Subject Description Form

Subject Code	AMA528
Subject Title	Probability and Stochastic Models
Credit Value	3
Level	5
Pre-requisite/ Co-requisite/ Exclusion	Nil
Objectives	To enable students to have a thorough understanding of basic probability theory and some families of distributions, and their applications.
Intended Learning	Upon completion of the subject, students will be able to: (a) Apply the concepts of probability, conditional probability and conditional expectations. (b) Identify the distribution of random variable under various discrete and continuous distributions. (c) Calculate probabilities, moments and other related quantities based on given distributions. (d) Determine the probability distribution after transformation. (e) Apply stochastic models in mathematical modelling.
Subject Synopsis/ Indicative Syllabus	Fundamental probability: set function, sample space, events, set operation, probability, independence, conditional probability, three basic probability axioms: multiplication rules, law of total probability, and Bayes Theorem.
Teaching/Learning	The subject will be delivered mainly through lectures and tutorials. The teaching and learning approach is mainly problem-solving oriented. The approach aims at the development of probabilistic techniques and how the techniques can be applied to solving problems. Students are encouraged to adopt a deep study approach by employing high level cognitive strategies,
Random variables: discrete and continuous, distribution functions, expectation,	
variance, and higher order moments, moment generating functions, probability	
generating functions, cumulant generating functions and cumulants. Identify	
applications for which each distribution may be used, explain the reasons why,	
and apply the distribution to the application, given the parameters.	
Multiple random variables: Independence, jointly distributed, conditional	
distributions, marginal distributions. Conditional expectation, variance, and	
compound distributions; concept of Bayesian statistics; Apply techniques for	
creating new distributions: multiplication by a constant, raising to a power,	
exponentiation, mixing. Central limit theorem.	

classification, stationary increment, independent increment.

Markov property, Markov process, transition probability, multiple state

Markov chain, application of Markov process models.\end{array}\right|\)

	such as critical and theories to practice.	uative thinki	ng, re	$\mathrm{ng} \text {, in }$	grati		plying
Assessment Methods in Alignment with Intended Learning Outcomes	Specific assessment methods/tasks	\% weighting	Intended subject learning outcomes to be assessed (Please tick as appropriate)				
			a	b	c	d	e
	1. Assignments	16\%	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	2. Mid-term test	24\%	\checkmark	\checkmark	\checkmark	\checkmark	
	3. Examination	60\%	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Total	100%					
	Continuous Assessment comprises of assignments and a mid-term test. A written examination is held at the end of the semester.						
Student Study Effort Required	Class contact:						
	- Lecture				26 Hrs .		
	- Tutorial				13 Hrs .		
	Other student study effort:						
	- Assignment/Mini-project				35 Hrs.		
	- Self-study				63 Hrs.		
	Total student study effort				137 Hrs.		
Reading List and References	Ross, S.M.	A First Course In Probability, 9th Edition			Pearson Education		
	Ross, S.M.	Introduction To Probability Models, 11th Edition			Academic Press		
	Richard Durrett	Essentials of Stochastic Processes			$\begin{aligned} & \text { Springer, } \\ & 2016 \end{aligned}$		
	Grimmett, G. P and Stirzaker, 3r D.	Probability and Random Processes, 3rd Edition			Oxford University		

