a)). The latter is the fractional extension of the discrete maximal
LP-regularity theory (Kovécs et al. (2016)), which is a mathematical tool for the numerical analysis of
nonlinear parabolic equations (Akrivis ef al. (2017); Kunstmann et al. (2018)). Numerical experiments
in one- and two-dimensional spaces are provided to complement the theoretical analysis.

The rest of the paper is organized as follows. In Section 2, we discuss the solution regularity and nu-
merical approximation for problem (1.2). In Section 3, we prove error bounds on spatially semidiscrete
and fully discrete approximations to the optimal control problem (1.1)—(1.2). Finally in Section 4, we
provide one- and two-dimensional numerical experiments to support the theoretical results. Through-
out, the notation ¢ denotes a generic constant which may differ at each occurrence, but it is always
independent of the mesh size / and time stepsize 7.

2. Regularity theory and numerical approximation of the direct problem

In this section, we recall preliminaries and present analysis for the direct problem

00fu—Au=g, 0<t<T, with u(0)=0, (2.1
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and its adjoint problem
Ofz—Az=m, 0<t<T, with z(T)=0, (2.2)

where the fractional derivative ;d¢z is defined in (2.5) below. The adjoint equation follows from (2.6)
below and standard integration by parts formula; see (Zhou & Gong, 2016, Section 3). In the case
o € (0,1/2], the initial / terminal condition should be understood properly: for a rough source term g,
the temporal trace at t = 0 /¢ = T may not exist and the initial condition should be interpreted in a weak
sense (see, e.g., Gorenflo et al. (2015)). We refrain from the case of a nonzero initial condition, and
leave it to a future work.

2.1 Sobolev spaces of functions vanishing att =0

We shall use extensively Bochner-Sobolev spaces W*?(0,T;L?(£2)). For any s >0 and 1 < p < oo,
we denote by W*?(0,T;L?*(R2)) the space of functions v : (0,T) — L?(£), with the norm defined by
interpolation. Equivalently, the space is equipped with the quotient norm

Wllwsr o,z = Wf W lwsrriz2(@)) (23)

where the infimum is taken over all possible extensions v that extend v from (0,7) to R. For any
0 <s < 1, one can define Sobolev-Slobodeckii seminorm |- [y.» (0 7.12(q)) bY

7 [[v(e) =v(E)lI7
p
| |er 0TL2 / / |l—€‘1+ps dtdé? (24)
and the full norm H . ||Wx7p 0,T;L2(Q)) by
||vHWsp 0TL2( HvHLp 0TL2 +|V|Wsp OTLZ( ))

For s > 1, one can define similar seminorms and norms. Let
Cr(0,T;L*(R)) == {v=wl(or) : w € C7(R;L*(R)) : supp(w) C [0,°0)},

and denote by W;"” (0, T; L*()) the closure of C°(0,T;L2()) in WP(0,T; L*(Q)), and by W7 (0, T; L*(R2))
the closure of C (0, T;L*(R)) in WSP(0,T;L*(Q)), with

Cr(0,T:L*(Q)):={v= wl(o,r) i W E C*(R; L*(Q)) : supp(w) C (—oo, T1}.

By Sobolev embedding, for v € W;"7(0,T;L?(£2)), there holds v\/)(0) = 0 for j =0, ..., [s] — 1 (with [s]
being the integral part of s > 0), and also v(/) = 0 if (s —[s])p > 1. For v € W;"7(0,T;L?*(2)), the zero
extension of v to the left belongs to WP (—co0, T;L?(Q)), and W;7(0,T;L*(R)) = WP(0,T;L*(Q)),
if s < 1/p. We abbreviate WZ’z(O,T;LZ(_Q)) as H;(0,T;L*(Q)), and likewise Hy(0,T;L*(R)) for
Wy (0,T;L(€)).

Similar to the left-sided fractional derivative od%u in (1.3), the right-sided Riemann-Liouville frac-
tional derivative ,dfv(r) in (2.2) is defined by

L /T(s—t)*“v(s) ds. 2.5)

o o -
O =g @,

Let any p € (1,00) and p’ € (1,%0) be conjugate to each other, i.e., 1/p+1/p’ = 1. Since for u €
WP (0,T;L2(2)),v € WP (0,T;L*()), we have d%u € L (0, T;L*(Q)),;0%v € L (0, T; L*(Q)).
Thus, there holds (Kilbas et al., 2006, p. 76, Lemma 2.7):

/()T(()&,au(t))v(t)dt = /OT u(t) (;08v(1))de, Yu e WP (0,T:L2(Q)),v € W (0,T:LX(R)).  (2.6)
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2.2 Regularity of the direct problem
The next maximal L”-regularity holds (cf. Bajlekova (2001)), and an analogous result holds for (2.2).
LEMMA 2.1 Ifug=0and g € LP(0,T;L?*(Q)) with 1 < p < oo, then problem (2.1) has a unique solution
u€ LP(0,T;H} (Q)NH?*(Q)) such that g9%u € LP(0,T;L*(22)) and

||“||LP(0,T;H2(Q)) + H03za”||LP(0,T;L2(Q)) < CH8||LP(0,T;L2(Q))a
where the constant ¢ is independent of g and T'.

Now we give a regularity result. Throughout, the notation A denotes the Dirichlet Laplacian, with
its domain D(A) = H} (Q) NH?*(Q).

THEOREM 2.1 For g € WP (0,T;L*(R)), s € [0,1/p) and p € (1,%), problem (2.1) has a unique
solution u € W+ (0, T;L2(2)) NW*(0,T;D(A)), which satisfies

||“||Wa+-w(o,T;L2(Q)) + ||“||WS-P(0,T;H2(Q)) < C”gHWfrI’(O,T;Lz(Q))'

Similarly, for n € WS?(0,T;L*(R2)), s € [0,1/p) and p € (1,c0), problem (2.2) has a unique solution
Z€WOHSP(0,T;L2(Q))NWS(0,T;D(A)), which satisfies

HZHW‘HS-F(O,T;LZ(Q)) + HZHW&P(OA,T;HZ(_Q)) <cln ”WS-P(O,T;LZ(_Q))'

Proof. For g € WHP(0,T;L*()),s €[0,1/p) and p € (1,0), extending g to be zero on  x [(—oo,0) U
(T, )] yields g € WP (R; L*(£)) and

”gHW&P(R;LZ(.Q)) < C||g||WS>I’(0,T;L2(Q))' @7

Further, we have the identity 0d%g(t) = —d%g(t) fort € [0,T], and m = (i&)%g(&€) (Kilbas et al.,
2006, p. 90), where ~denotes taking Fourier transform in ¢, and g the Fourier transform of g. Then, with
V being the inverse Fourier transform in &, u = [((i€)* — A)~'g(&)]" is a solution of (2.1) and

(I+[EP)Z0(E) = (1+1EP)E ((16)* = A) 7 (1 +[&[) 28(6).

The self-adjoint operator A : D(A) — L*(Q) is invertible from L?(2) to D(A), and generates a
bounded analytic semigroup (Arendt et al., 2011, Example 3.7.5). Thus the operator

(+ERF () —4)"! 2.8)
is bounded from L?(£2) to D(A) in a small neighborhood .4 of & = 0. Further, in .4, the operator
i g S e OC|€‘2 g a A\l
§d§(1+|5|) ((i5)*—4) —1+|§|2(1+\5|) ((i§)*—-4)

+a(1+[EP) % (1) —A) 7 (i&)*((i6)* —a) ™! (2.9)

is also bounded. If & is away from 0, then

(1+[EP)2 (€)% — A)™" = (i&)™*(1+[E]}) % (i€)*((i&)* —a) .

Now we slightly abuse the notation || - || for the operator norm on L*(£). Recall also the resolvent
estimate ||(z—A)~!|| < clz|7! for any z € Ly := {z € C: 7z # 0, |arg(z)| < 8}, for all 6 € (7/2,7)
(Arendt et al., 2011, Example 3.7.5 and Theorem 3.7.11). Then, the following inequalities

&) *(1+[67) ¥ < and [[(i6)*((16)* —4) "I < e
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imply the boundedness of (2.8) and (2.9).

