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An academic example

Framework

Data of the academic example

with

g(t) :== (¢ —sin(at))go, c>0, a>0.
Time viewed as second state variable (7 = 1)
p = (h—hg)/(h1 — ho) homotopy parameter;

ho = min y(t), where y is the solution of unconstrained problem
h1 = h target value; numerical values are

go = 10, «a = 10m, c=0.1, h = —0.001.
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An academic example

Framework

Unconstrained problem: optimal state
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An academic example

Framework

Neigborhood of limiting problem: when g > 0 is small

For p > 0 the state constraint is active (convex problem)

The contact set could be then for small x> 0:
© One point
@ A small interval
© A non connected set

Your guess 7
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An academic example

Framework

Neigborhood of limiting problem: when g > 0 is small

For p > 0 the state constraint is active (convex problem)

@ Structural result: the contact set is an interval

@ Quantitative result: first-order expansion of value of extreme
points of that interval !

Next: numerical results using a shooting algorithm that will be
presented later.
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An academic example

Framework

Numerical results Il
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An academic example

Framework

Numerical results IV
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An academic example

Framework

Numerical results VI
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General unconstrained problems Optimality conditions
Well-posedness

Setting: general unconstrained problem

State equation: y(t) € R”, u(t) € R™
y(t) =f(u(t),y(t)) pp t€[0,T], y(0)=x (1)

e Cost function: integral + final term

)
u,y) = /O Qu(t),y(O)dt + o (T)). ()

Optimal control problem

Min J(u,y) s.t. (1). (P)
(u,y)

C°, Lipschitz data 7, ¢, ¢.
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General unconstrained problems Optimality conditions
Well-posedness

Functional spaces and costate equation

e Control space: U := L*°(0, T; R™)
@ State and costate space
Y= Wwbh=(0,T;R"), P:=wWh=(0, T;R™)
where
Wle(0, T;R") = {y € L>°(0, T;R"); y € L>=(0, T;R")}.
e Hamiltonian H(u,y,p) := l(u,y) + pf(u,y)
o Costate equation

—p(t) = Hy(u(t),y(t),p(t)) p-p. t€[0,T],
p(T) =¢'y(T)).
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General unconstrained problems Optimality conditions
Well-posedness

Pontryaguin’s principle

@ S(P) Solution set of (P)
e Pontryaguin’s Minimum principle (PMP):
H(u(t),y(t), p(t)) = min H(v, y(¢), p(t)) a.a. ¢
e Weak PMP:
Hy(u(t),y(t),p(t)) =0a.a. t
Theorem: If u € S(P), and y and p are the associated state and
costate, then it satisfies the PMP.

Consequence: weak PMP and also:

Hyy := Huu(u(t), y(t), p(t)) is semidefinite positive.
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General unconstrained problems Optimality conditions
Well-posedness

Elimination of control

@ Assume: (A1) Strong Legendre condition (W/SLC)

Huu(u(t),y(t), p(t)) = aly, for some o >0

@ By IFT: weak PMP locally equivalent to:

with T of class C*®
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General unconstrained problems Optimality conditions
Well-posedness

Shooting mapping

@ TPBVP Two Point Boundary Value Problem

y = f(T(y,p)y) p-p- [0, T], y(0) =0
—p = H,(T(y,p),y,p) p-p- [0, T], p(T)=y(y(T)).

@ Shooting function R™ +— R™ : pg — p(T) — ¢, (y(T)),
where (y, p) solution of the Cauchy problem

y = f(T(y,p)y) pp- t€[0,T], y(0)=yo
—p = H(T(y,p).y,p) p-p- [0,T], p(0) = po.
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General unconstrained problems Optimality conditions
Well-posedness

Definition

@ Shooting mapping well posed at solution point pg if it has an
invertible Jacobian at this point. Then:

@ By IFT: well-posedness under small perturbation

@ Newton's method converges locally quadratically

@ Question: Is it satisfied under weak hypotheses 7
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General unconstrained problems Optimality conditions
Well-posedness

Tangent quadratic problem

Min J'(u)v + 3J"(u)(v, v) (TQP)
Quadratic Growth condition QGC: for some ¢ > 0 and @ > 0

J(u+v)>J(u)+a|v— u||§ if [[v—ule <e.

