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1. Introduction: Time-Consistency

Continuous Compound Interest

— Exponential Discounting.
P(0) — initial principal
r — annual interest rate

P(t) = P(0)e™ — Amount at the end of t-th year
(compounded continuously)



For any given future times T > t > 0, from

one has
P(T)=P(t)e ™, 0<t<T,

or, equivalently,
P(t)y=P(T)e T 0<t<T.

This is the value (price) at t of a payoff P(T) at T.

e~"(T—t) _ exponential discounting.



Forany 0 < t; < tp < T, one has
e"T=p(1)) = P(T) = T2 P(ty).

Therefore,

‘ possess P(t1) at t; ‘ x‘ possess P(ty) at to ‘

This is called the Time-Consistency of exponential discounting



Preferred Choice: Assume that annual rate is r = 10%

Option (A): Get $100 today (December 28, 2015).
Option (B): Get $105 (> 100(1 + {3)) on January 28, 2016.

Option (A’): Get $110 (= 100 x 1.10) on December 28, 2016.
Option (B'): Get $115.50 (> 110(1 4 {5)) on January 28, 2017.

For a time-consistent person,

(We will come back to this example later)



Semigroups: Consider

x-
—
n
~
Il

b(s, X(s)), se[t, T],

Suppose for any (t,x) € [0, T) x R", the above admits a unique
solution X(-;t,x). Then for any 7 € (t, T),

X(s;m, X(7;t,x)) = X(s; t, %), se|r, T

The restriction X(-; t, x)‘[T T is the solution of the equation

starting from (7, X(7;t,x)). A (nonlinear) semigroup property.



Dynamic Programming/Feymann-Kac formula: Consider
X(s) = b(s,X(s)),  se[0,T],
T
JeX () = HX(T) + [ g5 X ()
t

For 7 € (t, T),
.
J(e X(8)) = h(X(T: £, X(2))) +/t a(s, X(s: t, X(t)))ds
T
= h(X(T: 7, X(r: £, X(2)))) +/ g(s, X(s: 7, X(: £, X(£))))ds

+ /tT g(s, X(s; t, X(t)))ds = J(7, X(7)) + /tT g(s, X(s))ds.

Extended semigroup property. (Special case: h(x) = x,g = 0)



This leads to

Je(t, x) + Jx(t, x)b(t, x) + g(t, x) =0, (1)
J(T.x) = h(x).

Linear Hamilton-Jacobi type equation.

Another viewpoint: The solution J(t, x) of PDE (1) admits
representation:

T
J(t,x) = h(X(T; t,x)) +/t g(s, X(s; t,x))ds.

This is a deterministic Feynman-Kac formula.



Optimal Control Problem: Consider

{ X(s) = b(s,X(s), u(s)),  seltT],

with (scalar) cost functional

;
J(t, x; U(~))=h(X(T))+/t g(s; X(s), u(s))ds,

where
U, T ={u: [t, T > U ‘ u(+) is measurable }.

Problem (C). For given (t,x) € [0, T) x R", find a(-) € U[t, T]
such that

J(t,x;u()) = u(')eir&f[tﬂ J(t,x; u(-)) = V(t,x).



Bellman Optimality Principle: For any 7 € [t, T],
V(t,x) = inf / s, X(s), u(s))ds
()= inf | [ alsX(s)u(s)
—|—V(T,X(T; t, X, u()))}
Let (X(-),@(-)) be optimal for (t,x) € [0, T) x R".

V(t,x) = J(t,x: T(-)) = /tTg(s, X(s), u(s))ds

+J(7, X (7 £, %,8()); 00|, )

> / g(s, X(s), u(s))ds + V (r.X(r:t.x,a()))

t

> inf /tTg(s,X(s),u(s))ds

—u()eut,r]
+V(r, X(r: t,x,u(:))) = V(t, x).
Thus, all the equalities hold.



Consequently,

J(7, X(7):a()| . 7p) = VI, X(7))

= inf  J(r, X(7);u(-)), as.
u(-)eU[T,T] ( ( ) ())

Hence, D(-)‘[T € U[r, T is optimal for (7, X(7;t,x,T("))).

This is called the time-consistency of Problem (C).



Definition. A problem involving a decision-making is said to be
time-consistent if

an optimal decision made at a given time t
will remain optimal at any time s > t.

If the above is not the case, the problem is said to be
time-inconsistent.

Kook sk ok okokook sk ok skokokook ok kokok skok ok

If the problem under consideration is time-consistent, then once
an optimal decision is made, we will not regret afterwards!



If the whole world is time-consistent,
then the things are too ideal, the life will be much easier!
But, it might also be a little or too boring

(exciting to have some challenges)!

Fortunately (unfortunately?), the life is not that ideal!
(Challenges are around!)

