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• modeling of economic interactions under possible uncertainty
• more motivation for efforts on solving variational inequalities
• expansion of ideas related to games and MPEC formulations



Multi-Agent Optimization

game-like structures related to equilibrium modeling

Single agent as decision maker:

minimize f over x ∈ C ⊂ IRn

Multiple agents k as decision makers with interactions:

minimize fk over xk ∈ Ck ⊂ IRnk for k = 1, . . . ,K , where
fk and Ck may depend the decisions of the other agents

Organization of decisions: simultaneous? hierarchical? dynamical?

Connections with equilibrium concepts:
Nash equilibrium? economic equilibrium?
equilibrium constraints? variational inequalities?



Basic Framework

x = (x1, . . . , xk , . . . , xK ) ∈ IRn1 × · · · IRnk × · · · × IRnK

x = (xk , x−k) where xk is chosen by agent k, and
x−k is chosen by the other agents

Agents’ Costs and Constraints

Cost function for agent k: fk(xk , x−k) = fk(x1, . . . , xK )
Feasible set for agent k: Ck(x−k) =

{
xk

∣∣ (xk , x−k) ∈ C
}

for a set C of vectors (x1, . . . , xK ) in IRn1 × · · · × IRnK

Nash game case: C = X1 × · · ·XK , so that Ck(x−k) ≡ Xk

Definition of Equilibrium

(x̄1, . . . , x̄K ) furnishes an equilibrium‘ ⇐⇒
x̄k “minimizes” fk(xk , x̄−k) over xk ∈ Ck(x̄−k) for each k

Minimizes?? → global min? local min? “stationary point”?
even in ordinary computation such ambiguities come up



Variational Conditions for Use in Modeling

−F (x) ∈ NC (x), with C ⊂ IRN closed, F : C → IRN continuous

Variational inequality case: C convex
Basic optimization case: F = ∇f (first-order condition)
Global minimum: both combined, with f convex

Quasi-variational extension: C becomes C (x)



Elaboration of Constraint Structure

Suppose the set C has the form

C =
{
x ∈ X

∣∣ gi (x) ≤ 0 for i = 1, . . . ,m
}

Then NC (x) can be expressed by Lagrange multipliers in terms of
the gradients ∇gi (x) and the normal cone NX (x):

Lagrange Multiplier Rule Under a Basic Constraint Qualification

v ∈ NC (x) ⇐⇒ there exists y = (y1, . . . , ym) such that
v − y1∇gi (x)− · · · − ym∇gm(x) ∈ NX (x)
with gi (x) ≤ 0, yi ≥ 0, yigi (x) = 0

−F (x) ∈ NC (x) ⇐⇒
−[F (x) + y1∇gi (x) + · · ·+ ym∇gm(x)] ∈ NX (x)

Special case: X = whole space =⇒ NC (x) = {0}



Variational Conditions for the Agents’ Problems

Optimization context: agent k, given x−k comprised of the
decisions of the other agents, wishes to:

minimize fk(xk , x−k) with respect to xk ∈ Ck(x−k)

Corresponding variational condition:
−Fk(xk , x−k) ∈ NCk (x−k )(xk) for Fk(xk , x−k) = ∇xk

fk(xk , x−k)

Equivalence with minimization: only holds in the fully convex
case, where

Ck(x−k) is a convex set, fk(xk , x−k) is convex in xk

But: maybe the variational condition is more appropriate than
the minimization condition in formulating equilibrium!



Quasi-Variational Model of Equilibrium

The equilibrium condition on x̄ = (x̄1, . . . , x̄K ) that
x̄k minimizes fk(xk , x̄−k) over xk ∈ Ck(x̄−k) for each k

can be modeled in terms of Fk(xk , x−k) = ∇xk
fk(xk , x−k) as

−Fk(x̄k , x̄−k) ∈ NCk (x̄−k )(x̄k) for k = 1, . . . ,K

This can be combined into a single quasi-variational condition:

−F (x̄1, . . . , x̄K ) ∈ NC(x̄1,...,x̄K )(x̄1, . . . , x̄K ) with
C (x1, . . . , xK ) = C1(x−1)× · · · × CK (x−K )
F (x1, . . . , xK ) = (F1(x1, x−1), . . . ,FK (xK , x−K ))