@ Second Order Necessary Condition (SONC): v = 0 solution of
(TQP) (interpretation)

e Second Order Sufficient Condition (SOSC): v = 0 unique
solution of (TQP) and Strong Legendre Condition (definition)

Theorem: SOSC equivalent to QGC. These conditions imply that
the shooting algorithm is well-posed.
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Framework
State constraints (Alternative) optimality condition

State constrained problem: data

@ State constraint:
gl(y(t))gov t€[0¢T]7’:177r (3)

@ Same cost function: integral + final term

T
Soy) = [ ey (). (@
@ Optimal control problem

Min J(u,y) s.t. (1) and (3). (P)
(u,y)

@ C*, Lipschitz data f, ¢, ¢, g.
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Framework
State constraints (Alternative) optimality condition

Constraint structure

o Contact set: {t € [0, T]; g(y(t)) =0}.

[ qy(®) ] gy(®)
\\\ // / \\;\\\\
boundary arc [Ten, Tex] (isolated) touch point {74}

@ Question: If known structure: number, ordering of boundary
arcs and touch points;
Then can we design a shooting algorithm ?
Will it be well-posed ?
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Framework
State constraints (Alternative) optimality condition

Junction points

Set of junction points: closure of end-points of interior arcs
Regular junction point: end-point of two arcs, of three types:

Entry, exit points: end-points of a boundary arc

Touch point: isolated contact points
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Framework
State constraints (Alternative) optimality condition

Homotopy

: Constraint structure generally unknown

Possible approach: start from an unconstrained perturbed
problem and compute a path with endpoints the solutions of
the perturbed and original problem.

Example: gh(y) = g(y) — (1 — p)K, K “large”.

Motivates the local study of structural changes.

Work by Oberle, Gergaud, Caillau, Martinon ...
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Framework
State constraints (Alternative) optimality condition

Multipliers are measures

e Lagrange multiplier n € M(0, T)

e Lagrangian function

-
L) = J()+ [ u(0)an(e)
Slater qualification condition: G(u) = g(yu)
G(u)+ G'(u)v <0 on [0, T], for some v € U.

e Complementarity conditions
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Framework
State constraints (Alternative) optimality condition

Costate equation

@ Costate equation
—dp(t) = Hy(u(t), y(t), p(t))dt + dn(t)g’'(y(t)), p.p. t
p(T) =¢'(y(T)).

e Weak Pontryaguin principle (WPMP)
Hy(u(t),y(t),p(t)) =0 fora.a. t; ne N(u).
@ Then: call n a Lagrange multiplier; denote n € A(u).
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Framework
State constraints (Alternative) optimality condition

Pontryaguin’s principle

@ S(P) Solution set of (P)

@ Minimum principle (PMP):
H(u(t),y(t), p(t)) = Min H(v, y(t), p(t)) a.a. ¢
for some n € A(u).

Theorem: Let u € S(P) be qualified, y associated state. Then
(i) The set A(u) is non empty and bounded.
(ii) There exists 7 € N(u) for which the PMP holds.

Consequence: For the (p,n) satisfying the PMP, we have
Hyu := Huu(u(t), y(t), p(t)) semidefinite positive.
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Framework
State constraints (Alternative) optimality condition

Order of the state constraint

@ Total derivative of a scalar state constraint:
g (u,y) == g'(y)f(u,y).
While result does not depend on u, we can continue:
g (u,y) =gV (y)f (u,y).
Constraint order: g smallest number such that

g, y) #£0

Well-posed constraint order: when

(q (u,y) #0, forall (u,y)
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Framework
State constraints (Alternative) optimality condition

Algebraic variables

@ Two algebraic variables
u, 1 (density, if it exists)

o Algebraic relations: interior arc

@ Algebraic relations: boundary arc

Hu(u(t)ay(t)ap(t)) =0; g(q)(uv.y):O'

Not well-posed in the latter case: 7 does not appear.
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Framework
State constraints (Alternative) optimality condition

First step of the alternative formulation |

o Costate equation

—dp(t) = Hy(u(t), ¥(t), p(t))dt + dn(t)g’(y(t)), p-p- t
p(T) =¢'(y(T))

@ Write costate dynamics as:
—d(p +ng'(y)) = [Hy(u,y,p) — ng"(y)f (u, y)ldt

o First alternative costate and multiplier:
pl=p+ng'(y); n'=-n
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Framework
State constraints (Alternative) optimality condition

First step of the alternative formulation |l

@ The alternative costate p! has bounded derivatives. It is
solution of the differential equation

Cy(u,y) + pfy(u, y)+771g”( ) (u,y)
=by(u,y) + P (u,y) +n'[g’ (V)F, (u,y)+g”(y)f(u7Y)]

@ The bracket on r.h.s. is a partial derivative w.r.t. y:

gW(uy) =g'(y)f(u,y)
g (uy) =g (uy)+8g"(y)f(uy).

