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Linear Inverse Problem

Problem: Estimate the unknown signalx from a noisy observation

Ax = b + w.

• x ∈ R
n - input signal– (Unknown True Image)

• b ∈ R
m - observable output – (Blurred Image)

• w ∈ R
m - unknown noise vector.

• A ∈ R
m×n model – (Blurring matrix (2-dim convolution)).

An Example: The problem of estimatingx from the observed blurred
and noisy image is anImage Deblurring Problem.
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Regularization Approaches

Classical Least Squares (LS) estimator

(LS) : x̂LS = argmin
x

‖Ax− b‖2.

A ill-conditioned – meaningless solution
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(LS) : x̂LS = argmin
x

‖Ax− b‖2.

A ill-conditioned – meaningless solution

Tikhonov regularization – quadratic penalty

(T): x̂TIK = argmin
x

{‖Ax− b‖2 + λ‖Lx‖2}, λ > 0.
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Regularization Approaches

Classical Least Squares (LS) estimator

(LS) : x̂LS = argmin
x

‖Ax− b‖2.

A ill-conditioned – meaningless solution

Tikhonov regularization – quadratic penalty

(T): x̂TIK = argmin
x

{‖Ax− b‖2 + λ‖Lx‖2}, λ > 0.

l1-norm regularization

(L1) min
x

{F (x) ≡ ‖Ax− b‖2 + λ‖x‖1}

Less sensitive to outliers (as opposed tol2 regularization). Has attracted
a revived interest and considerable amount of attention in Signal
Processing Research. Marc Teboulle – p. 4
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The l1-Regularization Model: Old and New Applications

LASSO in Statistics (Tibshirani (96))

Basis pursuit denoising (Chen et al. (98))
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The l1-Regularization Model: Old and New Applications

LASSO in Statistics (Tibshirani (96))

Basis pursuit denoising (Chen et al. (98))

Wavelet based image/signal restoration (Donoho (95), Chambolle
(04)...)

Sparse Approximation of signals (Elad (06), Daubechies et al.
(07),...)

Compressed sensing: few measurements are enough to produce
good reconstruction (Candes-Tao (06), Donoho(06)...)

♠ The term‖x‖1 promotes sparsity in the optimal solution.
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The l1-Regularization Model: Old and New Applications

LASSO in Statistics (Tibshirani (96))

Basis pursuit denoising (Chen et al. (98))

Wavelet based image/signal restoration (Donoho (95), Chambolle
(04)...)

Sparse Approximation of signals (Elad (06), Daubechies et al.
(07),...)

Compressed sensing: few measurements are enough to produce
good reconstruction (Candes-Tao (06), Donoho(06)...)

♠ The term‖x‖1 promotes sparsity in the optimal solution.

♦ In image deblurring/wavelet based restoration: most images have a
sparse representation in wavelet domain.
♠ State of the art regularization for Image Restoration involves
nonsmooth regularizers.
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General Formulation with Nonsmooth Regularizers

A nonsmooth convex minimization model which covers quite a lot of
interesting and disparate applications.

(P ) min{F (x) ≡ f(x) + g(x) : x ∈ R
n}.

f : R
n → R is a smooth convex function of the type C1,1, i.e.,

continuously differentiable with Lipschitz continuous gradient
L(f):

‖∇f(x)−∇f(y)‖ ≤ L(f)‖x− y‖ for everyx,y ∈ R
n,

where‖ · ‖ denotes the standard Euclidean norm andL(f) > 0 is
the Lipschitz constant of∇f .

g : R
n → R is a convex function which isnonsmooth.

Problem (P) is solvable, i.e.,X∗ := argminf 6= ∅, and forx∗ ∈ X∗

we setF∗ := F (x∗).
Marc Teboulle – p. 6
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♣ Challenges: How do we solve (P)?

The problem innonsmooth.
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In most applications, can bevery large scale, e.g., in image
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♣ Challenges: How do we solve (P)?

The problem innonsmooth.

In most applications, can bevery large scale, e.g., in image
deblurring, the dimension varies fromd = 65, 536 to 1, 048, 576.

Involvesdense matrix data, precluding the use and potential
advantages of well-known methods (storage/factorization
impractical), even for theL1 problem (which can be reformulated
as a QP or SOCP).
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♣ Challenges: How do we solve (P)?

The problem innonsmooth.