Since boundedness of operators is equivalent to R-boundedness of operators in L>(Q) (see Kunst-
mann & Weis (2004) for the concept of R-boundedness), the boundedness of (2.8) and (2.9) implies that
(2.8) is an operator-valued Fourier multiplier (Weis, 2001, Theorem 3.4), and thus

a+s

lullwecssr ez < NAHIER) T @)Yl 2@
= (1 +1EPF(6)* = 2) ' (1 +1EP)FEEN I wrrarza))
<cl(1+18 |2)%§(§)]V”LP(R;L2(Q)) < CH8||W&1)(R;L2(Q))-

This and (2.7) imply the desired bound on [|ul|ya+sp (g 7:12(q))- The estimate
ullwsro.7:m2 () < cllgllwsror2Q)

follows similarly by replacing (1 + |&|?)% ((i€)* — A)~! with A((i€)* — A)~" in the proof. O

REMARK 2.1 Below we only use the cases “p =2, s =min(1/2—¢,00—¢)” and “p > max(1/a,1/(1—
a)),s=1/p—€” of Theorem 2.1. Both cases satisfy the conditions of Theorem 2.1. A similar assertion
holds for the more general case g € W;7(0,T;L*(2)), s > 0and 1 < p < oo

lullwa+sror2@)) + lullwseo.rm2Q) < cllglwsr o)

In fact, for g € W;7 (0, T;L?(R2)), the zero extension of g to t < 0 belongs to W*? (—eo, T; L2(Q)), which
can further be boundedly extended to a function in W*?(IR; L?(£2)). Then the argument in Theorem 2.1
gives the desired assertion. This also indicates a certain compatibility condition for regularity pickup.

2.3 Numerical scheme for problem (2.1)

Now we describe numerical treatment of the forward problem (2.1), which forms the basis for the fully
discrete scheme of the control problem (1.1)—(1.2) in Section 3. We denote by .7}, a shape-regular and
quasi-uniform triangulation of the domain Q into d-dimensional simplexes, and let

Xy = {vy € H)(R) : vk is a linear function, VK € 7, }

be the finite element space consisting of continuous piecewise linear functions. The L?()-orthogonal
projection P, : L>(Q) — X, is defined by (P,@,x1) = (@, x1), for all ¢ € L*(Q), ), € X, where (-, )
denotes the L?(£) inner product. Then the spatially semidiscrete Galerkin FEM for problem (2.1) is to
find uy,(f) € Xj, such that u,(0) = 0 and

(Oatauh(t)7Xh) + (Vuh(t)7VX/1) = (g(t)7%h)7 V%h S Xh7 Vt e (07T]7 (210)

By introducing the discrete Laplacian Ay, : X;, — X, defined by — (A, x1) = (Vo Vi), for all
®n, Xn € X, problem (2.10) can be written as

00 uy (1) — Apup(t) = Pog(t), Vi€ (0,T], withu,(0)=0. (2.11)
Similar to Theorem 2.1, for s < 1/p there holds

[unllworsro,7:02(0)) + 1Anttnllwsro.1:2(0)) < €llgllwsror:2(0)) (2.12)

where the constant c is independent of & (following the proof of Theorem 2.1). Lemma 2.1 and Remark
2.1 remain valid for the semidiscrete solution u;, e.g.,

1Anunl Lo 0.7:02(@)) T 1100 unll oo, 122y < €llgllro, 2 () (2.13)
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These assertions will be used extensively below without explicitly referencing.
To discretize (2.11) in time, we uniformly partition [0, 7] with grid points t, =nt,n,=0,1,2,...,N
and a time stepsize T =T /N < 1, and approximate (9, *@(z,,) by (with ¢/ = ¢(t;)):

005 ¢"=1*Y Bujo’, (2.14)
j=0

where f3; are suitable weights. We consider two time stepping schemes: L1 scheme (Lin & Xu (2007))
and backward Euler convolution quadrature (BE-CQ) (Lubich (1986)), for which 3 ; are respectively
given by (with ¢ = 1/T"(2— 1))

Llscheme:  fo=cq, andfj=ca((j+1)'""*—2;""%+(G—-1)"%), j=1,2,...,N,
BE-CQ: Bo=1, andBj=—-Bj1(a—j+1)/j, j=1,2,...,N.

Both schemes extend the classical backward Euler scheme to the fractional case. Then we discretize
problem (2.1) by: with g = P,g(t,), find U}’ € X}, such that

002U — AU =gl n=1,2,...,N, withU>=0. (2.15)

By (Jin et al., 2018b, Section 5) and (Jin ef al., 2016, Theorem 3.6), we have the following error bound.

LEMMA 2.2 Forg € W1=1’(O, T;Lz(.Q)), 1 < p < oo, let uy, and U}’ be the semidiscrete solution and fully
discrete solution, respectively, in (2.11) and (2.15). Then there holds

*In
U3 = un(tn)l| (@) < et 18(0) |2 +CT/O (w1 =) 118" (5) 22 ds-

REMARK 2.2 Lemma 2.2 slightly refines the estimates in Jin ez al. (2018b, 2016), but can be proved in
the same way using the following estimates in the proof of (Jin et al., 2018b, Section 5):

n
M <e(r+1)* ! and / s lds <et(t+1)%", fort €[ty 1,t,) and n=1,...,N.
t
For any Banach space X, we define

N 1/p
(Z er) if1<p <o,
n=0

up if p = co.
omax [1Uyx if p =

IURm=oller(x) =

Then the maximal ¢P-regularity estimate holds for (2.15) (Jin et al., 2018a, Theorems 5 and 7).
LEMMA 2.3 The solutions (U}")Y_, of (2.15) satisfy

1092UR =1l 1200y + AU =i v 2y < nll(@h=i w2y, Y1 <p <o

2.4  Error estimates

Now we present Ep(Lz(Q)) error estimates for g € W”’(O,T;LZ(Q)), 0<s<1,1< p< . Error
analysis for such g is still unavailable. We need an interpolation error estimate. This result seems
standard, but we are unable to find a proof, and thus include a proof in Appendix A.

LEMMA 2.4 Forve W*?(0,T;L*(2)), 1 <p <eoands e (1/p,1],let 7" =1~" [ v(r)dr. Then there
holds

10v(2a) =P Nt v 2@y < €T IVllwsoo.ra2(0)) -
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Our first result is an error estimate for g € W;"’(0,T;L*(Q)) (i.e., compatible source). Since g may
not be smooth enough in time for pointwise evaluation, we define the averages g, = 7! jtinq Pyg(s)ds,

and consider a variant of the scheme (2.15) for problem (2.1): find UZ € Xj, such that
08T, — AT, =g, n=1,...,N, withTy=0. (2.16)

THEOREM 2.2 For g € W;P(0,T;L*(2)), 1 < p < and s € [0,1], let u; and U}, be the solutions of
problems (2.11) and (2.16), respectively, and i} := 7~ ,;”4 uy,(s)ds. Then there holds

1@ = @)= @2 (@) < cTllglwro.raz )

Proof. By Holder’s inequality and (2.12) (with s = 0), we have

N N tn
Y B —rznr-l [ sl < PY (L l)lizads)”
n=1 n—1 n=1 -
p
< [ 62 05 < €l 150

Similarly, by applying Lemma 2.3 to (2.16) and the L?(Q) stability of P,, we have

IOl 2@y < @i lwa2a) < clellorze))-

This and the triangle inequality show the assertion for s = 0.
Next we consider g € WLl’p(O, T;L?(R)), and resort to (2.15). Since g(0) = 0, by Lemma 2.2,

n
Ui = un(tn) |l 12(0) < cr/o (tn+ 7518/ (5)ll2 () ds.
This directly implies
” (U]:l - uh(tn))fy:] ”W(LZ(Q)) < CT”g”le,‘”(O,T;LZ(Q))’ (2.17)

Further, let w(s) = tYN_ (t, +T—s)%"! X[0.1,)» Where s denotes the characteristic function of a set S.
Then clearly, we have

sup y(s)
5€[0,7]

