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Abstract The condition-value-at-risk (CVaR) studied by Rockafellar and Uryasev could be used to approx-

imate a single safeguarding constraint in stochastic optimization. There is a natural connection between a
computationally tractable approximation to a CVaR constraint and an optimization problem with respect to

an uncertainty set. This idea is extended to handling the joint safeguarding constraint problem, resulting

practical improvement upon the current approach.

This talk is originated from a joint work with Chen, Sim, and Teo at National University of Singapore.

1The main part of the talk is from a joint paper with W. Chen, M. Sim, and C. Teo at National University of Singapore, School of Business.



1 Conditional Value at Risk (CVaR) and Stochastic Constraints

Consider a ”stochastic” constraint

f(x, z̃) ≤ 0 (1)

A way of safeguarding x from being infeasible is to assign a probability such as

P (f(x, z̃) ≤ 0) ≥ 1 − ε. (2)

Great model, terrible to compute!

• Involving multi-dimensional integrals

• Producing non-convexity

Starting from the simplest ( but widely applicable ) case

f(x, z̃) ≤ 0 ⇒ a(z̃)′x ≤ b(z̃),

where

a(z̃) = a0 +
N∑

k=1

akz̃k

b(z̃) = b0 +
N∑

k=1

bkz̃k.

Then

a(z̃)′x ≤ b(z̃) ⇐⇒ y(z̃) ≤ 0,

where

y(z̃) = y0 +
N∑

i=1

ykz̃k and yk = (ak)′x − bk, ∀k = 0, ..., N
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Thus, here and below, we concentrate on the probabilistic (chance) constraint

P (y(z̃) ≤ 0) ≥ 1 − ε, (3)

which is equivalent to
VaR1−ε(y(z̃)) ≤ 0.

A step towards tractability is by convexifying the constraint (3) using the CVaR as proposed by Rockafellar

and Uryasev.

CVaR1−ε(y(z̃)) ≤ 0 ⇒ VaR1−ε(y(z̃)) ≤ 0,

where

CVaR1−ε(y(z̃)) ∆= min
β

{

β +
1

ε
E [(y(z̃) − β]+

}

.

• Convex in y = (y0, y1, ..., yN )′ ∆
= (y0,y)′;

• Still need to compute a multi-dimensional integral except for discrete distribution.

Idea: Find an upper bound for E [(y(z̃) − β]+, which is easier to compute and substitute CVaR by

η1−ε(y0,y)
∆
= min

β

{

β +
1

ε
π(y0 − β,y)

}

. (4)
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Several good (tight) bounds for E [(y(z̃) − β]+:

1. π1(y0 − β,y)
∆
=

(

y0 − β + max
z∈W

z′y
)+

, where W is a box containing the support of the distribution.

2. π2(y0 − β,y) ∆= y0 +

(

−y0 + β + max
z∈W

(−y)′z
)+

.

3. π3(y0 − β,y)
∆
= 1

2(y0 − β) + 1
2

√
(y0 − β)2 + y′Σy.

4. π4(y0 − β,y)
∆
= inf

µ>0
{µ

e
exp (

y0 − β

µ
+

‖u‖2
2

2µ2
)}, where uj = max{pjyj,−qjyj}, j = 1, . . . , N .

5. π5(y0 − β,y)
∆
= y0 + inf

µ>0
{µ

e
exp ( − y0 − β

µ
+

‖v‖2
2

2µ2
)},where vj = max{−pjyj, qjyj}, j = 1, . . . , N .

By replacing E [(y(z̃) − β]+ with πi(y0 − β,y), we safeguard the CVaR constraint by the constraint

η1−ε(y0,y)
∆
= min

β

{

β +
1

ε
π(y0 − β,y)

}

≤ 0, (5)

where π(·, ·) is a positively homogeneous, closed, proper convex function. We assume in the following that

the uncertainties {z̃j}j=1:N are zero mean random variables.

Theorem 1.1 Suppose that π(y0,y) is convex, closed, and positively homogeneous, and is an upper bound

to E ((y0 + y′z)+) with π(y0,0) = y+
0 . Then it holds that for all (y0,y) such that π(y0,y) < ∞, we have

η1−ε(y0,y) = y0 + max
z∈U(ε)

y′z

for some convex uncertainty set U(ε).
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This theorem says that the η function is second-order-cone representable. Therefore, we

• avoid multi-dimensional integrals and

• preserve the convexity.

There is a 1-1 correspondence

The upper bound η1−ε to CVaR ⇐⇒ The uncertainty set U(ε).

The uncertainty sets corresponding to ηi
1−ε(y0,y), i = 1, . . . , 5 are as follows.

U1(ε)
∆
= W ,

U2(ε)
∆
= {z | z = (1 − 1/ε)ζ, for some ζ ∈ W} ,

U3(ε)
∆
=




z | ‖Σ−1/2z‖2 ≤

√√√√1 − ε

ε





,

U4(ε)
∆
=

{
z | ∃s, t ∈ <N ,z = s − t, ‖P −1s + Q−1t‖2 ≤

√
−2 ln ε

}
,

U5(ε)
∆
=

{

z | ∃s, t ∈ <N ,z = s − t, ‖Q−1s + P−1t‖2 ≤
1 − ε

ε

√
−2 ln(1 − ε)

}

.

where P and Q are diagonal matrices involving “forward” and “backward” deviations.
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2 The Joint Chance Constrained Problem

We consider a linear joint chance constraint as follows,

P(yj(z̃) ≤ 0, j ∈ M) ≥ 1 − ε, (6)

where M = {1, . . . ,m}, yj(z̃) are affinely dependent on z̃,

yj(z̃) = y0
j +

N∑

k=1

yk
j z̃k j ∈ M.