In most applications, can bevery large scale, e.g., in image
deblurring, the dimension varies fromd = 65, 536 to 1, 048, 576.

Involvesdense matrix data, precluding the use and potential
advantages of well-known methods (storage/factorization
impractical), even for theL1 problem (which can be reformulated
as a QP or SOCP).

This motivates the search for simple and efficient algorithms
where the dominant computational effort is a relatively cheap
matrix-vector multiplications involvingA andAT .

Simple algorithms exist...But...
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A Current Very Popular Algorithm

Class ofIterative Shrinkage-Threshold Algorithms (ISTA) for L1:

xk+1 = T λt

(

xk − tAT (Axk − b)
)

, t > 0 a step size

andT α : R
n → R

n is the shrinkage operator defined by

T α(x)i = (|xi| − α)+sgn(xi).

Each iteration involves matrix-vector multiplication involving A and
AT followed by a shrinkage/soft-threshold step.
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A Current Very Popular Algorithm

Class ofIterative Shrinkage-Threshold Algorithms (ISTA) for L1:

xk+1 = T λt

(

xk − tAT (Axk − b)
)

, t > 0 a step size

andT α : R
n → R

n is the shrinkage operator defined by

T α(x)i = (|xi| − α)+sgn(xi).

Each iteration involves matrix-vector multiplication involving A and
AT followed by a shrinkage/soft-threshold step.

In SP literature: appeared under various names: Iterative denoising,
Shrinkage-Thresholded, Landweber, EM wavelet based etc....:
Chambolle (98); Figueiredo-Nowak (03, 05); Daubechies et al. (04),...

In Optimization: it is a well known algorithm....

Marc Teboulle – p. 8



Tel Aviv University
A Basic Approximation Model:Following

the well-known gradient scheme

For anyL > 0, and a givenz:

QL(x, z) := f(z)+〈x−z,∇f(z)〉+L

2
‖x−z‖2+g(x)↙ left untouched

minx F (x) ↪→ minx QL(x, z) which admits a unique minimizer

pL(z) := argmin
x

QL(x, z) = argmin
x

{g(x)+
L

2
‖x−(z− 1

L
∇f(z))‖2}.
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Algorithm: x0 ∈ R
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A Basic Approximation Model:Following

the well-known gradient scheme

For anyL > 0, and a givenz:

QL(x, z) := f(z)+〈x−z,∇f(z)〉+L

2
‖x−z‖2+g(x)↙ left untouched

minx F (x) ↪→ minx QL(x, z) which admits a unique minimizer

pL(z) := argmin
x

QL(x, z) = argmin
x

{g(x)+
L

2
‖x−(z− 1

L
∇f(z))‖2}.

Algorithm: x0 ∈ R
n, xk+1 = pL(xk).

Special Case-ISTAg(x) := λ‖x‖1, f(x) := ‖Ax− b‖2, L := t−1

Can be viewed as the Proximal-FB Splitting Method (Passty (79)):

0 ∈ ∇f(x) + ∂g(x) ⇐⇒ x = (I + s∂g)−1(I − s∇f)(x), (s > 0)
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Advantage and Drawback of ISTA

Advantage: Simplicity. Useful whenpL(·) can be computed
analytically, e.g. wheng(·) is separable, reduces to a one
dimensional minimization problem, (g(x) := ‖x‖p, p ≥ 1).

Drawback: ISTA appears to be a (very) slow method.
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♦ Convergence analysis of methods like ISTA has been well studied in
past/ recent literature under various contexts and frameworks,
(Facchinei-Pang, Vol II, Chap. 12, 2003).
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convergence.
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Advantage and Drawback of ISTA

Advantage: Simplicity. Useful whenpL(·) can be computed
analytically, e.g. wheng(·) is separable, reduces to a one
dimensional minimization problem, (g(x) := ‖x‖p, p ≥ 1).

Drawback: ISTA appears to be a (very) slow method.

♦ Convergence analysis of methods like ISTA has been well studied in
past/ recent literature under various contexts and frameworks,
(Facchinei-Pang, Vol II, Chap. 12, 2003).
♦ The focus is on pointwise convergence of{xk} andasymptotic rate of
convergence.
Here, we focus on thenonasymptoticglobal rate of convergence and
efficiency measured through functions values.