\\Mz
3
ﬂ

SQ
VA

T
/so‘flds:OFlTagcT.
0

Therefore,

N 2N In 1
— /!
1 =)ot iy < e X [ 7 =907/ 5) 2 s
n=1

T
=t [ VOIS Ol@d <crtlslioroe). @19

Then (2.17), (2.18) and Riesz-Thorin interpolation theorem (Bergh & Lofstrom, 2012, Theorem 1.1.1),
yield forany 1 < p < oo

1(UR = wn(ta))n1 v 22 < ctllgllyirg i)
Since U}/ — UZ satisfies the discrete scheme, cf. (2.15) and (2.16), Lemmas 2.3 and 2.4 imply

(U _UZ)QJ:I ”ZP(LZ(_Q)) < cf|[(8h _Phg(tn))nN:I ||ep(L2(_Q)) < CT||8HW1«P(0,T;L2(Q))~
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Further, by Lemma 2.4 and Remark 2.1, we have
Il (tn) = TNt ler 12 002)) < CTllunllwroio 72200y < ctllglly e 1))

The last three estimates show the assertion for s = 1. The case 0 < s < 1 follows by interpolation.  [J

In Theorem 2.2, we compare the numerical solution UZ to (2.16) with the time-averaged solution i,
instead of uy(t,). This is due to possible insufficient temporal regularity of u;,: it is unclear how to define
up(t) for t, € (0,T] for g € W;P(0,T;L*(Q)) with s+« < 1/p. For s € (1/p, 1], WP (0,T;L*(Q)) —
C(]0,T);L*(2)) and so Theorem 2.2 requires the condition g(0) = 0. Such a compatibility condition at
t = 0 is not necessarily satisfied by problem (1.1)—(1.2). Hence, we state an error estimate below for a
smooth but incompatible source g € W?(0,T;L*(R2)).

THEOREM 2.3 For g € Ws?(0,T;L*(2)) with p € (1,00) and s € (1/p, 1), let uy, and U}' be the solutions
of problems (2.11) and (2.15), respectively. Then there holds

min(1/p+o,s

[(Uy — uh(tn))fl\lil ||eﬂ(L2(Q)) Sct )”g”WS»P(O,T;LQ(Q))' (2.19)

Moreover, if p > 1/a is so large that o € (0,1/p’), then
(U *“h(tn))lr;]:l ||é°°(L2(Q)) < CT(X||gHwl/p+a‘p(o,T;L2(Q))- (2.20)

Proof. For g(x,t) = g(x), which belongs to W7 (0, T;L?(L)), by Lemma 2.2 we have

N N

-1

(U3 = wn ()i 15, 2y = T 2 UG = (1) 172 ) < 7 12 ) 1o 2"
n=1 n=1

T
1 —1
<t Mgl g+ lglfsgq [

Now for s < 1, there holds

- C‘L'paJrl ifae (O, 1/p/) C,L.p(l/era) ifoe (07 l/p/)
. /
TI’/ t”(“*l)dtg ctP 1fa€(1/p,1) << er? ifae(l/p’71)
! ee (1+10(T /7)) if o« =1/p TP ifo=1/p

which together with the preceding estimate implies

min(l/p+o,s

1(UR = wn(ta) )y ler(r2(0)) < €T )||g||WS-P(0,T;L2(Q))-

For g € WP (0,T;L*(£)), by Sobolev embedding, g(0) exists, and in the splitting g(¢) = g(0) + (g(t) —
£(0)), there holds ||g — g(0) HWI"""(O r2@)) < cllgllwsro.7:02(@))- Let vi be the semidiscrete solution for

the source g(¢) —g(0), and # = [ v, (¢)dr. Since g(t) —g(0) € W;"’(0,T;L*(£2)), by Theorem 2.2,

In—1
the corresponding fully discrete solution V), by (2.16) satisfies

[ (VZ - VZ)g:l HZI’(LZ(_Q)) <ct’lg _g(O)HWZ"’(O,T;LZ(_Q))' (2.21)
Further, by Lemma 2.4 and (2.12), we have
1n () = Pn=1lwz2)) < €T allwsror20)) < cTlI8 =8O llwer0.r22(0))-
Similarly, for the fully discrete solution V}' corresponding to the source g(t) — g(0) by (2.15), from
Lemmas 2.3 and 2.4, we deduce
1V =Vinzilwaza) < cl(Brg(tn) = gn=1 v 20y (222)
< .

cTl|gllwsro,ri2(Q)-
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These estimates together with the triangle inequality give (2.19).
Finally, (2.20) follows by the inverse inequality in time and (2.19) withs = 1/p+«, i.e.,

(U = n(tn) =i lle=a20)) < €T PN (UR = un(tn))0=1 oo 22

<
< CTa||g||Wl/p+a-17(0,T;L2(_Q))‘
This completes the proof of the theorem. (]

REMARK 2.3 The estimate (2.19) is not sharp since, according to the proof, the restriction s < 1 is only
needed for o = 1/p’. Nonetheless, it is sufficient for the error analysis in Section 3.

3. The optimal control problem and its numerical approximation

In this section, we develop a numerical scheme for problem (1.1)—(1.2), and derive error bounds for the
spatial and temporal discretizations.

3.1 The continuous problem
The first-order optimality condition of (1.1)-(1.2) was given in (Zhou & Gong, 2016, Theorem 3.4).

THEOREM 3.1 Problem (1.1)-(1.2) admits a unique solution g € U,q. There exist a state u € L>(0, T;D(A)) N
HY(0,T;L2(L)) and an adjoint z € L>(0,T;D(A)) NHE(0,T;L*(R2)) such that (u,z,q) satisfies

00%u—Au=f+q, 0<t<T, with u(0)=0, 3.1)
Ofz—Az=u—uy, 0<t<T, with z(T)=0, (3.2)
(ra+zv—arore@) =0, W e U (3.3)

where (+,)2(0 7,12 ()) denotes the L?(0,T;L*(Q)) inner product.
Let Py,, be the pointwise projection operator defined by
Py,,(q) = max(a,min(q,b)). 3.4)
It is bounded on W (0,T;L?(Q)) for 0 < s < land 1 < p < oo
”PUadMHWW’(O,T;Lz(Q)) < C||”HWS-P(0,T;L2(.Q))~ (3.5)

This estimate holds trivially for s = 0 and s = 1 (Ziemer, 1989, Corollary 2.1.8), and the case 0 < s < 1
follows by interpolation. Then (3.3) is equivalent to the complementarity condition

q="Py, (-7 '2). (3.6)

Now we give higher temporal regularity of the triple (u,z,g). Note that the constant ¢ depends on
the scalar y (see also the proof of Lemma 3.4) and the constraint bounds a and b.

LEMMA 3.1 Forany s € (0,1/2), letuy € H*(0,T;L*(Q)) and f € H*(0,T;L*(£2)). Then the solution
(u,z,q) of problem (3.1)—(3.3) satisfies the following estimate

HqHHmi“(l»a“)(O,T;LZ(Q)) + ||“||Ha+s(o,T;L2(Q)) + HZHHO‘“(O,T;Lz(_Q)) N2

Proof. Let r = min(l,a+s). By (3.6) and (3.5), we have

g1l 0. 7:22(0)) < cllllaro.ru20)) < cllzllmatsoriza)-
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Applying Theorem 2.1 to (3.2) yields
||Z||H<X+S(0,T;L2(Q)) < C(””HHS(O,T;L?(Q)) + ||“dHHS(0,T;L2(Q))) < CH””HX(O,T;LZ(Q)) t+c.