Time-inconsistent problems exist almost everywhere!



2. Time-Inconsistent Problems

In reality, problems are hardly time-consistent:

An optimal decision/policy made at time t, more than often,
will not stay optimal, thereafter.

Main reason: When building the model, describing the
utility /cost, etc., the following are used:
subjective Time-Preferences and

subjective Risk-Preferences.



o Time-Preferences:

Most people do not discount exponentially! Instead, they over
discount on the utility of immediate future outcomes.

* Overreaction without thinking the consequences
(bad temper and impatience lead to unnecessary fighting,...)

* Break promise, delay planned projects (fail to meet deadlines,
such as refereeing papers, quit smoking, ...)

* Shopping using credit cards (meeting immediate satisfaction,
big discount, buy one get one free,...)

* Unintentionally pollute the environment due to over-development

* Corruption, without thinking consequences



Doing things not because you need to do
but because you like to do.

Not Doing things not because you do not need to do
but because you do not like to do.



* D. Hume (1739), “A Treatise of Human Nature”
“Reason is, and ought only to be the slave of the passions.”

More than often, people doing things is due to their passions.



* A. Smith (1759), “The Theory of Moral Sentiments”
Utility is not intertemporally sparable but rather that
past and future experiences, jointly with current ones,

provide current utility.
Roughly, in mathematical terms, one should have
U(t, X(t)) =f(U(t —r,X(t—r)),U(t+ 7, X(t + 7)),

where U(t, X) is the utility at (¢, X).



—rt r >0 — discount rate

Exponential discounting: \.(t) =€
Hyperbolic discounting: \,(t) = ﬁ — a hyperbola

Iflet k =" —1, i, e = Ae(1) = Ap(1) = 1%, then

Ae(t) = e =

(1+ k)t
Fort ~0, t — ﬁ decreases faster than t +— (1+71k)f:

AN,(0) = —k < —In(1 + k) = X\,(0),

Hyperbolic discounting actually appears in people’s behavior.



Come back to a previous example: Annual rate is 10%

Option (A): Get $100 today (December 28, 2015).
Option (B): Get $105 (> 100(1 + {3)) on January 28, 2016.

Option (A’): Get $110 (= 100 x 1.10) on December 28, 2016.
Option (B'): Get $115.50 (> 110(1 4 {5)) on January 28, 2017.

For a time-consistent person,

However, for an uncertainty-averse person,

(A)-(B),  (B)=(A).



Magnifying the example:

Option (A): Get $1M today (December 28, 2015).
Option (B): Get $1.05M (> 1M(1 + {5)) on January 28, 2016.

Option (A'): Get $1.1M (= 1M x 1.10) on December 28, 2016.
Option (B'): Get $1.155M(>1.1M(1+5)) on January 28, 2017.

For an uncertainty-averse person,

(A)=(B),  (B)=(A).

The feeling is stronger?



* Palacious—Huerta (2003), survey on history
* Strotz (1956), Pollak (1968), Laibson (1997), ...

* Finn E. Kydland and Edward C. Prescott, (1977)
(2004 Nobel Prize winners)
(classical optimal control theory not working)

* Ekeland-Lazrak (2008), Yong (2011, 2012)



e Risk-Preferences:

Consider two investments whose returns are: R; and R, with

P(Ry =100) ==, P(R, = —50) =

I

P(Ry =150) = =,  P(Ry= —60) =

Wl N =
WIN N

Which one you prefer?

1 1
ERy = 5100 + 5(~50) = 25,

2
1 2
ER, = 5150 + 5(~60) = 10.

So R; seems to be better.



* St. Petersburg Paradox: (posed by Nicolas Bernoulli in 1713)

P(X =2") =

2n’

n>1,
o0 (o) 1

E[X] =) 2"P(X =2") = 22"5 = 0.
n=1 n=1

Question: How much are you willing to pay to play the game?

How about $10,000? Or $1,000? Or 777



In 1738, Daniel Bernoulli (a cousin of Nicolas) introduced
expected utility: E[u(X)]. With u(x) = /x, one has

Eﬁ:é(\%)"zwﬂ.

* 1944, von Neumann—Morgenstern: Introduced “rationality”
axioms: Completeness, Transitivity, Independence, Continuity.

Standard stochastic optimal control theory is based on the
expected utility theory.



e Decision-making based on expected utility theory is
time-consistent.

e In classical expected utility theory, the probability is objective.
e It is controversial whether a probability should be objective.

e Early relevant works: Ramsey (1926), de Finetti (1937)



Allais Paradox (1953). Q={1,2,---,100}, P(w) = 155, Vw € Q.

