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Data of the academic example

(P) Min

∫ 1

0

(
1
2
u2(t) + g(t)y(t)

)
dt

s.t. ẏ(t) = u(t), y(0) = y(1) = 0, y(t) ≥ h

with
g(t) := (c − sin(αt))g0, c > 0, α > 0.

Time viewed as second state variable (τ̇ = 1)
µ = (h − h0)/(h1 − h0) homotopy parameter;
h0 = min ȳ(t), where ȳ is the solution of unconstrained problem
h1 = h target value; numerical values are

g0 := 10, α = 10π, c = 0.1, h1 = −0.001.
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Unconstrained problem: optimal state
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Neigborhood of limiting problem: when µ > 0 is small

For µ > 0 the state constraint is active (convex problem)

The contact set could be then for small µ > 0:

1 One point

2 A small interval

3 A non connected set

Your guess ?
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Neigborhood of limiting problem: when µ > 0 is small

For µ > 0 the state constraint is active (convex problem)

Structural result: the contact set is an interval

Quantitative result: �rst-order expansion of value of extreme
points of that interval !

Next: numerical results using a shooting algorithm that will be
presented later.
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Numerical results II
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Setting: general unconstrained problem

State equation: y(t) ∈ Rn, u(t) ∈ Rm

ẏ(t) = f (u(t), y(t)) p.p. t ∈ [0,T ], y(0) = y0 (1)

Cost function: integral + �nal term

J(u, y) =

∫ T

0

`(u(t), y(t))dt + φ(y(T )). (2)

Optimal control problem

Min
(u,y)

J(u, y) s.t. (1). (P)

C∞, Lipschitz data f , `, φ.
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Functional spaces and costate equation

Control space: U := L∞(0,T ; Rm)

State and costate space
Y := W 1,∞(0,T ; Rn), P := W 1,∞(0,T ; Rn∗)
where
W 1,∞(0,T ; Rn) = {y ∈ L∞(0,T ; Rn); ẏ ∈ L∞(0,T ; Rn)}.
Hamiltonian H(u, y , p) := `(u, y) + pf (u, y)

Costate equation

−ṗ(t) = Hy (u(t), y(t), p(t)) p.p. t ∈ [0,T ],
p(T ) = φ′(y(T )).

J. Frédéric Bonnans Second-order optimality conditions for state-constrained optimal control problems



An academic example
General unconstrained problems

State constraints
Sensitivity

Optimality conditions
Well-posedness

Pontryaguin's principle

S(P) Solution set of (P)

Pontryaguin's Minimum principle (PMP):
H(u(t), y(t), p(t)) = min

v
H(v , y(t), p(t)) a.a. t

Weak PMP:
Hu(u(t), y(t), p(t)) = 0 a.a. t

Theorem: If u ∈ S(P), and y and p are the associated state and
costate, then it satis�es the PMP.

Consequence: weak PMP and also:

Huu := Huu(u(t), y(t), p(t)) is semide�nite positive.
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Elimination of control

Assume: (A1) Strong Legendre condition (W/SLC)

Huu(u(t), y(t), p(t)) � αId , for some α > 0

By IFT: weak PMP locally equivalent to:

u(t) = Υ(y(t), p(t))

with Υ of class C∞
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Shooting mapping

TPBVP Two Point Boundary Value Problem

ẏ = f (Υ(y , p), y) p.p. [0,T ], y(0) = y0

−ṗ = Hy (Υ(y , p), y , p) p.p. [0,T ], p(T ) = φy (y(T )).

Shooting function Rn∗ 7→ Rn∗ : p0 7→ p(T )− φy (y(T )),
where (y , p) solution of the Cauchy problem

ẏ = f (Υ(y , p), y) p.p. t ∈ [0,T ], y(0) = y0

−ṗ = Hy (Υ(y , p), y , p) p.p. [0,T ], p(0) = p0.
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De�nition

Shooting mapping well posed at solution point p0 if it has an
invertible Jacobian at this point. Then:

By IFT: well-posedness under small perturbation

Newton's method converges locally quadratically

Question: Is it satis�ed under weak hypotheses ?
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Tangent quadratic problem

Min
v

J ′(u)v + 1
2
J ′′(u)(v , v) (TQP)

Quadratic Growth condition QGC: for some ε > 0 and α > 0

J(u + v) ≥ J(u) + α‖v − u‖22 if ‖v − u‖∞ < ε.