Similarly, applying Theorem 2.1 to (3.1) gives

ul| s 0,200y < cUlfllaso.r2@) 4l mso.r:20)) < ¢ +elldllusor2) (3.7)
The last three estimates together imply

9l 0.r220) < ¢ +cllalmorize) < ct+cellalzorze) + € lalaoree)
where the last step is due to the interpolation inequality (Tartar, 2006, Lemma 24.1)
HQHHS(O,T;LZ(Q)) < Cs’”‘IHLZ(o,T;LZ(Q)) +8/||QHH’(O,T;L2(Q))'
By choosing a small €’ > 0 and the L™ bounded of g, cf. (3.6), we obtain
g/l 0.7:22(0)) < c+celldllizor2@) < c (3.8)

This shows the bound on g. (3.8) and (3.7) give the bound on u, and that of z follows similarly. O
Next, we give an improved stability estimate on q.

LEMMA 3.2 Let p > 1/« be sufficiently large so that @ € (0,1/p'), ug € W*P(0,T;L*(Q)) and f €
LP(0,T;L*()). Then the optimal control ¢ satisfies:

N

lgllw1/praerori2ia) <6

where the constant ¢ depends on [|ug||yar(o7:12(0)) and || f1l1r 0, 7:12())-
Proof. The condition & € (0,1/p’) implies r:= 1/p+ a — € < 1. Thus (3.5) and Theorem 2.1 (with
s =r— o) imply

||‘1er-17(o,T;L2(Q)) < C”Z”WW(O,T;LZ(Q)) <cllu— ”dHWr*a»P(o,T;E(Q)V

Since p > 1/a, r—a=1/p—¢& < a and thus Theorem 2.1 (with s = 0) and (3.6) give

lu—uallwrarori2@) < clu—ualweroriza) <clf +dalworze)te<e

where the second last inequality is due to Theorem 2.1 with s = 0, and the last inequality due to the
pointwise boundedness of g, cf. (3.6). The last two estimates together imply the desired result. g

3.2 Spatially semidiscrete scheme

Now we give a spatially semidiscrete scheme for problem (1.1)—(1.2): find g;, € U,q such that

: 1 2 Y 2
q}rlrelllgdf(uhﬂh) =3 ||uh - udHLZ((),T;LZ(_Q» + 2 ||qh||L2(O.T;L2(Q))’ (3.9

subject to the semidiscrete problem
ogtauh —Apup =Pi(f+qn), 0<t<T, with u,(0)=0. (3.10)

Note that in the scheme (3.9)—(3.10), the control variable g, is not discretized directly, but instead in a
variational sense due to Hinze (2005). This choice greatly facilitates the analysis, while also leads to
optimal order convergence rates. In passing, note that there are other possible strategies to discretize
the control variable g, e.g., cellwise constant/linear approximation and postprocessing; see Meidner &
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Vexler (2008) for the standard parabolic counterparts. It would be interesting to analyze these discretiza-
tion strategies, which, however, is beyond the scope of the present work.

Similar to Theorem 3.1, problem (3.9)-(3.10) admits a unique solution g, € U,q. The first-order
optimality system reads:

()atauh — Apuyp = Ph(f+6]h), 0<t<T, with uh(O) =0, (3.11)
laﬁ‘zh — Az =Po(up—ug), 0<t<T, with z,(T)=0, 3.12)
(Yan+znv—an) 2011200y =0, Vv € Uug. (3.13)

The variational inequality (3.13) is equivalent to
an=Puy (=7 'zn). (3.14)
For the scheme (3.11)—(3.13), we have the next error bound (Zhou & Gong, 2016, Theorem 4.6).

THEOREM 3.2 For f,uy € L*(0,T;L*(R)), let (u,z,q) and (up,z1,q5) be the solutions of problems
(3.1)—(3.3) and (3.11)—(3.13), respectively. Then there hold

ch? ,

ch.

[ —=unll 20,7220 + 12— 2nll 207022 T 14 = @l 20,722
Q)
Next, we present the regularity of the semidiscrete solution (uy,,zj,¢5,). The proof is similar to the

continuous case in Lemmas 3.1 and 3.2 and hence omitted.

LEMMA 3.3 Lets € (0,1/2), uy € H*(0,T;L*(2)) and f € H*(0,T;L?*(L)). Then the solution (i, 25, q)
of problem (3.11)—(3.13) satisfies

<
IV (u—up) ||L2(0,T;L2(_Q)) +IV(z—2zn) ||L2(0,T;L2( <

1| ggming1.c) or2@)t H”hHst(o,T;L?(Q)) + HZhHH‘X“(O,T;LZ(_Q)) N2
Further, for uy € W*P(0,T;L*(Q)), f € LP(0,T;L*(2)), with p > 1/ and & € (0,1/p’), there holds

||q/’l||W]/P+0‘*5‘l’(07T;L2(,Q)) <c.
Last, we derive a pointwise-in-time error estimate.

THEOREM 3.3 For f, uy € H'(0,T;L*(R)), let (u,z,q) and (uy,z1,q5) be the solutions of problems
(3.1)—(3.3) and (3.11)—(3.13), respectively. Then with ¢, =log(2+ 1/h), there holds

et = unl| (0,722 (2)) + 12 = 2l = (0,222 @) 19— anll=0.7:22(2)) < clih,
where the constant ¢ depends on || f{| 10 7.12()) and [[uall g1, 7:02(02))-
Proof. We employ the splitting u — uy, = (u—uy(q)) + (up(q) — up) := p + ¥, where u;,(g) € Xj solves
0% un(q) — Man(q) = Pa(f+q), 0<t<T, with u,(q)(0)=0.

Then uy;,(g) is the semidiscrete solution of (2.1) with g = f + ¢, and p is the FEM error for the direct
problem. By (Jin et al., 2015, Theorem 3.7) and Lemma 3.2, we have

1P|z~ r:22(2)) < I +lli=0 712 (0)) < Gl (3.15)

Since ¥ satisfies 9% — Ay® = Py(q — qu), for 0 < ¢ < T with 9(0) = 0, (2.13), L*(Q)-stability of P,
the conditions (3.6) and (3.14), and the pointwise contractivity of Py,, imply

103Dl 0 a2y < I1Pala =) lrioraziany (3.16)

<cllg— Qh”LP(OA,T;LZ(_Q)) <cllz—2za HLI’(O,T;LZ(Q))'
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Next, it follows from (3.2), (3.12) and the identity P,A = A,R;, (with R;, : H'(2) — Xj, being Ritz
projection) that wy, := P,z — z;, satisfies w;,(T) = 0 and

107wy — Apwy, = P —up — Ap(Piz — Ryz), 0<t<T,
and thus by applying A,~ ! on both sides leads to

(OF A i — M A Wy = A (P — up) — (Pz — Riz). (3.17)
The maximal L? regularity (2.13) and triangle inequality imply

Wallzeo,r2(0)) < cl| A, (Phu—uy) — (Pnz = Rn2) || o 0,1:12(2))
< cl|Pou—up | 1o (0 7:02(0)) + CllPhz — Ruzl o0, 1:12(0))-

The L?(Q)-stability of P, and triangle inequality yield
([Pt — up HLI’(O,T;LZ(.Q)) <cffu—up HLP(O,T;LZ(Q)) << 19||LP(0.T;L2(.Q)) +lp HLP(O.T;LZ(.Q)))’
and Theorem 2.1 (with s = 0) and lemma 3.3 give
1Poz = Rizll oo 7.12(0)) < cllzllirorm2nt’ < cllu—uall oo ra2))h” < ch.