(y0
1, . . . , y

N
1 , . . . , y0

m, . . . , yN
m) being the decision variables. For notational convenience, we represent

yj = (y1
j , . . . , y

N
j ),

so that yi(z̃) = y0
i + y′

iz̃ and denote

Y = (y0
1, . . . , y

N
1 , . . . , y0

m, . . . , yN
m),

as the collection of decision variables in the joint chance constraint.

We could treat the joint chance constraint as combination of single ones since

P(yi(z̃) ≤ 0) ≥ 1 − εi, i ∈ M,
∑

i∈M
εi ≤ ε ⇒ P(yj(z̃) ≤ 0, j ∈ M) ≥ 1 − ε,

but it is often too conservative, and there is no guidance of how to select εi.

We propose a new tractable way for approximating the joint chance constraint. Given a vector of positive

weights,
∑

αi = 1, α > 0, an upper bound π(y0,y) for E ((y0 + y′z̃)+), we define the following function,

γ1−ε(Y ,α)
∆
= min

w0,w̃



η1−ε(w0,w) +
1

ε





∑

i∈M
π(αiy

0
i − w0, αiyi − w)








 .

The next result shows we can use the above function to approximate a joint chance constraint.
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Theorem 2.1 (a)

CVaR1−ε

(

max
i∈M

{αiyi(z̃)}
)

≤ γ1−ε(Y ,α).

Consequently, the joint chance constraint (6) is satisfied if

γ1−ε(Y ,α) ≤ 0. (7)

(b) For fixed α, the epigraph of the function γ1−ε(Y ,α) with respect to Y is second-order cone repre-
sentable and positive homogeneous. Similarly, for a fixed Y , the epigraph of the function γ1−ε(Y ,α) with

respect to α is second-order cone representable and positive homogeneous.

The proof of this theorem is based on a classical inequality

E

(

max
i=1,...,n

Xi − β

)+

≤ E (Y − β)+ +
n∑

i=1

E (Xi − Y )+ , for any r.v. Y.

Unfortunately, γ is not jointly convex in (Y ,α). However, we can alternatively optimize Y and α with

the hope to find certain pair (Y ,α) such that (7) is valid. Indeed, under mild assumptions, the algorithm

converges to such a solution. Details are omitted.
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3 Computational Studies

We consider a resource allocation problem on a network in which the demands are uncertain. The network
we consider is an directed graph with node set V , |V| = n and arc set E , |E| = r. At each node, i, i ∈ V ,

we decide on the quantity of resource xi to allocate, which will incur a cost of ci per unit resource. When

the demands d̃i, i ∈ V are realized, resources at the nodes or from neighboring nodes are used to meet

the demands. The goal is to minimize the total allocation cost subjected to a service level constraint of
meeting all demands with probability at least 1 − ε. We assume that the resource at each node i can only

be transshipped across to its outgoing neighboring nodes defined as

N−(i)
∆
= {j : (i, j) ∈ E},

and received from its incoming neighboring nodes defined as

N+(i)
∆
= {j : (j, i) ∈ E}.

Transshipment of resources received from other nodes is prohibited.

In our model, we ignore operating costs such as the transshipment costs. One of such applications is

with regards to allocation of equipment such as ambulances or time critical medical supplies for emergency

response to local or neighboring demands. The costs associated with their procurement is more significant
than the operating cost of transshipment, which may occur rather infrequently. We list the notations of the

model as follows

• ci : Unit cost of having one resource at node i, i ∈ V ;

• di(z̃): Demand at node i, i ∈ V as a function of the primitive uncertainties z̃;

• xi: Quantity of resource at node i, i ∈ V ;
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• wij(z̃): Transshipment quantity from node i to node j, (i, j) ∈ E in respond to realization of z̃.

The problem can be formulated as a joint chance constrained problem as follows,

min c′x

s.t. P




xi +
∑

j∈N+(i)

wji(z̃) − ∑

j∈N−(i)

wij(z̃) ≥ di(z̃) i = 1, . . . , n

xi ≥
∑

j∈N−(i)

wij(z̃) i = 1, . . . , n

w(z̃) ≥ 0



≥ 1 − ε

x ≥ 0.

(8)

We assume that the demand at each node are independently distributed and represented as

dj(z̃) = d0
j + z̃j ,

where z̃j are independent zero mean random variables with unknown distribution.

By introducing new variables, we can transform the model (8) to the “standard form” model as follows

min c′x
s.t. xi +

∑

j∈N+(i)

wji(z̃) − ∑

∈N−(i)

wij(z̃) + r(z̃) = di(z̃) i = 1, . . . , n

xi + si(z̃) =
∑

j∈N−(i)

wij(z̃) i = 1, . . . , n

w(z̃) + t(z̃) = 0

y(z̃) =




r(z̃)

s(z̃)

t(z̃)




P (y(z̃) ≤ 0) ≥ 1 − ε

x ≥ 0.

(9)
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Note that the dimension of y(z̃) is m = 2n + r.

In our test problem, we generate 15 nodes randomly positioned on a square grid and restrict to the r shortest
arcs on the grid in terms of Euclidean distances. We assume ci = 1. For the demand uncertainty, we assume

that d0
j = 10 and the demand at each node, dj(z̃) takes value from zero to 100.

We first solve the problem using the classical approach by decomposing the joint chance constrained problem

into m constraints of the form
η1−εi

(y0
i ,yi) ≤ 0, i ∈ M. (10)

with εi = ε/(2n + r). We denote the optimal solution as xB and its objective as ZB. Subsequently, we use

the proposed algorithm to improve upon the solution. We report results at the end of twenty iterations.
Here, we denote the optimal solution as xN and its objective as ZN .
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Figure 1: A sample convergence plot
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