@ We recognize a Hamiltonian system!
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Framework
State constraints (Alternative) optimality condition

Alternative costate equation

o First alternative Hamiltonian
H (u,y, p'ont) = L(u,y) + P (u,y) + g
@ Alternative costate equation
—p' = Hy(u,y,pt.n"); pH(T) = cst+ &' (y(T)).
@ Alternative Pontryaguin’s principle: since
Hi(u,y, ptot) = Uu,y)+(p +0'g' () f (uy) = H(u, v, p),
Weak/strong Pontryaguin’s principle is invariant, e. g.:

Hy(u,y,p'n') =0
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Framework
State constraints (Alternative) optimality condition

First alternative algebraic relations

@ Boundary arcs (e.g. when all constraints active): obtain

gDu,y) =0; Hy(u,y,p") +n'el) =o.

o Case of scalar control, scalar first-order state constraint:
Elimination of algebraic variables holds !

u=V(y); n'=—Hy(uy,p")/e"

@ Unconstrained arcs
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Framework
State constraints (Alternative) optimality condition

General first-order constraints

o

Boundary arcs, all constraints active: obtain

Hu(u,y,pY) + 7t e (u,y) =0;  gW(u,y) = 0.

@ Jacobian: (31‘3 (g‘(’;))T
@ Invertible iff

gL(,l)(u,y) onto.; H},u = H,, invertible on Kergl(,l).
@ So under weak hypotheses we can eliminate algebraic

variables, even in the “vector case”
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Framework
State constraints (Alternative) optimality condition

References for alternative formulation

Bryson Denham, Dreyfus (1963): provided the idea
Maurer (1979), unpublished: rigorous derivation
Several related works by Maurer and Malanowski

Ref. FB and A. Hermant, INRIA Rep. 6199, 2007 Equivalence
with PMP, general vector case
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Framework
State constraints (Alternative) optimality condition

Continuity of control |

Hyp Huu(-, y(t), p(t)) unif. invertible
u~, u™ values just before, after time 7.

Jump of multiplier at time 7

[p(7)] = —vg'(y()); v = —[n(7)]

Is u continuous ? assume H strongly convex w.r.t. u

A= Hy(u,y,pt) = Hy(u™,y,p7) = —vg'(y(7))fu(u™, y).

u continuous iff vg'(y(7))fu(v=,y) = 0.
Holds if all constraints of order > 1. What about order 1 7
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Framework
State constraints (Alternative) optimality condition

Continuity of control Il

o Contribution of first-order terms: take ¢/ =0

0 =Hy(u,y,p")—Hy(u",y,p7)
= Jo Huw()lu] + [PIf,()ldt

e Since Hyy() is uniformly positive:

allul? < Jy Huu()([u], [u])dt
=vg'(y) [y fuQluldt = vg'(y)[f]

therefore u is continuous.
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Framework
State constraints (Alternative) optimality condition

Contribution of mixed state-control constraint

@ Mixed state-control constraint
c(u,y) <0.
@ Similar computations give:

al[u]? ngHuuogu],[u])dt 1
=vg'(y) [y Oluldt—[A] [} cu(u. y)[u]de
= vg'(y)If]-N[c(u.y)]
= v[gW]-[N[c(u,y)] <0

therefore again u is continuous.
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Framework
State constraints (Alternative) optimality condition

Smoothness of control at junction points

Scalar state constraint of order 1 or 2: v continuous.

Scalar state constraint of order g > 3:
g — 2 continuous derivatives (g — 1 if ¢ is odd).

Ref: Jakobson et al., 1971; Maurer, 1979.

vector case much more involved, see FB and A. Hermant,
2007.