The last three estimates and (3.15) yield

Willr o220y < €Iz + <l

Thus repeating the preceding argument yields

llz— ZhHLp(o,T;LZ(Q)) llz— PhZ||LP((),T;L2(Q)) + [lwn ||LP(0,T;L2(.Q))

<
<< : +cl2h?,
=X LP(0,T;L2(Q)) h

Substituting this estimate into (3.16) and by Sobolev embedding W% (0, T; L*()) — L« (0, T;L*(Q)),
with the critical exponent py = p/(1 — pa) if pa < 1, and py = oo if por > 1:

19| e 0 7:22(2)) < €08 B0 7:22(0)) < NP oo 12200y + ik (3.18)
A finite number of repeated applications of this inequality yields
19110 r:22(2)) < €ll® 2071200y +clib® < clih?, (3.19)
where we have used the fact that, by maximal L? regularity (2.13) and Theorem 3.2,
1911207220y = lun(@) —unll 2072200 < clla—anll20 11200y < -

This gives the desired bound on ||u — uy||;=( 7.12(q))- The bounds on ||z — 2|1~ 7,2(0)) and [lg —
anll L2(0.T:12(Q)) follow similarly (and also by the contraction property of Py, ). g

REMARK 3.1 By the best approximation properties for piecewise linear finite element spaces, the error
estimates in Theorem 3.3 are of optimal order, up to the logarithmic factor E%. The latter factor is also
present for the direct problem with a source f € L=(0,T;L*(R)) (Jin et al., 2015, Theorem 3.7).
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3.3 Fully discrete scheme

Now we turn to the fully discrete approximation of (1.1)—(1.2), with L1 scheme or BE-CQ time stepping

(and variational discretization for the control variable). First, we define a time-discrete admissible set
=10 =Y e Q)N ia< Q7 <b, n=1,2,..,N},

and consider the following fully discrete problem:

N

: T ( n ny2 n—112
min =Y (U7~ il o) + 71} 2 ).
gt 2 5 IV~ iliaca) 10 iz

subject to the fully discrete problem
002U — MU = fr+ PO, n=1,2,..,N, withU}=0,

with u} = uy(,) and f}! = P,f(t,). Note that like the semidiscrete case, the admissible set Uyq is not
directly discretized in space, but only in a variational sense. Let %" be the L1/BE-CQ approximation
of the right-sided Riemann-Liouville fractional derivative ;0 @(t,):

oFeN " =1Y B
=0

Then the fully discrete problem is to find (U}',Z}!, Q}) such that (Zhou & Gong, 2016, Section 5)

002U — AU = fri+ RO !, n=1,2,..,N, withU =0, (3.20)

0 =AM = — Puuy, n=1,2,...N, wit =0, .
087t — Mz = Up — Pl 1,2,..,N hzV =0 (3.21)
(y@ ' +ziv—0p ) =0, Vv eLX(Q)st.a<v< b (3.22)

Similar to (3.13), (3.22) can be rewritten as
o t=pr,(-v'z""), n=12,...,N. (3.23)

To simplify the notation, we denote the ¢>(L?(2)) inner product by

N
[V’W]T =1 Z (VVHWVI) Vv = (Vn)nN:IaW = (Wn)izvzl € L2('Q)N7
n=1
and we shall identify vectors with sequences below. Let ¢d%v = (0dZvi)N_ € L?(Q)" and d%w =
(0w~ N_ € L?(2)". Then the following identity holds (Zhou & Gong, 2016, Section 5.2)

[002v, W], = [v,d%W], Vv,we L}(Q)". (3.24)

Thus, 9% is the adjoint to ¢d¢ with respect to [-,-];. Let

U, = (U}’:)nNzlv Z,= (Z}r;il)nN:Ia Q= (inl)izv:b
w, = (up(tn) =1, 2 = (2n(ta—1))n_1 @ = (qn(ta—1))h1-

Next we introduce two auxiliary problems. Let U, (g) = (UJ'(qn)))N_; € X} solve
002U (qn) — AU (an) = f +an(tar), n=1,...,N, with U} (g;) =0. (3.25)

By Lemma 3.3, the pointwise evaluation g, (f,, ) does make sense, and thus problem (3.25) is well defined.
For any v, = (V)N_, € XV, let Zy(v;) = (ZZ*I(V;,));V:] € X! solve

0¢Zy (vi) — AWZl (i) = Vi — Padly, n=1,2,...,N, with Z}) (v;;) = 0. (3.26)

The rest of this part is devoted to error analysis. First, we bound [[g, — Qull2(12(q))-
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LEMMA 3.4 For Qy, q;,, Zj, and Z;,(Uy(q,)) defined as above, there holds
71Qn — (lh||?z(Lz(Q)) < [qn — Qi Zi(Un(gn)) — 2]«
Proof. 1t follows from (3.20) and (3.25), similarly from (3.21) and (3.26), that
(095 — M) (Un(gqn) —Un) = a5 —Qy  and (¢ — Ap)(Zy(v4) — Zn) = ¥4 — Uy
Together with (3.24), these identities imply

[@n — Qu, Zi — Zy(Un(qn))le = [(00F — An) (Un(an) — Un), Zin — Zy,(Up(qn)) ],
= [Un(gn) — Up, (0F — An) (Zn — Z,(Un(qn)))] ,
= —Uw(gn) = Usl22 2y < O- (3.27)

Next, since (3.14) holds pointwise in time, i.e., gy (ts—1) = Pu, (=Y 'zn(ta-1)), we have

(qn(ta) +7 '2n(ta1), X — qn(ta—1)) =0, VYV €L*(Q) st.a<y <b. (3.28)

Upon setting v = gp(f,—1) in (3.22) and y = QZ*I in (3.28), we deduce

71Qn — QhHﬁz(Lz(_Q)) = Y1Qn — an, Qulr — ¥[Qr — 1, ]«
< [qn — Qi Zn) e — (91 — Qu, 4]«
= [an — Qu, Zy — Z1(Un(qn))lz + [an — Qu, Z1(Un(gqn)) — 2]z

Now invoking (3.27) completes the proof of the lemma. O
The next result gives an error estimate for the approximate state Uy(g;,).

LEMMA 3.5 Let f,uq € H'(0,T;L*(£)). For any € € (0,min(1/2, c)), there holds
Uk (gn) — unll 22y < ct'/2Hmintt/2e=e),

Proof. By the triangle inequality, we have
1Uk(gn) —will 2200y < 1Un(an) = Unlan) e 2@y + 1Un(@n) — anll 22y

where Uy,(g;) = (ﬁ,:’(qh))N is the solution to

n=1
008U} (an) = AYUR (an) = fr +d5, n=1,2,...,N  with Uy (gx) =0, (3.29)
with g = Pygy(t,) (and q;, = (qZ)nNzl). That is, ﬁ,?(qh) is the fully discrete solution of problem (2.10)
with g = f +¢g;. By Lemmas 2.3 and 2.4, we have

min(1/2+a—¢,1

Un(qn) *ﬁh(Qh)HzZ(LZ(_Q)) <cllan =l 2y <ct )H‘HtH[-11/2+0¢*€(07T;L2(Q))~ (3.30)

Further, Theorem 2.3 (with s = min(1,1/2+ o —¢) € (1/2,1)) implies
1Un(gn) =il 2 200)) < clPuf +anllso,r:02(0))
S c1Puf s o,r:2()) + Nanllmso.7:22(2)) T

The last two estimates and Lemma 3.3 (with s = 1/2 — ¢€) yield the desired assertion. O
Now we can give an ¢>(L?(£2)) error estimate for the approximation (U}, Z}!, OF).
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THEOREM 3.4 For f € H'(0,T;L*(Q)) and uy € H'(0,T;L*(R)), (up,zn,q,) and (U}, Z}!,O}) be the
solutions of problems (3.11)-(3.13) and (3.20)-(3.22), respectively. Then there holds for any small € > 0

lwn = Uil 2@y + 12— Zall gy + s — Qullpagay) < ext/2rmint/2e—e),

where the constant ¢ depends on || f{| 1o 7,12 (), and Hud||H1(07T;Lz(Q)).

Proof. By Lemma 3.4 and the triangle inequality, we deduce
1Qn = anll2(12(0)) < €llZn(Unlan)) — Zn(wp)ll 212(0)) + <l Zn(wn) — zall 2 (12 (02

It suffices to bound the two terms on the right hand side. Lemmas 2.3 and 3.5 imply

r

11 (Un(gn)) = Zn(un) |l 2 (12(0)) < €llUn(an) —will 22y < €7

with r = 1/2 4 min(1/2, o — €). Further, since Z;(uy,) is a fully discrete approximation to z;(u;,), by
Theorem 2.3 (with s = r) and Lemma 3.3, we have

1Z(wn) = 2| 2 (12 (@2)) < €lltn = Pastal| 0. 7:22(2)) T < T

Thus, we obtain the estimate ||Q), — thz(Lz(Q)) < 7. Next, by Lemmas 2.3 and 3.5, we deduce

1Un —will222(0)) < 1Un = Un(@i) |l 2(22(0)) + 1Un(@r) —unll22(0))

) S
< cl|Qn—anlle2(0)) + 1Un(an) —wall 220y < €T’

Similarly, |Z; — z[| 2(;2(o)) can be bounded by

1Z, = 24| 212 (@)) < 1120 = Zn(ui)ll 2 2(0)) + 120 (un) = 21| 2 (12 (2))
< cllUn = wnll 22y + 1Zn(wn) = 24| 212y < €T
This completes the proof of Theorem 3.4. (]
Last, we give a pointwise-in-time error estimate for the approximation (U}, Q}},Z}!).

