MULTI-AGENT OPTIMIZATION AND EQUILIBRIUM

Terry Rockafellar University of Washington, Seattle University of Florida, Gainesville

NPA 2008, Beijing

- modeling of economic interactions under possible uncertainty
- more motivation for efforts on solving variational inequalities
- expansion of ideas related to games and MPEC formulations

game-like structures related to equilibrium modeling

Single agent as decision maker:

minimize f over $x \in C \subset \mathbb{R}^n$

Multiple agents k as decision makers with interactions:

minimize f_k over $x_k \in C_k \subset \mathbb{R}^{n_k}$ for $k = 1, \ldots, K$, where

 f_k and C_k may depend the decisions of the other agents

Organization of decisions: simultaneous? hierarchical? dynamical?

Connections with equilibrium concepts:

Nash equilibrium? economic equilibrium? equilibrium constraints? variational inequalities?

Basic Framework

 $\begin{aligned} x &= (x_1, \dots, x_k, \dots, x_K) \in \mathbb{R}^{n_1} \times \dots \times \mathbb{R}^{n_k} \times \dots \times \mathbb{R}^{n_K} \\ x &= (x_k, x_{-k}) \text{ where } x_k \text{ is chosen by agent } k, \text{ and} \\ x_{-k} \text{ is chosen by the other agents} \end{aligned}$

Agents' Costs and Constraints

Cost function for agent k: $f_k(x_k, x_{-k}) = f_k(x_1, \dots, x_K)$ Feasible set for agent k: $C_k(x_{-k}) = \{x_k \mid (x_k, x_{-k}) \in C\}$ for a set C of vectors (x_1, \dots, x_K) in $\mathbb{R}^{n_1} \times \dots \times \mathbb{R}^{n_K}$

Nash game case: $C = X_1 \times \cdots \times X_K$, so that $C_k(x_{-k}) \equiv X_k$

Definition of Equilibrium

 $(\bar{x}_1, \ldots, \bar{x}_K)$ furnishes an equilibrium' \iff \bar{x}_k "minimizes" $f_k(x_k, \bar{x}_{-k})$ over $x_k \in C_k(\bar{x}_{-k})$ for each k

 $\begin{array}{rcl} \mbox{Minimizes}?? & \rightarrow & \mbox{global min}? \mbox{ local min}? \ \mbox{"stationary point"}? \\ & \mbox{even in ordinary computation such ambiguities come up} \end{array}$

Variational Conditions for Use in Modeling

 $-F(x) \in N_C(x)$, with $C \subset \mathbb{R}^N$ closed, $F : C \to \mathbb{R}^N$ continuous

Variational inequality case: C convex Basic optimization case: $F = \nabla f$ (first-order condition) Global minimum: both combined, with f convex

Quasi-variational extension: C becomes C(x)

Elaboration of Constraint Structure

Suppose the set C has the form

 $C = \left\{ x \in X \mid g_i(x) \le 0 \text{ for } i = 1, \dots, m \right\}$

Then $N_C(x)$ can be expressed by Lagrange multipliers in terms of the gradients $\nabla g_i(x)$ and the normal cone $N_X(x)$:

Lagrange Multiplier Rule Under a Basic Constraint Qualification $v \in N_C(x) \iff$ there exists $y = (y_1, \dots, y_m)$ such that $v - y_1 \nabla g_i(x) - \dots - y_m \nabla g_m(x) \in N_X(x)$ with $g_i(x) \le 0, y_i \ge 0, y_i g_i(x) = 0$

 $-F(x) \in N_C(x) \iff -[F(x) + y_1 \nabla g_i(x) + \dots + y_m \nabla g_m(x)] \in N_X(x)$

Special case: X = whole space $\implies N_C(x) = \{0\}$

Optimization context: agent k, given x_{-k} comprised of the decisions of the other agents, wishes to:

minimize $f_k(x_k, x_{-k})$ with respect to $x_k \in C_k(x_{-k})$

Corresponding variational condition:

 $-F_k(x_k, x_{-k}) \in N_{C_k(x_{-k})}(x_k)$ for $F_k(x_k, x_{-k}) = \nabla_{x_k} f_k(x_k, x_{-k})$

Equivalence with minimization: only holds in the **fully convex** case, where

 $C_k(x_{-k})$ is a convex set, $f_k(x_k, x_{-k})$ is convex in x_k

But: maybe the variational condition is **more appropriate** than the minimization condition in formulating equilibrium!

