HPR-QP: A GPU Solver for Convex Composite Quadratic Programming

Kaihuang Chen, Defeng Sun, Yancheng Yuan, Guojun Zhang, Xinyuan Zhao

Contact: {kaihuang.chen, guojun.zhang}@connect.polyu.hk, {yancheng.yuan, defeng.sun}@polyu.edu.hk, xyzhao@bjut.edu.cn


Overview

HPR-QP is a Julia implementation of a dual Halpern Peaceman–Rachford (HPR) method for solving large-scale convex composite quadratic programming (CCQP) problems on the GPU. It efficiently handles problems of the form:

\[ \begin{array}{ll} \underset{x \in \mathbb{R}^n}{ min} \quad & \tfrac{1}{2}\langle x,Qx \rangle + \langle c, x \rangle + \phi(x) \\ \mathrm{s.t.} \quad & l \leq A x \leq u, \end{array} \]

Numerical Results

Maros–Mészáros Data Set (137 Instances; Tolerances \(10^{-6}\), \(10^{-8}\))

Solver SGM10 \((10^{-6})\) Solved \((10^{-6})\) SGM10 \((10^{-8})\) Solved \((10^{-8})\)
HPR-QP 10.5 129 12.6 128
PDQP 33.1 125 42.5 124
SCS 126.0 103 165.0 93
CuClarabel 3.7 130 7.8 124
Gurobi 0.4 137 1.2 135

QAP Relaxations (36 Instances; Tolerances \(10^{-6}\), \(10^{-8}\))

Solver SGM10 \((10^{-6})\) Solved \((10^{-6})\) SGM10 \((10^{-8})\) Solved \((10^{-8})\)
HPR-QP 1.8 36 4.7 36
PDQP 124.1 23 149.4 23
SCS 11.3 36 86.0 36
CuClarabel 13.6 33 114.9 22
Gurobi 24.8 36 26.8 36

LASSO Problems (11 Instances; Tolerance \(10^{-8}\))

Abbreviations: T = time-limit, F = failure (e.g., unbounded or infeasible)
Instance HPR-QP PDQP SCS CuClarabel Gurobi
abalone7 10.5 372.5 T 24.4 127.3
bodyfat7 1.2 33.3 T 2.2 30.8
E2006.test 0.2 1.3 T 15.4 9.0
E2006.train 0.7 1.9 F 116.0 277.8
housing7 22.6 123.3 T 5.7 125.9
log1p.E2006.test 7.0 1416.9 T 196.0 137.0
log1p.E2006.train 17.3 2983.2 T 361.0 878.8
mpg7 0.6 18.1 2000.0 0.3 1.2
pyrim5 49.1 410.6 T 3.5 35.9
space_ga9 0.6 62.7 1210.0 6.7 38.1
triazines4 401.3 3533.3 T 26.0 843.1
SGM10 (Time) 13.2 161.8 3091.0 26.1 91.2

Citation

@article{chen2025hpr,
title={HPR-QP: A dual Halpern Peaceman-Rachford method for solving large-scale convex composite quadratic programming},
author={Chen, Kaihuang and Sun, Defeng and Yuan, Yancheng and Zhang, Guojun and Zhao, Xinyuan},
journal={arXiv preprint arXiv:2507.02470},
year={2025}
}