

The Hong Kong Polytechnic University Department of Applied Mathematics

Colloquium

An immersed boundary method for simulating interfacial flows with insoluble surfactant in three dimensions

by

Prof. Ming Chih Lai

National Chiao Tung University

Abstract

In this talk, an immersed boundary (IB) method for simulating the interfacial flows with insoluble surfactant in three dimensions is introduced. We consider a doubly periodic interface separating two fluids where the surfactant exists only along the evolving interface.

An equi-arclength parametrization is introduced in order to track the moving interface and maintain good Lagrangian meshes, so stable computations can be performed without remeshing. This surface mesh-control technique is done by adding two artificial tangential velocity components into the Lagrangian marker velocity so that the Lagrangian markers can be equi-arclength distributed during the time evolution. As a result, the surfactant equation on the interface must be modified based on the new parametrization. A conservative scheme for solving the modified surfactant equation has been developed and proved to satisfy the total surfactant mass exactly in discrete level. A series of numerical experiments consisting of the validation of Lagrangian mesh control technique, the convergence study, the study of self-healing dynamics, and the simulations of two-layer fluids under Couette flow have been conducted to test our present numerical scheme.

Date : 28 August, 2017 (Monday) Time : 10:00a.m. – 11:00a.m. Venue : TU801, The Hong Kong Polytechnic University

* * * ALL ARE WELCOME * * *