Quasi-Variational Model of Equilibrium

The equilibrium condition on $\bar{x} = (\bar{x}_1, \dots, \bar{x}_K)$ that \bar{x}_k minimizes $f_k(x_k, \bar{x}_{-k})$ over $x_k \in C_k(\bar{x}_{-k})$ for each kcan be modeled in terms of $F_k(x_k, x_{-k}) = \nabla_{x_k} f_k(x_k, x_{-k})$ as

 $-F_k(ar{x}_k,ar{x}_{-k})\in N_{C_k(ar{x}_{-k})}(ar{x}_k)$ for $k=1,\ldots,K$

This can be combined into a single quasi-variational condition:

$$-F(\bar{x}_1,\ldots,\bar{x}_K) \in N_{C(\bar{x}_1,\ldots,\bar{x}_K)}(\bar{x}_1,\ldots,\bar{x}_K) \text{ with} \\ C(x_1,\ldots,x_K) = C_1(x_{-1}) \times \cdots \times C_K(x_{-K}) \\ F(x_1,\ldots,x_K) = (F_1(x_1,x_{-1}),\ldots,F_K(x_K,x_{-K}))$$

Shortcoming, even in the fully convex case of the agents' problems:

- existence of a solution may be illusive
- quasi-variational conditions are hard to solve

Recall for agent k that the feasible set is:

$$C_k(x_{-k}) = \{x_k \mid (x_k, x_{-k}) \in C\}$$

for choice of a set $C \subset \mathbb{R}^n = \mathbb{R}^{n_1} \times \cdots \mathbb{R}^{n_k}$

Joint constraint assumption henceforth

$$C = \text{set of all } x = (x_1, \dots, x_K) \text{ satisfying}$$

$$g_i(x_1, \dots, x_K) \leq 0 \text{ for } i = 1, \dots, m,$$
with $x_k \in X_k \text{ for } k = 1, \dots, K,$
where $X_k \subset \mathbb{R}^{n_k}$ is closed convex, g_i is continuously differentiable

Then $C_k(x_{-k}) = \{x_k \in X_k \mid g_i(x_k, x_{-k}) \le 0 \text{ for } i = 1, ..., m\}$ and the normal cone to $C_k(x_{-k})$ at x_k has a formula involving the gradient vectors $\nabla_{x_k} g_i(x_k, x_{-k})$ and the normal cone $N_{X_k}(x_k)$ Under a **constraint qualification**, the first-order condition $-\nabla_{x_k} f_k(x_k, x_{-k}) \in N_{C_k(x_{-k})}(x_k)$ holds if and only if there is a vector $y_k = (y_{k1}, \dots, y_{km})$ such that $-\left[\nabla_{x_k} f_k(x_k, x_{-k}) + \sum_{i=1}^m y_{ki} \nabla_{x_k} g_i(x_k, x_{-k})\right] \in N_{X_k}(x_k)$ with $g_i(x_k, x_{-k}) \leq 0$, $y_{ki} \geq 0$, $y_{ki}g_i(x_k, x_{-k}) = 0$

Key fact to recall: in terms of $g(x) = (g_1(x), \dots, g_m(x))$ the complementarity conditions can be written as $g(x) \in N_{R_{+}^m}(y_k)$

The pair of multiplier conditions $G(x) \in N_{R^m_+}(y_k)$ and $-\left[\nabla_{x_k} f_k(x_k, x_{-k}) + \sum_{i=1}^m y_{ki} \nabla_{x_k} g_i(x_k, x_{-k})\right] \in N_{X_k}(x_k)$ combine as **one variational inequality** for $(x_k, y_k) \in X_k \times R^m_+$

Why not model the role of agent k this way directly?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $G_k(x_k, x_{-k}, y_k) = \nabla_{x_k} f_k(x_k, x_{-k}) + \sum_{i=1}^m y_{ki} \nabla_{x_k} g_i(x_k, x_{-k})$.