A by-product of our analysis theoretically confirms the slowconvergence
rate:

F (xk)− F (x∗) ' O(1/k),

namely ISTA, shares asublinear global rate of convergence. Marc Teboulle – p. 10
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Can We Do Better to Solve the NSOminx{f(x)+g(x)}?

Can we devise a faster method than ISTA such that:
♠ The computational effort of the new method will keep the
simplicity of ISTA
♠ Its global rate of convergence will be significantly better,
theoretically and practically.
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Answer: Yes, through an equally simple scheme

♣ xk+1 = argmin
x

QL(x,yk), ←↩ yk instead ofxk

The new pointyk will be smartly chosen andeasyto compute.
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Can We Do Better to Solve the NSOminx{f(x)+g(x)}?

Can we devise a faster method than ISTA such that:
♠ The computational effort of the new method will keep the
simplicity of ISTA
♠ Its global rate of convergence will be significantly better,
theoretically and practically.

Answer: Yes, through an equally simple scheme

♣ xk+1 = argmin
x

QL(x,yk), ←↩ yk instead ofxk

The new pointyk will be smartly chosen andeasyto compute.

Idea: From an algorithm (Nesterov 1983), designed for
minimizing asmoothconvex function, and proven to be an
"optimal" first order method (Yudin-Nemirovsky (80).)

But, here our problem (P) isnonsmooth !..Yet, we derive a faster
algorithm than ISTA for the general NSO problem (P), proven
optimal. We call itFISTA... Marc Teboulle – p. 11
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FISTA: A Fast Iterative Shrinkage/Threshold Algorithm

An equally simple algorithm as ISTA. HereL(f) is known.

FISTA with constant stepsize
Input: L = L(f) - A Lipschitz constant of∇f .
Step 0.Takey1 = x0 ∈ R

n, t1 = 1.
Step k. (k ≥ 1) Compute

xk = pL(yk), ←↩ main computation as ISTA

• tk+1 =
1 +

√

1 + 4t2k

2
,

•• yk+1 = xk +

(

tk − 1

tk+1

)

(xk − xk−1).

The requested additional computation for FISTA in (•) and (••) is
clearly marginal.
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Knowledge ofL(f) is not Necessary:

FISTA With Backtracking

FISTA with backtracking
Step 0.TakeL0 > 0, someη > 1 andx0 ∈ R

n. Sety1 = x0, t1 = 1.
Step k. (k ≥ 1) Find the smallest nonnegative integersik such that withi = ik,
L̄ = ηikLk−1:

F (pL̄(yk)) ≤ QL̄(pL̄(yk),yk).

SetLk = ηikLk−1 and compute

xk = pLk
(yk),

tk+1 =
1 +

√

1 + 4t2k

2
,

yk+1 = xk +

(

tk − 1

tk+1

)

(xk − xk−1).

Note: FISTA can be easily extended to constrained convex NSO.Marc Teboulle – p. 13
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Analysis: The 3 Pillars

Lemma 1 (Well-Known) Letf ∈ C1,1
L(f)(R

n). Then, for anyL ≥ L(f),

f(x) ≤ f(y) + 〈x− y,∇f(y)〉 + L

2
‖x− y‖2, for everyx,y ∈ R

n.
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Lemma 1 (Well-Known) Letf ∈ C1,1
L(f)(R

n). Then, for anyL ≥ L(f),

f(x) ≤ f(y) + 〈x− y,∇f(y)〉 + L

2
‖x− y‖2, for everyx,y ∈ R

n.

Lemma 2 (A Key Inequality) Letx,y ∈ R
n andL > 0 such that

F (pL(y)) ≤ Q(pL(y),y). Then

F (x)− F (pL(y)) ≥ L

2
‖pL(y)− y‖2 + L〈y − x, pL(y)− y〉.
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Analysis: The 3 Pillars

Lemma 1 (Well-Known) Letf ∈ C1,1
L(f)(R

n). Then, for anyL ≥ L(f),

f(x) ≤ f(y) + 〈x− y,∇f(y)〉 + L

2
‖x− y‖2, for everyx,y ∈ R

n.

Lemma 2 (A Key Inequality) Letx,y ∈ R
n andL > 0 such that

F (pL(y)) ≤ Q(pL(y),y). Then

F (x)− F (pL(y)) ≥ L

2
‖pL(y)− y‖2 + L〈y − x, pL(y)− y〉.