THEOREM 3.5 For f,uy € WHP(0,T;L*(Q))NH'(0,T;L*(Q)), p>1/a with & € (0,1/p"), let (up, 2, q1)
and (U}, Z;, O}) be the solutions of problems (3.11)-(3.13) and (3.20)-(3.22), respectively. Then there
holds for any small € >0

-1 -1 -1 -1 -
]gnang(||“Z—Uf7||L2(9)+||Z'Z ~Zy N+l =00 i) <et™F,

where the constant ¢ depends on || £l 1 min(.2) (0.7:12(0)) and [t ] y1.min(p2) (0.T:12(2))"

Proof. It follows from (3.20) and (3.25) that U — U?(g;) = 0 and

007 (U} = Upi(an)) — 2 (U} = Uy (an)) = Q' = anlta-1), n=1,...,N.

By Lemma 2.3 and the inverse inequality (in time), we obtain for any 1/o < p; < e

092 (Uy = U (an)n=i lem 22y < el (@5 = an(ta—1))nallem (122

) S
< chln(O,l/plfl/Z) H(Q;zlfl

— ()il ez (o))
This and Theorem 3.4 imply

l00¢ (UL — Up (qn) )= |l (12(Q)) < cgmn(/prl/2)tmindl/2.6e),
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By choosing p; > 1/a sufficiently close to 1/ and discrete embedding (Jin et al. (2018b)),

15 = Ui (an)n=i =220y < cllods (U = U (an) =i llom (12(2))
< C,L.mm (1/p1,1/2)+min(1/2,a—¢) <cet® €

where the last inequality follows from the inequality min(1/py,1/2)+min(1/2,a—€) > a — ¢, due to
the choice of py. Further, by the definition of U}’ (g5) in (3.29), choosing p» > 1/« sufficiently large so
that o € (0,1/p)) and applying (2.20) and Lemma 3.3, we get

(| (1) — U}?(Qh) ||L2(_Q) Let?* Hf‘*‘CIhHWl/pzW*E-pz (0,T:12(2))

<C’L'afs(thle/pZJrocfs,pz(07T;L2(Q)) + C) < C’Cafg.

Last, by choosing p3 > 1/a sufficiently close to 1/o;, Lemmas 2.3, 3.3, and 2.4, and discrete embedding
(Jin et al. (2018b)), we obtain

(T (an) = U (@n)n=ill =20 < cllodF (U5 (an) = Uy (an)n=illms 20y
< el (gnlta—1) = an(t) 3 s (12(@)) < €75

The last three estimates yield the desired bound on ||uh(t,,) Upllz2(q)- The bound on ||z (ty—1) —
| 12(¢) follows similarly, and that on ||g,(tn—1) — | 12() by the contractlon property of Py, ,. O

REMARK 3.2 Theorem 3.5 gives an O(t% €) convergence rate in the £*°(L?(£2))-norm for the time dis-
cretization errors of the control, state and adjoint variables. This estimate agrees with both the numerical
experiments in Section 4 and the regularity result in Lemma 3.3. Indeed, Lemma 3.3 implies
||uh||C0‘*£([O,T];L2(.Q)) + HZhHC“*E([O,T];LZ(_Q)) + ||qh||C0‘*€([O,T];L2(_Q))
<C(Hl/lh ‘|Ha+l/27£<07T;L2<_Q)) + ||Zh HHa+1/278<07T;L2<Q)) + th ||Wa+l/p78A]7(0)T;L2(Q>)) < C.
Since the O(7%) convergence rate (uniform in time) is optimal for the direct problem (Jin et al., 2018b,

Lemma 4.2), the error estimate in Theorem 3.5 is optimal up to an € order.

REMARK 3.3 So far our discussion focuses on the case of a zero initial condition, i.e., u(0) = 0. The
analysis can be extended to the case of smooth initial data:

0 u—Au=f, with u(0) = up.

where up € D(A) and Jd*u denotes the Caputo fractional derivative. Then the function w := u — ug
satisfies (1.2) with a source F = f 4 Auy, for which our approach applies. The case of a nonsmooth ug,
e.g., ug € LZ(Q), requires new techniques, due to a lack of regularity of the state variable u (near t = 0).

4. Numerical results and discussions

Now we present numerical experiments to illustrate the theoretical findings.

4.1 One-dimensional examples

We perform experiments on the unit interval Q = (0, 1). The domain € is divided into M equally spaced
subintervals with a mesh size A = 1/M. To discretize the fractional derivatives ¢d*u and ;07 z, we fix the
time stepsize T = T /N. We present numerical results only for the fully discrete scheme by the Galerkin
FEM in space and the L1 scheme in time, since BE-CQ gives nearly identical results.

We consider the following two examples to illustrate the analysis.

(@) f=0and uyg(x,7) =e'x(1—x).
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() f=(14cos(t))x(1/2,1)(x) and ug(x,1) = 5e'x(1 —x).

Throughout, the penalty parameter ¥ is set to ¥ = 1, and the lower and upper bounds a and b in the
admissible set U,g to a = 0 and b = 0.05. The final time 7 is fixed at T = 0.1. The conditions from
Theorems 3.3, 3.4 and 3.5 are satisfied for both examples, and thus the error estimates therein hold.

In Tables 1 and 4, we present the spatial error e, (1) in the L*(0,T; L?(£2))-norm for the semidiscrete
solution uy,, defined by

en(i) = max, [lunta) —u(tn) 20,

and similarly for the approximations z; and g;. The numbers in the bracket in the last column denote
the theoretical rates. Since the exact solution to problem (1.2) is unavailable, we compute reference
solutions on a finer mesh, i.e., the continuous solution u(#,) with a fixed time step T = 7 /1000 and
mesh size i = 1/1280. The empirical rate for the spatial error e, is of order O(h?), which is consistent
with the theoretical result in Theorem 3.3. For case (a), the box constraint is inactive, and thus the errors
for the control g and adjoint z are identical (since Yy = 1).

Table 1: Spatial errors for example (a) with N = 10*.

o M 10 20 40 80 160 320 rate
en(u) | 4.57e-6 1.14e-6  2.86e-7 7.14e-8 1.79¢e-8  4.47e-8 | 2.00 (2.00)
0.4 | en(q) | 3.38¢-5 8.46e-6 2.12e-6 5.29e-7 1.32e-7 3.31e-8 | 2.00(2.00)
en(z) | 3.38¢e-5 8.46e-6 2.12e-6 529-7 1.32e-7 3.31e-8 | 2.00(2.00)
ep(u) | 2.44e-6  6.07e-7 1.52e-7 3.79¢-8 9.47e-9  2.37e-9 | 2.00 (2.00)
0.6 | en(g) | 3.62e-5 9.04e-6 2.26e-6 5.65e-7 1.4le-7  3.53e-8 | 2.00(2.00)
en(z) | 3.62e-5 9.0de-6 2.26e-6 5.65e-7 1.4le-7  3.53e-8 | 2.00(2.00)
en(u) | 8.93e-7 2.2le-7 5.52e-8 1.40e-8 3.45¢-9 8.62¢-10 | 2.00 (2.00)
0.8 | en(q) | 3.92e-5 9.8le-6 2.45e-6 6.14e-7 1.53e-7  3.83e-8 | 2.00(2.00)
en(z) | 3.92e-5 9.8le-6 2.45e-6 6.14e-7 1.53e-7  3.83e-8 | 2.00(2.00)