The variational inequality for agent k requires

 $(-G_k(x_k, x_{-k}, y_k), g(x_1, \ldots, x_K)) \in N_{X_k \times R^m_+}(x_k, y_k)$

Equilibrium model with separate multiplier vectors

Having $(G_k(\bar{x}_k, \bar{x}_{-k}, \bar{y}_k), g(\bar{x}_1, \dots, \bar{x}_K)) \in N_{X_k \times R^m_+}(\bar{x}_k, \bar{y}_k)$ for all k corresponds to the single variational inequality

 $-G(\ldots;\bar{x}_k,\bar{y}_k;\ldots)\in N_D(\ldots;\bar{x}_k,\bar{y}_k;\ldots)$

on the closed convex set $D = [X_1 \times \mathbb{R}^m_+] \times \cdots \times [X_K \times \mathbb{R}^m_+]$ with $G(\ldots; x_k, y_k; \ldots) = (\ldots; G_k(x_k, x_{-k}, y_k), -g(x_1, \ldots, x_K); \ldots)$

Facchinei and Kanzow (2007) focus on this model, but restricted to full convexity, each constraint function g_i also being convex

The Market Significance of Lagrange Multipliers

Agent k wishes to: "minimize" $f_k(x_k, \bar{x}_{-k})$ subject to $x_k \in X_k$ and $g_i(x_k, \bar{x}_{-k}) \le 0$ for i = 1, ..., m,

Interpretation of a Lagrange multiplier for g_i :

a shadow price for the resource represented by g_i , reflecting the effect on the objective f_k of shifts in availability

Equilibrium in an economic context:

Incorporate a "market" in which these prices act But this means having the **same** multipliers/prices for each agent: $(\bar{y}_{k1}, \ldots, \bar{y}_{km}) = (\bar{y}_1, \ldots, \bar{y}_m)$ for $k = 1, \ldots, K$

Challenge: can a variational inequality model be set up which

- enforces this multiplier/price equality, and
- guarantees the existence of such an equilibrium?

Equilibrium as a Variational Inequality, Better Version

To be determined: \bar{x}_k for k = 1, ..., K and $\bar{y} = (\bar{y}_1, ..., \bar{y}_m)$ Recall: $G_k(x_k, x_{-k}, y) = \nabla_{x_k} f_k(x_k, x_{-k}) + \sum_{i=1}^m y_i \nabla_{x_k} g_i(x_k, x_{-k})$

Equilibrium model of market type with shared multipliers

The previous model with the multipliers **shared** by all the agents corresponds to the variational inequality $-G^*(\bar{x}_1, \dots, \bar{x}_K, \bar{y}) \in N_{D^*}(\bar{x}_1, \dots, \bar{x}_K, \bar{y})$

for the closed convex set $D^* = X_1 \times \cdots \times X_K \times \mathbb{R}^m_+$ and function $G^*(x_1, \ldots, x_K, y) = (\ldots; G_k(x_k, x_{-k}, y); \ldots; g(x_1, \ldots, x_K))$

- A solution to this equilibrium model if one exists yields a solution to the previous equilibrium model, in particular.
- In the fully convex case this reverts to agents minimizing globally, but the model makes good sense even without that.

Standard criterion for a solution to $-F(\bar{x}) \in N_C(\bar{x})$: *F* continuous, *C* convex and compact.