Xi(w) = 100x{1<w<100}; Xo(w) = 200x{1<w<70}
X3(w) = 100x(1<u<15) Xa(w) = 200x{1<0<10}-
Most people have the following preferences:
X < Xy, X3 < Xy
If there exists a utility function v : R — R™ such that
X<Y <<= EuX)] <E[u(Y)],
then
Xo < X1 = E[u(X2)] =0.7u(200) < u(100) = E[u(X1)],
X3 <Xs = E[u(X3)] =0.15u(100) < 0.1u(200) = E[u(X4s)],

Thus, 1.050(100) < 0.7u(200) < u(100), a contradiction.



Ellesberg’s Paradox (1961). In an urn, there are 90 balls,

30 60
Red | Black | White
XR $100 0 0
XB 0 $100 0
Xruw | $100 0 $100
Xsuw 0 $100 | $100

Most people have the following preferences: (ambiguity-averse)

XB < XR,

1

Xruw < XBuw-

P(R) = 3. IP’(B)G[O,%], P(BUW)

P(BU W) = P(B) + B(W),

2 1
==, P(RUW) e, 1].
37 ( ) [37]

P(RU W) = P(R) + P(W).



Xg < Xrg, Xruw < XBuw.-

IP’(R):%, }P’(B)G[Oé], PBUW) =2, B(RU W)e[%,l].

3
P(BU W) =PB(B) + P(W), P(RUW)=PB(R)+B(W).
If there exists a utility function v : R — R™ such that
X=<Y << E[uX)]<E[uY),
then

Xruw < XBuw — u(lOO)P(R U W) < ( ) (B U W)
= u(100)B(R) = u(100)[P(R U W) — B(W)]
< u(100)[P(B U W) — P(W)] = u(100)P(B)

— Xgr < Xg,

a contradiction.



Relevant Literature:

* Subjective expected utility theory (Savage 1954)

* Mean-variance preference (Markowitz 1952)
leading to nonlinear appearance of conditional expectation

* Choquet integral (1953)
leading to Choquet expected utility theory

* Prospect Theory (Kahneman—Tversky 1979)
(Kahneman won 2002 Nobel Prize)

* Distorted probability (Wang—Young—Panjer 1997)
widely used in insurance/actuarial science

* BSDEs, g-expectation (Peng 1997)
leading to time-consistent nonlinear expectation

* BSVIEs (Yong 2006,2008)

leading to time-inconsistent dynamic risk measure



Recent Relevant Literatures:

* Bjork—Murgoci (2008), Bjork—Murgoci-Zhou (2013)
* Hu-Jin—Zhou (2012, 2015)

* Yong (2012, 2013, 2014, 2015)



e A Summary:

Time-Preferences: (Exponential/General) Discounting.

Risk-Preferences: (Subjective/Objective) Expected Utility.

Exponential discounting + objective expected utility /disutility
leads to time-consistency.

Otherwise, the problem will be time-inconsistent.



Time-consistent solution:

Instead of finding an optimal solution
(which is time-inconsistent),

find an equilibrium strategy
(which is time-consistent).
Sacrifice some immediate satisfaction,

save some for the future

(retirement plan, controlling economy growth speed, ...



3. Equilibrium Strategies

A General Formulation:

dX(s)=b(s, X(s),u(s))ds+o(s, X(s),u(s))dW(s), s € [t,T],

X(t) = x,
with

-
It x; u() = Et[/t g(t.5. X(s). u(s))ds + (£, X(T))].
Ult, T = {u; [t, T] — U | u(-) is F-adapted }

Problem (N). For given (t,x) € [0, T) x R", find u(-) € U[t, T]

such that

J(t,x;u(-)) = u(.)ér&f[tﬂ J(t, x; u(+)).

This problem is time-inconsistent.



Xn(tn-1)

Xn-1(tn—2)

|

tn—3 tn—2 ‘tNl tyn=T

J(tn—2, xn—2; u(-))

J(ty—1,xn—1; u(-))



Idea of Seeking Equilibrium Strategies.
e Partition the interval [0, T]:

N
[0, 71 = | [ti-1. tl, N:0=to<t1 < <ty_1 <ty
k=1

e Solve an optimal control problem on [ty_1, ty], with cost
functional:

In(w) =E h(tN_l,X(T))+/ttN (tn-1.5. X(s). u(5))ds].

obtaining optimal pair (Xy(+), un(+)), depending on the initial
pair (ty_1,Xy—1)-



e Solve an optimal control problem on [ty_»2, ty_1] with a
sophisticated cost functional:

In-1(u) = E[h(tN_g,X( 7))+ /tN g(tn—2,s, Xn(s), un(s))ds

tnv—1

+ /tNl g(tn 2,5, X(s), u(s))ds).

ty—2

e By induction to get an approximate equilibrium strategy,
depending on 1.

e Let ||[T]] — O to get a limit.