Second Order Necessary Condition (SONC): v = 0 solution of
(TQP) (interpretation)

Second Order Su�cient Condition (SOSC): v = 0 unique
solution of (TQP) and Strong Legendre Condition (de�nition)

Theorem: SOSC equivalent to QGC. These conditions imply that
the shooting algorithm is well-posed.
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State constrained problem: data

State constraint:

gi (y(t)) ≤ 0, t ∈ [0,T ], i = 1, . . . , r . (3)

Same cost function: integral + �nal term

J(u, y) =

∫ T

0

`(u(t), y(t))dt + φ(y(T )). (4)

Optimal control problem

Min
(u,y)

J(u, y) s.t. (1) and (3). (P)

C∞, Lipschitz data f , `, φ, g .
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Constraint structure

Contact set: {t ∈ [0,T ] ; g(y(t)) = 0}.

g(y(t)) g(y(t))

boundary arc [τen, τex ] (isolated) touch point {τto}
Question: If known structure: number, ordering of boundary
arcs and touch points;
Then can we design a shooting algorithm ?
Will it be well-posed ?
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Junction points

Set of junction points: closure of end-points of interior arcs

Regular junction point: end-point of two arcs, of three types:

Entry, exit points: end-points of a boundary arc

Touch point: isolated contact points
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Homotopy

: Constraint structure generally unknown

Possible approach: start from an unconstrained perturbed
problem and compute a path with endpoints the solutions of
the perturbed and original problem.

Example: gµ(y) = g(y)− (1− µ)K , K �large�.

Motivates the local study of structural changes.

Work by Oberle, Gergaud, Caillau, Martinon ...
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Multipliers are measures

Lagrange multiplier η ∈ M(0,T )

Lagrangian function

L(u, η) := J(u) +

∫ T

0

g(yu(t))dη(t)

Slater quali�cation condition: G (u) = g(yu)

G (u) + G ′(u)v < 0 on [0,T ], for some v ∈ U .

Complementarity conditions

N(u) :=

{
η ∈ M(0,T )+;

∫ T

0

g(yu(t)) = 0

}
.
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Costate equation

Costate equation

−dp(t) = Hy (u(t), y(t), p(t))dt + dη(t)g ′(y(t)), p.p. t
p(T ) = φ′(y(T )).

Weak Pontryaguin principle (WPMP)
Hu(u(t), y(t), p(t)) = 0 for a.a. t; η ∈ N(u).

Then: call η a Lagrange multiplier; denote η ∈ Λ(u).
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Pontryaguin's principle

S(P) Solution set of (P)

Minimum principle (PMP):
H(u(t), y(t), p(t)) = Min

v
H(v , y(t), p(t)) a.a. t

for some η ∈ Λ(u).

Theorem: Let u ∈ S(P) be quali�ed, y associated state. Then
(i) The set Λ(u) is non empty and bounded.
(ii) There exists η ∈ N(u) for which the PMP holds.

Consequence: For the (p, η) satisfying the PMP, we have
Huu := Huu(u(t), y(t), p(t)) semide�nite positive.
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Order of the state constraint

Total derivative of a scalar state constraint:

g (1)(u, y) := g ′(y)f (u, y).

While result does not depend on u, we can continue:

g (i+1)(u, y) := g (i)(y)f (u, y).

Constraint order: q smallest number such that

g
(q)
u (u, y) 6= 0

Well-posed constraint order: when

g
(q)
u (u, y) 6= 0, for all (u, y)
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Algebraic variables

Two algebraic variables
u, η̇ (density, if it exists)

Algebraic relations: interior arc

Hu(u(t), y(t), p(t)) = 0; η̇ = 0.

Algebraic relations: boundary arc

Hu(u(t), y(t), p(t)) = 0; g (q)(u, y) = 0.

Not well-posed in the latter case: η̇ does not appear.
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First step of the alternative formulation I

Costate equation

−dp(t) = Hy (u(t), y(t), p(t))dt + dη(t)g ′(y(t)), p.p. t
p(T ) = φ′(y(T )).

Write costate dynamics as:

−d(p + ηg ′(y)) = [Hy (u, y , p)− ηg ′′(y)f (u, y)]dt

First alternative costate and multiplier:
p1 = p + ηg ′(y); η1 = −η
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First step of the alternative formulation II

The alternative costate p1 has bounded derivatives. It is
solution of the di�erential equation

−ṗ1 = `y (u, y) + pfy (u, y) + η1g ′′(y)f (u, y)
= `y (u, y) + p1fy (u, y) + η1[g ′(y)fy (u, y) + g ′′(y)f (u, y)]

The bracket on r.h.s. is a partial derivative w.r.t. y :

g (1)(u, y) = g ′(y)f (u, y)

g
(1)
y (u, y) = g ′(y)fy (u, y) + g ′′(y)f (u, y).