For the market model $-G^*(\bar{x}_1, \ldots, \bar{x}_K, \bar{y}) \in N_{D^*}(\bar{x}_1, \ldots, \bar{x}_K, \bar{y})$ we have the continuity of G^* , and the closedness and convexity of the set $D^* = X_1 \times \cdots \times X_K \times R^m_+$ but D^* is **unbounded**

Remedy (one approach): restriction to the fully convex case: $f_k(x_k, x_{-k})$ convex in x_k , $g_i(x)$ convex in $x = (x_1, \dots, x_K)$ and utilize the Slater condition: there there is an $\hat{x} \in X_1 \times \dots \times X_K$ with $g_i(\hat{x}) < 0$ for $i = 1, \dots, m$

Existence Theorem

In the **fully convex** case under the **Slater condition**, and with the sets X_1, \ldots, X_K bounded, there is a solution $(\bar{x}_1, \ldots, \bar{x}_K, \bar{y})$ to the variational inequality for the market equilibrium model

Beyond Full Convexity: Modified Equilibrium Model

Suppose there are **exogenous prices** y_i^* at which the resources can be obtained from "the outside" if necessary. (The prices y_i introduced so far are **endogenous**, determined "locally")

Consequences:

• The constraint $g_i(x_1, \ldots, x_K) \leq 0$ can be exceeded by the agents if they are willing to pay the price y_i^* for any excess

- The endogenous prices y_i will have to satisfy $y_i \leq y_i^*$
- The multiplier space \mathbb{R}^m_+ becomes $[0, y_1^*] \times \cdots \times [0, y_m]$
- Except for this, the variational conditions remain the same

Existence Theorem Without (Much) Convexity

In the modified setting, an equilibrium exists merely under the assumption that the underlying sets X_k are convex and bounded. No convexity properties are required of the functions f_k or g_i .

Further elaboration: Take limit as $y_i^* \to \infty$. Get another result

Present: time 0, Future: time 1, states s = 1, ..., S, probs: p(s)

Agent k: choose x_k^0 for time 0, response $x_k^1(s)$ for time 1, state s Expected cost for agent k to "minimize":

 $\sum_{s=1}^{s} p(s) f_k(x_k^0, x_k^1(s); x_{-k}^0, x_{-k}^1(s); s) \text{ (expected cost)}$

Individual constraints for agent k : $(x_k^0, x_k^1(s)) \in X_k(s)$

Joint constraints for all agents at time 0:

 $g_i^0(x_1^0, \dots, x_K^0) \le 0$ for $i = 1, \dots, m_0$

Joint constraints for all agents at time 1 in state s: $g_i^1(x_1^0, x_1^1(s); ...; x_K^0, x_K^1(s); s) \le 0$ for $i = 1, ..., m_1$

These constraints refer to shared resources tradable in markets

Goal: an equilibrium with prices y_i^0 , $y_i^1(s)$ for these resources

Optimality Conditions With Shared Multipliers

Lagrangian function for agent k: expected Lagrangian $\mathcal{L}_{k}(x_{k}^{0}, x_{k}^{1}; x_{-k}^{0}, x_{-k}^{1}; y^{0}, y^{1}) = \sum_{s=1}^{S} p(s) L_{k}(x_{k}^{0}, x_{k}^{1}(s); x_{-k}^{0}, x_{-k}^{1}(s); y^{0}, y^{1}(s))$

where

$$L_{k}(x_{k}^{0}, x_{k}^{1}(s); x_{-k}^{0}, x_{-k}^{1}(s); y^{0}, y^{1}(s)) = f_{k}(x_{k}^{0}, x_{k}^{1}(s); x_{-k}^{0}, x_{-k}^{1}(s); s) + \sum_{i=1}^{m_{0}} y_{i}^{0}g_{i}^{0}(x_{k}^{0}, x_{-k}^{0}) + \sum_{i=1}^{m_{1}} y_{i}^{1}(s)g_{i}^{1}(x_{k}^{0}, x_{k}^{1}(s); x_{-k}^{0}, x_{-k}^{1}(s); s)$$

for $(x_k^0, x_k^1) \in X_k$, meaning $(x_k^0, x_k^1(s)) \in X_k(s)$ for all s, and $(y^0, y^1) \in Y$, meaning $y^0 \in \mathbb{R}^{m_0}_+$ and $y^1(s) \in \mathbb{R}^{m_1}_+$ for all s