Shortcoming, even in the fully convex case of the agents’ problems:
• existence of a solution may be illusive
• quasi-variational conditions are hard to solve



Joint Constraint Structure Elaborated

Recall for agent k that the feasible set is:
Ck(x−k) =

{
xk

∣∣ (xk , x−k) ∈ C
}

for choice of a set C ⊂ IRn = IRn1 × · · · IRnK

Joint constraint assumption henceforth

C = set of all x = (x1, . . . , xK ) satisfying
gi (x1, . . . , xK ) ≤ 0 for i = 1, . . . ,m,

with xk ∈ Xk for k = 1, . . . ,K ,
where Xk ⊂ IRnk is closed convex, gi is continuously differentiable

Then Ck(x−k) =
{
xk ∈ Xk

∣∣ gi (xk , x−k) ≤ 0 for i = 1, . . . ,m
}

and the normal cone to Ck(x−k) at xk has a formula involving the
gradient vectors ∇xk

gi (xk , x−k) and the normal cone NXk
(xk)



Lagrange Multipliers for Agent k

Under a constraint qualification, the first-order condition
−∇xk

fk(xk , x−k) ∈ NCk (x−k )(xk)
holds if and only if there is a vector yk = (yk1, . . . , ykm) such that

−
[
∇xk

fk(xk , x−k) +
∑m

i=1 yki∇xk
gi (xk , x−k)

]
∈ NXk

(xk)

with gi (xk , x−k) ≤ 0, yki ≥ 0, ykigi (xk , x−k) = 0

Key fact to recall: in terms of g(x) = (g1(x), . . . , gm(x)) the
complementarity conditions can be written as g(x) ∈ NIRm

+
(yk)

The pair of multiplier conditions G (x) ∈ NIRm
+
(yk) and

−
[
∇xk

fk(xk , x−k) +
∑m

i=1 yki∇xk
gi (xk , x−k)

]
∈ NXk

(xk)

combine as one variational inequality for (xk , yk) ∈ Xk × IRm
+

Why not model the role of agent k this way directly?



Equilibrium as a Variational Inequality, Initial Version

Let Gk(xk , x−k , yk) = ∇xk
fk(xk , x−k) +

∑m
i=1 yki∇xk

gi (xk , x−k) .

The variational inequality for agent k requires
(−Gk(xk , x−k , yk), g(x1, . . . , xK ) ) ∈ NXk×IRm

+
(xk , yk)

Equilibrium model with separate multiplier vectors

Having (Gk(x̄k , x̄−k , ȳk), g(x̄1, . . . , x̄K )) ∈ NXk×IRm
+
(x̄k , ȳk) for all k

corresponds to the single variational inequality
−G (. . . ; x̄k , ȳk ; . . .) ∈ ND(. . . ; x̄k , ȳk ; . . .)

on the closed convex set D = [X1 × IRm
+ ]× · · · × [XK × IRm

+ ] with
G (. . . ; xk , yk ; . . .) = (. . . ;Gk(xk , x−k , yk),−g(x1, . . . , xK ); . . .)

Facchinei and Kanzow (2007) focus on this model, but restricted
to full convexity, each constraint function gi also being convex



The Market Significance of Lagrange Multipliers

Agent k wishes to: “minimize” fk(xk , x̄−k) subject to
xk ∈ Xk and gi (xk , x̄−k) ≤ 0 for i = 1, . . . ,m,

Interpretation of a Lagrange multiplier for gi :
a shadow price for the resource represented by gi , reflecting
the effect on the objective fk of shifts in availability

Equilibrium in an economic context:
Incorporate a “market” in which these prices act

But this means having the same multipliers/prices for each agent:
(ȳk1, . . . , ȳkm) = (ȳ1, . . . , ȳm) for k = 1, . . . ,K

Challenge: can a variational inequality model be set up which
• enforces this multiplier/price equality, and
• guarantees the existence of such an equilibrium?