No example of “generic” regular junction known when g > 3.
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Sensitivity: framework
Main result
Sensitivity

Sensitivity: Framework

(P") min / 0 (u(t), y(2))dt + ¢*(y(T))

(u,y)eUxY
s.c. y(t) =1"(u(t), y(t)) p.p. [0, T]; y(0) =
g"(y(t)) <0 on |0, T]

e Rem. : scalar control u(t) € R.
@ 4 : perturbation parameter
e Hyp (AO0) smooth data: C*, Lipschitz (A1) gt (y{®) < 0.
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Sensitivity: framework
Main result
Sensitivity

Hypotheses |

(a, y) solution for p = po, with multipliers (p, 7).
(A2) Hmo(-,y(t),p(t)) uniformly strongly convex
(A3) (Order 1 constraint) for all t:

g (u(e), y(2)] = 7 > 0.

J. Frédéric Bonnans Second-order optimality conditions for state-constrained op



Sensitivity: framework
Main result
Sensitivity

Hypotheses ||

(A4) (@,y) has a finite number of regular junctions.

(A5) Strict complementarity on boundary arcs:

d7(t
721(1_“) > (>0, on interior boundary arcs.

(A6) For all touch point (isolated contact point) 7,

d2
@g(}_’(t))‘tzr <0.
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Sensitivity: framework
Main result
Sensitivity

Notion of quadratic growth condition

We say that the Quadratic Growth Condition (QGC) holds) holds
if, for all C2-perturbation (P*) of (P*), there exists a
neighborhood (V,,, V,,) of (&, 110), such that for o € V), there
exists a unique local solution (u*, y*) of (PH) with u* € V,
satisfying the QGC Jc, r > 0 such that

(uyy) = Sty + elu = o5+ lly — y*13 ),
V (u,y) feasible for (P*), |u— bllcc + |ly — ¥|l1.00 < r-
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Sensitivity: framework
Main result

Sensitivity

Main result: statement

Theorem

Let (u,y) = (uto, yH0) local solution of (PH°) satisfying (Al)-(A6).
The the following statements are equivalent:

(i) The QGC holds

(ii) The following second-order sufficient condition is satisfied: The
tangent linear-quadratic problem (defined later) has v =0 as
unique solution.

Under these conditions: local uniqueness of local solutions in U.
Also: Boundary arcs are stable,

Touch point remain so, vanish or become boundary arcs.
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Sensitivity: framework
Main result

Sensitivity

Main result (continued)

Theorem (End of statement)

... If (i) or (ii) is satisfied, then p — (u*,y*, p*,nt) is locally
Lipschitz in

UxYx L0, T;R™) x L>=(0, T;R)
and directionally differentiable in
L0, T) x WH(0, T;R") x L"(0, T;R™) x L"(0, T)

for all 1 < r < co. The directional derivative in direction d is the
unique solution of a certain linear quadratic problem (Py).
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Sensitivity: framework
Main result
Sensitivity

The linear quadratic problem

Space of linearized control and states
V:=120,T)DU; Z:=HY0, T;R") D Y.
d = — up : “given” direction of perturbation.
[T e 2
P min M D@ .z ot
-
+ D2 (TNET)AR + [ D2 o)z, i)
s.c.  z(t) = Dfro(

Dg"*(y)(z,d
Dg'(y(7))(z

u,y)(v,z,d) sur[0,T], z(0) = Dyf°d
) =0 on boundary arcs of (z,¥)
(1),d) <0, V7 isolated contact point of (z, y).
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Sensitivity: framework
Main result
Sensitivity

Algorithmic consequences

@ If no isolated touch point: Newton's method well-defined
(with the “shooting parameters, see paper)

o Convergent homotopy algorithm taking into account
transitions

@ Touch point viewd as zero lenght boundary arc

@ Backtracking over y if Newton’s method non convergent.
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Sensitivity: framework
Main result
Sensitivity

Expression of linearization of entry times

Linearize

~(1) /=% _ /=

gM(@(Ee), y(¥°"), o) = 0
Denote by v, z, 0" the directional derivative of control, state,
entry point w.r.t. a variation of u in direction d, then

oo — _ Dg‘r(l)(a(fen) 7(F), 10) (v(Fe"), 2(E1), )
dtg(l (@, ¥)]p=fen-
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Sensitivity: framework
Main result
Sensitivity

Challenges

What happens when:
@ A boundary arc splits into two ?
@ Two boundary arcs split into one 7

@ second-order derivative at a touch point is zero 7
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Main result
Sensitivity
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