We recognize a Hamiltonian system!
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Alternative costate equation

First alternative Hamiltonian

H1(u, y , p1, η1) := `(u, y) + p1f (u, y) + η1g (1)

Alternative costate equation

−ṗ1 = H1
y (u, y , p1, η1); p1(T ) = cst + φ′(y(T )).

Alternative Pontryaguin's principle: since

H1(u, y , p1, η1) := `(u, y)+(p1+η1g ′(y))f (u, y) = H(u, y , p),

Weak/strong Pontryaguin's principle is invariant, e. g.:

H1
u(u, y , p1, η1) = 0
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First alternative algebraic relations

Boundary arcs (e.g. when all constraints active): obtain

g (q)(u, y) = 0; Hu(u, y , p1) + η1g
(1)
u = 0.

Case of scalar control, scalar �rst-order state constraint:
Elimination of algebraic variables holds !

u = Ψq(y); η1 = −Hy (u, y , p1)/g
(1)
u

Unconstrained arcs

u = Ψ(y , p1, η1); η̇1 = 0.

J. Frédéric Bonnans Second-order optimality conditions for state-constrained optimal control problems



An academic example
General unconstrained problems

State constraints
Sensitivity

Framework
(Alternative) optimality condition

General �rst-order constraints

Boundary arcs, all constraints active: obtain

Hu(u, y , p1) + η1g
(1)
u (u, y) = 0; g (1)(u, y) = 0.

Jacobian:

(
H1
uu (g

(1)
u )>

g
(1)
u 0

)
Invertible i�

g
(1)
u (u, y) onto.; H1

uu = Huu invertible on Ker g
(1)
u .

So under weak hypotheses we can eliminate algebraic
variables, even in the �vector case�
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References for alternative formulation

Bryson Denham, Dreyfus (1963): provided the idea

Maurer (1979), unpublished: rigorous derivation

Several related works by Maurer and Malanowski

Ref. FB and A. Hermant, INRIA Rep. 6199, 2007 Equivalence
with PMP, general vector case
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Continuity of control I

Hyp Huu(·, y(t), p(t)) unif. invertible

u−, u+ values just before, after time τ .

Jump of multiplier at time τ :

[p(τ)] = −νg ′(y(τ)); ν := −[η(τ)]

Is u continuous ? assume H strongly convex w.r.t. u

∆ := Hu(u
−, y , p+)− Hu(u

−, y , p−) = −νg ′(y(τ))fu(u
−, y).

u continuous i� νg ′(y(τ))fu(u
−, y) = 0.

Holds if all constraints of order > 1. What about order 1 ?
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Continuity of control II

Contribution of �rst-order terms: take ` = 0

0 = Hu(u
+, y , p+)− Hu(u

−, y , p−)

=
∫ 1
0
[Huu()[u] + [p]fu()]dt

Since Huu() is uniformly positive:

α|[u]|2 ≤
∫ 1
0
Huu()([u], [u])dt

= νg ′(y)
∫ 1
0
fu()[u]dt = νg ′(y)[f ]

= ν[g (1)] ≤ 0

therefore u is continuous.
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Contribution of mixed state-control constraint

Mixed state-control constraint

c(u, y) ≤ 0.

Similar computations give:

α|[u]|2 ≤
∫ 1
0
Huu()([u], [u])dt

= νg ′(y)
∫ 1
0
fu()[u]dt−[λ]

∫ 1
0
cu(u, y)[u]dt

= νg ′(y)[f ]−[λ][c(u, y)]

= ν[g (1)]−[λ][c(u, y)] ≤ 0

therefore again u is continuous.
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Smoothness of control at junction points

Scalar state constraint of order 1 or 2: u continuous.

Scalar state constraint of order q ≥ 3:
q − 2 continuous derivatives (q − 1 if q is odd).

Ref: Jakobson et al., 1971; Maurer, 1979.

vector case much more involved, see FB and A. Hermant,
2007.

No example of �generic� regular junction known when q ≥ 3.
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Sensitivity: Framework

(Pµ) min
(u,y)∈U×Y

∫ T

0

`µ(u(t), y(t))dt + φµ(y(T ))

s.c. ẏ(t) = f µ(u(t), y(t)) p.p. [0,T ] ; y(0) = yµ
0

gµ(y(t)) ≤ 0 on [0,T ].

