Contact: {kaihuang.chen, guojun.zhang}@connect.polyu.hk, {yancheng.yuan, defeng.sun}@polyu.edu.hk, xyzhao@bjut.edu.cn
Find the open-source solver at https://github.com/PolyU-IOR/HPR-QP
HPR-QP is a Julia implementation of a dual Halpern Peaceman–Rachford (HPR) method for solving large-scale convex composite quadratic programming (CCQP) problems on the GPU. It efficiently handles problems of the form:
\[ \begin{array}{ll} \underset{x \in \mathbb{R}^n}{ min} \quad & \tfrac{1}{2}\langle x,Qx \rangle + \langle c, x \rangle + \phi(x) \\ \mathrm{s.t.} \quad & l \leq A x \leq u, \end{array} \]
| Solver | SGM10 \((10^{-6})\) | Solved \((10^{-6})\) | SGM10 \((10^{-8})\) | Solved \((10^{-8})\) |
|---|---|---|---|---|
| HPR-QP | 10.5 | 129 | 12.6 | 128 |
| PDQP | 33.1 | 125 | 42.5 | 124 |
| SCS | 126.0 | 103 | 165.0 | 93 |
| CuClarabel | 3.7 | 130 | 7.8 | 124 |
| Gurobi | 0.4 | 137 | 1.2 | 135 |
| Solver | SGM10 \((10^{-6})\) | Solved \((10^{-6})\) | SGM10 \((10^{-8})\) | Solved \((10^{-8})\) |
|---|---|---|---|---|
| HPR-QP | 1.8 | 36 | 4.7 | 36 |
| PDQP | 124.1 | 23 | 149.4 | 23 |
| SCS | 11.3 | 36 | 86.0 | 36 |
| CuClarabel | 13.6 | 33 | 114.9 | 22 |
| Gurobi | 24.8 | 36 | 26.8 | 36 |
| Instance | HPR-QP | PDQP | SCS | CuClarabel | Gurobi |
|---|---|---|---|---|---|
| abalone7 | 10.5 | 372.5 | T | 24.4 | 127.3 |
| bodyfat7 | 1.2 | 33.3 | T | 2.2 | 30.8 |
| E2006.test | 0.2 | 1.3 | T | 15.4 | 9.0 |
| E2006.train | 0.7 | 1.9 | F | 116.0 | 277.8 |
| housing7 | 22.6 | 123.3 | T | 5.7 | 125.9 |
| log1p.E2006.test | 7.0 | 1416.9 | T | 196.0 | 137.0 |
| log1p.E2006.train | 17.3 | 2983.2 | T | 361.0 | 878.8 |
| mpg7 | 0.6 | 18.1 | 2000.0 | 0.3 | 1.2 |
| pyrim5 | 49.1 | 410.6 | T | 3.5 | 35.9 |
| space_ga9 | 0.6 | 62.7 | 1210.0 | 6.7 | 38.1 |
| triazines4 | 401.3 | 3533.3 | T | 26.0 | 843.1 |
| SGM10 (Time) | 13.2 | 161.8 | 3091.0 | 26.1 | 91.2 |