

The Hong Kong Polytechnic University Department of Applied Mathematics

Seminar on

Solution to an optimal control problem by Krotov method

by

Professor Jinghao Zhu Department of Mathematics Tongji University

Abstract

In this talk, we study the problem on how to get an analytic solution to an optimal control problem. By use of Krotov extension method we find a new performance index by constructing an auxiliary function to get an extension problem which is equivalent to the original problem. By canonical differential flow we solve some convex and non-convex global optimization problems which is induced from the optimal control problem. As an example, we consider the following optimal control problem:

$$P_{1} - \min J(u(\cdot)) = \frac{1}{2} \int_{t_{0}}^{t_{f}} u^{T}(t) Uu(t) dt$$

s.t. $\dot{x}(t) = Ax(t) + Bu(t), \quad t \in [t_{0}, t_{f}]$
 $x(t_{0}) = x_{0}, x(t_{f}) = x_{1,}$
 $x_{0}, x_{1} \in \mathbb{R}^{n},$
 $u(t) \in \Sigma = \{u \mid u^{T}u \leq 1\}, \quad t \in [t_{0}, t_{f}].$
(1)

For the problem above, an analytic expression of the optimal control is when $0 \le t < 1 + \ln \hat{c}$,

$$\hat{u}(t) = [e - 1 - (\sqrt{e(e - 2)})]e^{1 - t^{-1}}\hat{c}e^{1 - t} = 1.$$

and when $1 + \ln \hat{c} \le t \le 1$,

$$\hat{u}(t) = [1+0]^{-1}\hat{c}e^{1-t} = [e-1-(\sqrt{e(e-2)})]e^{1-t}.$$

Date	: 4 October 2011 (Tuesday)
Time	: 11:00 am – 12:00 noon
Venue	: Departmental Conference Room HJ610 The Hong Kong Polytechnic University