Rem. : scalar control u(t) ∈ R.

µ : perturbation parameter

Hyp (A0) smooth data: C∞, Lipschitz (A1) gµ0(yµ0

0 ) < 0.
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Hypotheses I

(ū, ȳ) solution for µ = µ0, with multipliers (p̄, η̄).

(A2) Hµ0(·, ȳ(t), p̄(t)) uniformly strongly convex

(A3) (Order 1 constraint) for all t:

|g (1)
u (u(t), y(t))| ≥ γ > 0.
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Hypotheses II

(A4) (ū, ȳ) has a �nite number of regular junctions.

(A5) Strict complementarity on boundary arcs:

dη̄(t)

dt
≥ β > 0, on interior boundary arcs.

(A6) For all touch point (isolated contact point) τ ,

d2

dt2
g(ȳ(t))|t=τ < 0.
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Notion of quadratic growth condition

We say that the Quadratic Growth Condition (QGC) holds) holds
if, for all C 2-perturbation (Pµ) of (Pµ0), there exists a
neighborhood (Vu,Vµ) of (ū, µ0), such that for µ ∈ Vµ, there
exists a unique local solution (uµ, yµ) of (Pµ) with uµ ∈ Vu

satisfying the QGC ∃c, r > 0 such that

Jµ(u, y) ≥ Jµ(uµ, yµ) + c(‖u − uµ‖22 + ‖y − yµ‖21,2),

∀ (u, y) feasible for (Pµ), ‖u − ū‖∞ + ‖y − ȳ‖1,∞ < r .
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Main result: statement

Theorem

Let (ū, ȳ) = (uµ0 , yµ0) local solution of (Pµ0) satisfying (A1)-(A6).

The the following statements are equivalent:

(i) The QGC holds

(ii) The following second-order su�cient condition is satis�ed: The

tangent linear-quadratic problem (de�ned later) has v = 0 as

unique solution.

Under these conditions: local uniqueness of local solutions in U .
Also: Boundary arcs are stable,

Touch point remain so, vanish or become boundary arcs.
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Main result (continued)

Theorem (End of statement)

... If (i) or (ii) is satis�ed, then µ 7→ (uµ, yµ, pµ, ηµ) is locally
Lipschitz in

U × Y × L∞(0,T ; Rn∗)× L∞(0,T ; R)

and directionally di�erentiable in

Lr (0,T )×W 1,r (0,T ; Rn)× Lr (0,T ; Rn∗)× Lr (0,T )

for all 1 ≤ r < ∞. The directional derivative in direction d is the

unique solution of a certain linear quadratic problem (Pd ).
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The linear quadratic problem

Space of linearized control and states

V := L2(0,T ) ⊃ U ; Z := H1(0,T ; Rn) ⊃ Y.

d = µ− µ0 : �given� direction of perturbation.

(Pd ) min
(v ,z)∈V×Z

1
2
{
∫ T

0

D2
(u,y ,µ)2H

µ0(ū, ȳ , p̄)(v , z , d)2dt

+ D2φµ0(ȳ(T ))(z(T ), d)2 +

∫ T

0

D2gµ0(ȳ , µ0)(z , d)2dη̄(t)}

s.c. ż(t) = Df µ0(ū, ȳ)(v , z , d) sur [0,T ], z(0) = Dyµ0

0 d

Dgµ0(ȳ)(z , d) = 0 on boundary arcs of (ū, ȳ)

Dgµ0(ȳ(τ))(z(τ), d) ≤ 0, ∀ τ isolated contact point of (ū, ȳ).
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Algorithmic consequences

If no isolated touch point: Newton's method well-de�ned
(with the �shooting parameters, see paper)

Convergent homotopy algorithm taking into account
transitions

Touch point viewd as zero lenght boundary arc

Backtracking over µ if Newton's method non convergent.
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Expression of linearization of entry times

Linearize
ĝ (1)(ū(t̄en), ȳ(t̄en), µ0) = 0

Denote by v , z , σen the directional derivative of control, state,
entry point w.r.t. a variation of µ in direction d , then

σen = −Dĝ (1)(ū(t̄en), ȳ(t̄en), µ0)(v(t̄en−), z(t̄en), d)
d

dt
g (1)(ū, ȳ)|t=t̄en−
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Challenges

What happens when:

A boundary arc splits into two ?

Two boundary arcs split into one ?

second-order derivative at a touch point is zero ?
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