Corresponding first-order conditions: generalized KKT $-\nabla_{x^{0},x^{1}}\mathcal{L}_{k}(x_{k}^{0},x_{k}^{1};x_{-k}^{0},x_{-k}^{1};y^{0},y^{1}) \in N_{X_{k}}(x_{k}^{0},x_{k}^{1}),$ $\nabla_{y^{0},y^{1}}\mathcal{L}_{k}(x_{0}^{0},x_{k}^{1};x^{0},x^{1},y^{0},y^{1}) \in N_{X}(y_{0}^{0},y_{k}^{1})$

Equilibrium: \bar{y}^0 , \bar{y}^1 , and \bar{x}^0_k , $\bar{x}^1_k(s)$ for k = 1, ..., K such that the generalized KKT conditions hold **simultaneously** for all k

Variational Inequality for Equilibrium With Uncertainty

Assume each $X_k(s)$ is bounded and polyhedral convex, for reducing the X_k conditions to the given sets $X_k(s)$, and let

$$\begin{split} E_k(x_k^0, x_k^1; x_{-k}^0, x_{-k}^1; y^0, y^1) &= \\ & \sum_{s=1}^{S} p(s) \nabla_{x_k^0} L_k(x_k^0, x_k^1(s); x_{-k}^0, x_{-k}^1(s); y^0, y^1(s)) \\ e_k(x_k^0, x_k^1(s); x_{-k}^0, x_{-k}^1(s); y^0, y^1(s); s) &= \\ & p(s) \nabla_{x_k^1(s)} L_k(x_k^0, x_k^1(s); x_{-k}^0, x_{-k}^1(s); y^0, y^1(s)) \\ g^0 &= (g_1^0, \dots, g_{m_0}^0), \qquad g^1 = (g_1^1, \dots, g_{m_1}^1) \end{split}$$

Components of the desired variational inequality:

 $\begin{aligned} &- \Big(E_k(\bar{x}^0_k, \bar{x}^1_k; \bar{x}^0_{-k}, \bar{x}^1_{-k}; \bar{y}^0, \bar{y}^1), e_k(\bar{x}^0_k, \bar{x}^1_k(s); \bar{x}^0_{-k}, \bar{x}^1_{-k}(s); \bar{y}^0, \bar{y}^1(s); s) \Big) \\ &\in N_{X_k(s)}(\bar{x}^0_k, \bar{x}^1_k(s)) \text{ for } k = 1, \dots, K \text{ and } s = 1, \dots, S, \\ &g^0(\bar{x}^k_1, \dots, \bar{x}^0_K) \in N_{R^{m_0}_+}(\bar{y}^0), \\ &g^1(\bar{x}^0_1, \bar{x}^1_1(s); \dots; \bar{x}^0_K, \bar{x}^1_K(s); s) \in N_{R^{m_1}_+}(\bar{y}^1(s)) \text{ for } s = 1, \dots, S \end{aligned}$

◆聞▶ ◆臣▶ ◆臣▶ □臣□

Existence of equilibrium: Under full convexity and a Slater condition, or without that by introducing exogenous prices

Some References

1. **F. Facchinei and C. Kanzow**, "Generalized Nash equilibrium problems," preprint August, 2007

2. J. B. Rosen, "Existence and uniqueness for concave *n*-person games," Econometrica 33 (1965), 520–534.

3. **A. Jofré, R. T. Rockafellar and R. J-B Wets**, "A variational inequality scheme for determining an economic equilibrium of classical or extended type," *Variational Analysis and Applications* (F. Gianessi and A. Maugeri, eds.), Springer, 2005, 553–578.

4. **A. Jofré, R. T. Rockafellar and R. J-B Wets**, "Variational inequalities and economic equilibrium," Math. of Operations Research 32 (2007), 32–50.

 5. R. T. Rockafellar, S. Uryasev and M. Zabarankin, "Equilibrium with investors using a diversity of deviation measures," Journal of Banking and Finance 31 (2007), 3251–3268.
 Downloads: www.math.washington.edu/~rtr/mypage.html