Contact: {kaihuang.chen, guojun.zhang}@connect.polyu.hk, {yancheng.yuan, defeng.sun}@polyu.edu.hk, xyzhao@bjut.edu.cn
Find the open-source solver at https://github.com/PolyU-IOR/HPR-LP
HPR-LP is a Julia implementation of the Halpern Peaceman-Rachford (HPR) method for solving linear programming (LP) problems on the GPU. It is designed to efficiently handle large-scale LP problems with the following formulation:
\[ \begin{array}{ll} \underset{x \in \mathbb{R}^n}{\min} \quad & \langle c, x \rangle \\ \text{s.t.} \quad & A_1 x = b_1, \\ & A_2 x \geq b_2, \\ & l \leq x \leq u . \end{array} \]
HPR-LP runs fast on an NVIDIA A100-SXM4-80GB GPU! 😊 It outperforms other solvers like cuPDLP.jl in both computational efficiency and solution accuracy.
Tolerance | 1e-4 | 1e-6 | 1e-8 | |||
---|---|---|---|---|---|---|
SGM10 | Solved | SGM10 | Solved | SGM10 | Solved | |
cuPDLP.jl | 60.0 | 46 | 118.6 | 45 | 220.6 | 43 |
HPR-LP.jl | 17.4 | 49 | 31.8 | 49 | 59.4 | 48 |
Tolerance | 1e-4 | 1e-6 | 1e-8 |
---|---|---|---|
cuPDLP.jl | 12.7 | 60.0 | 343.1 |
HPR-LP.jl | 2.9 | 8.8 | 60.2 |