Definition. V : [0, T] x R" — U is called a time-consistent
equilibrium strategy if for any x € R”,

dX(s) = b(s, X(s), W(s, X(s)))ds
+o(s,X(s), ¥(s, X(s)))dW(s), se]0,T],
X(0) = x

admits a unique solution X(-). For some W™ : [0, T] x R" — U,

H#'Plod(\li”(t x), \U(t,x)) =0,

uniformly for (¢, x) in any compact sets, where
M:0=t<ty <---<ty_1<ty=T, and

I (-1, XM ()i VO, )

< I (teer, XM (tma)s W) @ W”(~)‘[tk77_]), Vuk() € Ulti—1, tul,

JK(-) — sophisticated cost functional.



dX"(s) = b(s, X"(s), WM(s, X"(5)))ds
+o(s, X"(s), W(s, X"(s5)))dW(s), se[0,T],
X"(0) = x

Uk(S)7 sc [tkfl, t'k),

[ () @ W), l(5) =
\Un(saxk(s))> sE [tk, T],

dX*(s) = b(s, X"(s), u"(s))ds

+o(s, X (s), u"(s))dW(s), s € [tx—1, tr),
dX*(s) = b(s, X*(s), W"(s, X“(s)))ds

+o (s, X¥(s), (s, X (5)))dW(s), s € [t, T],
XK(t_1) = XM (t_1).




Equilibrium control:
u(s) = V(s, X(s)), selo, T].
Equilibrium state process X(-), satisfying:
dX(s) = b(s, X(s), ¥(s, X(s)))ds

+o(s, X(s), ¥(s, X(s)))dW(s), s €0, T],
X(0) = x

Equilibrium value function:

V(t, X(t)) = J(t, X(t); a(-)).

The previous explained idea will help us to get such a V(-

7')'



Let D[0, T] ={(7,t) | 0 < 7 < t < T}. Define

a(t,x,u) = %U(t,X, wo(t,x,u)T, V(t,x,u) €[0, T] x R" x U,
H(r, t,x,u,p, P) = tr [a(t,x, u)P] + (b(t,x,u),p)+g(7, t,x,u),
V(1 t,x,u,p,P) € D[0, T] x R" x U x R" x §",

Let ¢ : D(v) € D[0, T] x R" x R” x §" — U such that
H(T7 t7 X7 'l)b(T7 t7 X7 p7 P)? p7 P) - inLH(T7 t7 X7 u7 p7 P) > _m7
ue
Y(r,t,x,p, P) € D(¢).
In classical case, it just needs
H(t,x,p,P) = inf H(t,x,u, p, P) > —o0,
uel

V(t,x,p,P) €0, T] x R" x R" x S".



Equilibrium HJB equation:

O(7, t, x)+trfa(t, x,¥(t, t, x,0x(t, t, x),0x(t, £, x))) O (T, £, X)]

+ (b(t, x, (¢, t,x,04(t, t,x), Ox(t, t,X))), Ox(T, t,x) )

+g(7’, t,x,(t, t, x,Ox(t, t, x), Oxx(T, t, x)))zO, (,t,x)€D[0,T] xR",
o(r, T,x) = h(1,x), (r,x) €10, T] x R".

Classical HJB Equation:

O (t, x)+trfa(t, x,1(t, x,0x(t, x),0x(t, x))) Oxx(t, X)]
+ (b(t, x,9(t, x, Ox(t, x), Ox(t, X)), Ox(t, X))
+g(t, x, 1(t, x, Ox(t, x), O (t, x))) =0, (t,x) € [0,T] x R",
O(T,x) = h(x), xeR".

or

O(t, x)+H(t,x, Ox(t,x),0x(t,x)) =0, (t,x) €[0,T] x R",
O(T,x) = h(x), xeR".



Equilibrium value function:
V(t,x) = O(t, t,x), V(t,x) € [0, T] x R".
It satisfies

V(t, X(t;x)) = J(t, X(t; x); \U(-)‘[LT]), (t,x) € [0, T] x R".

Equilibrium strategy:
V(t,x) =(t, t,x, Vi(t, x), Vix(t, x)), (t,x) € [0, T] x R".

Theorem. Under proper conditions, the equilibrium HJB equation
admits a unique classical solution ©(-,-,-). Hence, an equilibrium
strategy V(- ,-) exists.



4. Open Problems

A A

The well-posedness of the equilibrium HJB equation for the case
o(t,x,u) is not independent of u.

The case that ) is not unique, has discontinuity, etc.

The case that o(t, x, u) is degenerate, viscosity solution?
Random coefficient case (non-degenerate/degenerate cases).
The case involving conditional expectation.

Infinite horizon problems.



Thank You!