Lemma 3 (A Recursive Relation for Function Values) The sequences
{xk,yk} generated via FISTA satisfy for everyk ≥ 1

L−1
k t2kvk − L−1

k+1t
2
k+1vk+1 ≥ (‖uk+1‖2 − ‖uk‖2)/2,

wherevk := F (xk)− F (x∗), uk := tkxk − (tk − 1)xk−1 − x∗.
Marc Teboulle – p. 14
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Theorem – Global Rate of Convergence for FISTA

Let {xk}, {yk} be generated by FISTA. Then for anyk ≥ 1

F (xk)− F (x∗) ≤ 2αL(f)‖x0 − x∗‖2
(k + 1)2

,

whereα = 1 for the constant stepsize setting andα = η for the backtracking
stepsize setting.
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Tel Aviv University

Theorem – Global Rate of Convergence for FISTA

Let {xk}, {yk} be generated by FISTA. Then for anyk ≥ 1

F (xk)− F (x∗) ≤ 2αL(f)‖x0 − x∗‖2
(k + 1)2

,

whereα = 1 for the constant stepsize setting andα = η for the backtracking
stepsize setting.

The number of iterations of FISTA required to obtain anε-optimal
solution, that is añx such that:

F (x̃)− F∗ ≤ ε,

is at most∼ O(1/
√

ε). This clearly improves ISTA bya square root
factor.
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Theorem – Global Rate of Convergence for FISTA

Let {xk}, {yk} be generated by FISTA. Then for anyk ≥ 1

F (xk)− F (x∗) ≤ 2αL(f)‖x0 − x∗‖2
(k + 1)2

,

whereα = 1 for the constant stepsize setting andα = η for the backtracking
stepsize setting.

The number of iterations of FISTA required to obtain anε-optimal
solution, that is añx such that:

F (x̃)− F∗ ≤ ε,

is at most∼ O(1/
√

ε). This clearly improves ISTA bya square root
factor.

Do we practically achieve this theoretical rate?
Marc Teboulle – p. 15
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Numerical Examples: Image Deblurring

min
x

{‖Ax− b‖2 + λ‖x‖1}

Compare ISTA versus FISTA on

A Simple Test Image from Regularization Tool (Hansen, (97))

The Cameraman Test Image

More Simulations

• Problems are in dimensiond like
d = 256× 256 = 65, 536, or/and512× 512 = 262, 144.
• Thed× d matrixA is dense.
• All problems solved with fixedλ and Gaussian noise.

Marc Teboulle – p. 16
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Deblurring of A Simple Test Image

original blurred and noisy

Marc Teboulle – p. 17
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Output of 200 Iterations of ISTA versus 50 of FISTA

ISTA:F200 = 0.42 FISTA: F50 = 0.23

After tens of thousands of iterations, ISTA get stuck atF = 0.32!Marc Teboulle – p. 18
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Deblurring of the Cameraman

original blurred and noisy
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1000 Iterations of ISTA versus 100 of FISTA

ISTA: 1000 Iterations FISTA: 100 Iterations
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Original Versus Deblurring via FISTA

Original FISTA:1000 Iterations
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More Simulations

Previous simulations indicate that practically FISTA seems to be
able to reach accuracies that are beyond the capabilities ofISTA.

We further tested this hypothesis on an example with known
optimal solution.

This simulation shows that the results of FISTA are better by
several order of magnitudes. After 10000 iterations our method
reaches accuracy of approximately10−7 while ISTA reaches an
accuracy of10−3.

Moreover, the value obtained by ISTA at iteration 10000 was
already obtained by FISTA at iteration 254.

The next figure describing function values of both methods for
10000 iterations speaks for itself!

Marc Teboulle – p. 22



Tel Aviv University

Function Values errorsF (xk)− F (x∗)
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Conclusions

FISTA is a very simple and promising iterative scheme. Covers a
broad class of problems arising in several recent diverse/key
applications.

Appearseven faster than the proven predicted theoretical rate!

Work in progress: potential for analyzing and designing faster
algorithms in other areas, and with other types of nonsmooth
regularizers.
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Conclusions

FISTA is a very simple and promising iterative scheme. Covers a
broad class of problems arising in several recent diverse/key
applications.

Appearseven faster than the proven predicted theoretical rate!

Work in progress: potential for analyzing and designing faster
algorithms in other areas, and with other types of nonsmooth
regularizers.

Thank you for listening!
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