Table 2: Temporal errors for example (a) with M = 50.
o N 1000 2000 4000 8000 16000 32000 rate

era(u) | 1.70e-6  9.97¢-7 5.77e-7 3.31le-7 1.88e-7 1.06e-7 | 0.83(0.90)
04 | ecnlq) | 2.02e-5 1.20e-5 7.06e-6 4.09e-6 234e-6 1.33e-6 | 0.82(0.90)
era(z) | 2025 120e-5 7.06e-6 4.09-6 234e-6 1.33e-6 | 0.82(0.90)
eca(u) | 6.58¢-7 3.47e-7 1.82e7 947e8 4.90e-8 2.53¢-8 | 0.96 (1.00)
06 | era(q) | 825¢-6 437e-6 2.29%-6 120e-6 6.22-7 32le-7 | 0.95(1.00)
era(z) | 825¢-6 437e-6  229¢-6 120e-6 6.22¢-7 3.2le-7 | 0.95(1.00)
era(u) | 2.68e-7 1.38¢-7 7.07e-8 3.62¢-8 1.84e-8 9.38¢-9 | 0.97 (1.00)
08 | era(q) | 3.80e-6 195¢-6 1.00e-6 5.12¢-7 2.6le-7  1.33e-7 | 0.98(1.00)
en(z) | 3.80e-6 1.95e-6 1.00e-6 5.12e-7 2.6le-7 1.33e-7 | 0.98 (1.00)

Next, to examine the convergence in time, we compute the ¢>(L*()) and ¢(L*(Q)) temporal
errors ez (u) and ez .. (1) for the fully discrete solutions U}, respectively, defined by

exa() = (U —un(ta) )= 22y and  exeo(u) = [[(UR = un(tn) )51 =122

and similarly for the approximations Z; and Q. The reference semidiscrete solutions are computed
with 2 = 1/50 and 7 = 1/(64 x 10%). Numerical experiments show that the empirical rate for the
temporal discretization error is of order O(‘L‘min(%*o"l)) and O(t%) in the (2(L*()) and £*(L*(R2))-
norms, respectively, cf. Tables 2-3 and 5-6, for cases (a) and (b). These results agree well with the
theoretical predictions from Theorems 3.4 and 3.5, and thus fully support the error analysis in Section
3. In Fig. 1, we plot the optimal control g, the state u and the adjoint z. One clearly observes the
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weak solution singularity at + = O for the state u and at t = T for the adjoint z. The latter is especially
pronounced for case (b). The weak solution singularity is due to the incompatibility of the source term
with the zero initial/terminal data.

Table 3: Pointwise-in-time temporal errors for example (a) with M = 50.

o N 1000 2000 4000 8000 16000 32000 rate

(u) | 347e-5 2.78e-5 2.20e-5 1.72e-5 1.33e-5 1.03e-5 | 0.37(0.40)

(q) | 447e-4 358e-4 283e-4 22le-4 1.72e-4 1.33e-4 | 0.37(0.40)

(z) | 447e-4 3.58e-4 2.83e4 22le4 1.72e-4 1.33e-4 | 0.37(0.40)

(u) | 5.72¢-6  3.79e-6 2.51e-6 1.66e-6 1.09¢e-6 7.22e-7 | 0.60 (0.60)
0.6 | erw(q) | 7.64e-5 5.06e-5 3.35e-5 2.2le-5 1.46e-5 9.64e-6 | 0.60 (0.60)

(2)

(u)

(9)

(2)

04 | erelq

7.64e-5 5.06e-5 3.35e-5 22le-5 1.46e-5 9.64e-6 | 0.60 (0.60)
6.93e-7 397e-7 228e-7 13le-7 7.50e-8 4.31e-8 | 0.80 (0.80)
9.85e-6  5.65e-6 3.24e-6 1.86e-6 1.07e-6 6.13e-7 | 0.80 (0.80)
9.85e-6  5.65e-6 3.24e-6 1.86e-6 1.07e-6 6.13e-7 | 0.80 (0.80)

0.8 | erwlq

FIG. 1: Plot of U}, O; and Z;! for example (a) (top) and (b) (bottom).

4.2 Two-dimensional example

Now, we present numerical results of a two-dimensional example. The domain €2 is taken to be the
unit square 2 = (0, 1)2. To discretize the problem, we first divide the unit interval (0, 1) into M equally
spaced subintervals so that Q is divided into M? small squares, and then obtain a uniform triangulation
for the domain Q by connecting the diagonal of each small square. We consider the following data:

(©) f=0,ug(x,t) =5¢'x(1 —x)y?sin(27y) and u(x,0) = x(1 —x)y(1 —y).

In the experiment, we set an active admissible set U,g with lower bound a = —0.01 and upper bound
b=0.01. We take T = 0.01 and y = 1, for evaluating both the spatial and temporal errors (i.e., ey, e >
and ez ). Note that in this example, the initial data v is nonzero, but it is smooth and compatible with
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Table 4: Spatial errors for example (b) with N = 10*.

o N 10 20 40 80 160 320 rate
en(u) | 1.86e-4 4.72e-5 1.16e-5 2.82e-6 7.39¢e-7 1.84e-7 | 2.00 (2.00)
04 | en(q) | 1.59¢-4 397e-4 9.92e-6 2.48e-6 6.19¢-7 1.55e-7 | 2.00 (2.00)
en(z) | 1.78e-4  4.44e-5 1.11e-5 2.78e-6 6.94e-7 1.74e-7 | 2.00 (2.00)
ep(u) | 1.99e-4  4.93e-5 1.20e-5 3.14e-6 7.83e-7 1.94e-7 | 2.00 (2.00)
0.6 | en(g) | 1.66e-4 4.15e-5 1.04e-5 2.60e-6 6.50e-7 1.63e-7 | 2.00 (2.00)
en(z) | 1.86e-4  4.66e-5 1.16e-5 29le-6 7.28e-7 1.82e-7 | 2.00 (2.00)
ep(u) | 2.19e-4  5.31e-5 1.35e-5 3.35e-6 8.39%-7 2.10e-7 | 2.00 (2.00)
0.8 | en(q) | 1.71e-4  4.29e-5 1.07e-5 2.68e-6 6.70e-7 1.68e-7 | 2.00 (2.00)
en(z) | 1.96e-4 491e-5 1.23e-5 3.07e-6 7.66e-7 1.92e-7 | 2.00 (2.00)

Table 5: Temporal errors for example (b) with M = 50.
o N 1000 2000 4000 8000 16000 32000 rate

eia(u) | 1.05e-4  634e-5 3.79e-5 224e-5 13le-5 7.59¢-6 | 0.79 (0.90)
04 | ern(q) | 9.00e-5 543e-5 321le-5 1.87e-5 1.07e-5 6.10e-6 | 0.81 (0.90)
era(z) | 9.36e-5 5.57e-5 3.26e-5 1.89%-5 1.08e-5 6.15¢-6 | 0.82(0.90)
era(u) | 4.67e-5 25065 133e-5 6996 3.65¢-6 1.90e-6 | 0.94 (1.00)
0.6 | ecnlq) | 3.66e-5 195¢-5 1.03e-5 540e-6 2.8le-6 1.45¢-6 | 0.95 (1.00)
ern(z) | 3.83e-5 2035 1.07e-5 5.56e-6 2.8%-6 149%-6 | 0.95(1.00)
era(u) | 223e-5 1.14e-5 585¢-6 2996 1.52e-6 7.74e-7 | 0.98 (1.00)
08 | en(q) | 1.58e-5 823e-6 4.25e-6 2.19-6 1.12e-6 573e-7 | 0.97 (1.00)
(2)

1.78¢e-5 9.17e-6  4.70e-6  2.40e-6 1.22e-6  6.23e-7 | 0.98 (1.00)

Table 6: Pointwise-in-time temporal errors for example (b) with M = 50.

a N 1000 2000 4000 8000 16000 32000 rate
(u) | 2.40e-3 1.98e-3 1.62¢-3 1.31e-3 1.04e-3  8.25¢-4 | 0.34 (0.40)
(g) | 2.07e-3 1.65¢-3 1.31e-3 1.02¢-3 7.95e-4 6.14e-4 | 0.37 (0.40)
(z) | 2.07e-3  1.65e-3 1.31e-3 1.02¢-3 7.95¢-4 6.14e-4 | 0.37 (0.40)
(u) | 5.11e-4 3.45e-4 2.32e-4 1.55e-4 1.03e-4 6.85¢-5 | 0.59 (0.60)

0.6 | erw(q) | 3.54e-4 235e-4 1.55e-4 1.03e-4 6.77e-5 4.47e-5 | 0.60 (0.60)
(2)
()
(q)
()

04 | erwlq

ere(Z 3.54e-4 2.35e-4 1.55e-4 1.03e-4 6.77e-5 4.47e-5 | 0.60 (0.60)
er ool 6.96e-5 4.03e-5 2.33e-5 1.34e-5 7.68e-6 4.4le-6 | 0.80(0.80)
0.8 | erelq 4.60e-5 2.63e-5 1.5le-5 8.67e-6 4.98e-6 2.86e-6 | 0.80 (0.80)

4.60e-5 2.63e-5 1.5le-5 8.67e-6 4.98e-6 2.86e-6 | 0.80 (0.80)

the zero Dirichlet boundary condition. Thus, one may reformulate the control problem according to
Remark 3.3, and the analysis still applies. The numerical results are given in Tables 7, 8 and 9, which
indicate that the empirical convergence rates for both spatial and temporal errors agree well with the
theoretical ones in Theorems 3.3, 3.4 and 3.5.

5. Conclusions

In this work, we have developed a complete numerical analysis of a fully discrete scheme for a dis-
tributed optimal control problem governed by a subdiffusion equation, with box constraint on the control
variable, and derived nearly sharp pointwise-in-time error estimates for both space and time discretiza-
tions. These estimates agree well with the empirical rates observed in the numerical experiments. The
theoretical and numerical results show the adverse influence of the fractional derivatives on the conver-
gence rate when the fractional order « is small.
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Table 7: Spatial errors for example (c) with N = 500.

a M 5 10 20 40 80 rate
ep(u) | 1.67e-3  4.31e-4 1.08e-4 2.73e-5 69le-6 | 1.99 (2.00)
04 | ex(q) | 6.11e-4 1.48e-4 3.75e-5 9.44e-6 2.38e-6 | 1.98 (2.00)
en(z) | 1.92e-3  5.08e-4 1.29e-4 3.25e-5 8.22e-6 | 1.98 (2.00)
ep(u) | 1.82e-3  4.64e-4 1.17e-4 294e-5 7.51e-6 | 1.98 (2.00)
0.6 | en(q) | 5.51e-4 1.34e-4 3.28e-5 8.37e-6 2.12¢-6 | 1.98 (2.00)
en(z) | 1.98e-3  5.22e-4 1.33e-4 3.34e-5 8.44e-6 | 1.98(2.00)
en(u) | 1.85e-3  4.68e-4 1.18e-4 2.97e-5 7.6le-6 | 1.97 (2.00)
0.8 | en(q) | 4.51e-4 1.2le4 2.68e-5 7.13e-6 1.80e-6 | 1.98 (2.00)
en(z) | 2.02e-3 5.34e-4 1.35e-4 3.4le-5 8.62e-6 | 1.98(2.00)

Table 8: Temporal errors for example (c) with M = 50.
a N 100 200 400 800 1600 3200 rate

era(u) | 3.83e-5 238e-5 146e-5 8.74e-6 5.16e6 3.0le-6 | 0.78 (0.90)
04 | era(q) | 3.14e-5 1.80e-5 1.04e-5 6.03¢-6 3.54e-6 2.08¢-6 | 0.77 (0.90)
era(z) | 3.14e-5  196e-5 1.20e-5 7.23e-6 4.29-6 2.5le-6 | 0.78 (0.90)
era(u) | 1.76e-5 9.49e-6 5.06e-6 2.68¢-6 140e-6 7.32e-7 | 0.94 (1.00)
0.6 | era(q) | 1.34e-5  7.19¢-6 3.82e-6 2.02-6 1.06e-6 5.53¢-7 | 0.94(1.00)
era(z) | 1.44e-5  7.8le-6  4.17e-6 22le-6 1.16e-6 6.06e-7 | 0.94 (1.00)
era(u) | 649e-6 34le-6 1.78e-6 9.22e-7 4.75e-7 2.44e-7 | 0.96 (1.00)
0.8 | era(q) | 485¢-6 253¢-6 13le-6 6727 344e-7 1.76e-7 | 0.97 (1.00)
(2)

527e-6 277e-6 1.44e-6 7.49e-7 3.86e-7 1.98e-7 | 0.96 (1.00)

Table 9: Pointwise-in-time temporal errors for example (c) with M = 50.
a N 100 200 400 800 1600 3200 rate

ero(tt) | 3.00e-4 2.53e-4 2.08e-4 1.68e-4 1.34e-4 1.06e-4 | 0.34 (0.40)
04 | erw(q) | 1.95e-4 1.62e-4 1.36e-4 1.13e-4 9.35e-5 7.72¢-5 | 0.28 (0.40)
erw(z) | 247e-4  2.09-4 1.73e-4 14le-4 1.13e-4 8.92e-5 | 0.34(0.40)
ero(tt) | 6.47e-5 4.33e-5 2.8%-5 1.92e-5 1.27e-5 8.44e-6 | 0.59 (0.60)
0.6 | erw(q) | 3.65e-5 39le-5 2.62e-5 1.75¢e-5 1.17e-5 7.85e-6 | 0.58 (0.60)
erw(z) | 5.45e-5 3.66e-5 2.44e-5 1.63e-5 1.08e-5 7.17e-5 | 0.59 (0.60)
ero(tt) | 8.64e-6 4.96e-6 2.86e-6 1.64e-6 9.44e-7 5.42e-7 | 0.80(0.80)
0.8 | ere(gq) | 8.70e-6 4.99e-6 2.84e-6 1.63e-6 9.24e-7 5.25¢-7 | 0.82(0.80)
(2)

7.23e-6 4.16e-6 2.39e-6 1.38e-6 7.92e-7 4.55e-7 | 0.80 (0.80)

A. Proof of Lemma 2.4

Proof. By Sobolev embedding, W (0, 1;L*(2)) < C([0,1];L*(R)) for s € (1/p, 1], and thus we can
define an interpolation operator IT by ITv(f) = v(1), for 7 € (0,1), for any v € W*P(0,1;L*()). The
operator E = I — IT is bounded from W*?(0,1;L?()) to L?(0,1;L*(2)):

IEVIi200,1:2(0)) = 1T =TVl 12(0.1:02(02)) < €lVlwsr0,1:02(0))-
By the fractional Poincaré inequality (cf. Hurri-Syrjinen & Vihikangas (2013)), we have

E — = inf ||E(v— . <cinf |[v— S.p(0) 1
IEVI 1o (0,1:02(02)) ;QRH v=p)llr1122) C;QRHV Pliwsr01:2(0)) Al

< cPvlwspo,2 (@)
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where the seminorm | |ys.p(9,7,12(@)) 18 defined in (2.4). By Holder’s inequality, we obtain

In
00 =W 1 g2 frznvtn o [ vy g,

In—1

N tn
—r‘f’zn ) )t sy < X [ 1) 1) g

th—1 n=1"-1

Let v,(f) = v(t,_1 + f), forf € [0,1], n = 1,...,N. Then v, () € WP (0,1;L?(L)) and by (A.1),

N

100) = R 120 rz / 1150 =l (048 < 2 X2 il 1020

NGRS R
<c12 / / 2@ jrag

|t—f:\1+w

— psN fn )H dd
- Z/tnl‘/nl |t_ |1+p5 tg

7 V(1) =v(&)lI2,
st / / §|1+m did = eIV 0 20y

which implies the desired assertion. (]
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