Equilibrium as a Variational Inequality, Better Version

To be determined: x̄k for k = 1, . . . ,K and ȳ = (ȳ1, . . . , ȳm)
Recall: Gk(xk , x−k , y) = ∇xk

fk(xk , x−k) +
∑m

i=1 yi∇xk
gi (xk , x−k)

Equilibrium model of market type with shared multipliers

The previous model with the multipliers shared by all the agents
corresponds to the variational inequality

−G ∗(x̄1, , . . . , x̄K , ȳ) ∈ ND∗(x̄1, . . . , x̄K , ȳ)

for the closed convex set D∗ = X1 × · · · × XK × IRm
+ and function

G ∗(x1, . . . , xK , y) = (. . . ;Gk(xk , x−k , y); . . . ; g(x1, . . . , xK ) )

• A solution to this equilibrium model if one exists yields a solution
to the previous equilibrium model, in particular.

• In the fully convex case this reverts to agents minimizing
globally, but the model makes good sense even without that.



Existence of Equilibrium

Standard criterion for a solution to −F (x̄) ∈ NC (x̄):
F continuous, C convex and compact.

For the market model −G ∗(x̄1, . . . , x̄K , ȳ) ∈ ND∗(x̄1, . . . , x̄K , ȳ)
we have the continuity of G ∗, and the closedness and convexity
of the set D∗ = X1 × · · · × XK × IRm

+ but D∗ is unbounded

Remedy (one approach): restriction to the fully convex case:
fk(xk , x−k) convex in xk , gi (x) convex in x = (x1, . . . , xK )

and utilize the Slater condition: there there is an
x̂ ∈ X1 × · · · × XK with gi (x̂) < 0 for i = 1, . . . ,m

Existence Theorem

In the fully convex case under the Slater condition, and with
the sets X1, . . . ,XK bounded, there is a solution (x̄1, . . . , x̄K , ȳ)
to the variational inequality for the market equilibrium model



Beyond Full Convexity: Modified Equilibrium Model

Suppose there are exogenous prices y∗i at which the resources
can be obtained from “the outside” if necessary. (The prices yi

introduced so far are endogenous, determined “locally”)

Consequences:
• The constraint gi (x1, . . . , xK ) ≤ 0 can be exceeded by the

agents if they are willing to pay the price y∗i for any excess
• The endogenous prices yi will have to satisfy yi ≤ y∗i
• The multiplier space IRm

+ becomes [0, y∗1 ]× · · · × [0, ym]
• Except for this, the variational conditions remain the same

Existence Theorem Without (Much) Convexity

In the modified setting, an equilibrium exists merely under the
assumption that the underlying sets Xk are convex and bounded.
No convexity properties are required of the functions fk or gi .

Further elaboration: Take limit as y∗i →∞. Get another result



Introduction of Uncertainty

Present: time 0, Future: time 1, states s = 1, . . . ,S , probs: p(s)

Agent k: choose x0
k for time 0, response x1

k (s) for time 1, state s

Expected cost for agent k to “minimize”:∑s
s=1 p(s) fk(x0

k , x1
k (s); x0

−k , x1
−k(s); s) (expected cost)

Individual constraints for agent k : (x0
k , x1

k (s)) ∈ Xk(s)

Joint constraints for all agents at time 0:
g0
i (x0

1 , . . . , x0
K ) ≤ 0 for i = 1, . . . ,m0

Joint constraints for all agents at time 1 in state s:
g1
i (x0

1 , x1
1 (s); . . . ; x0

K , x1
K (s); s) ≤ 0 for i = 1, . . . ,m1

These constraints refer to shared resources tradable in markets

Goal: an equilibrium with prices y0
i , y1

i (s) for these resources



Optimality Conditions With Shared Multipliers

Lagrangian function for agent k: expected Lagrangian
Lk(x0

k , x1
k ; x0

−k , x1
−k ; y0, y1) =∑S

s=1 p(s) Lk(x0
k , x1

k (s); x0
−k , x1

−k(s); y0, y1(s))
where

Lk(x0
k , x1

k (s); x0
−k , x1

−k(s); y0, y1(s)) =
fk(x0

k , x1
k (s); x0

−k , x1
−k(s); s) +

∑m0
i=1 y0

i g0
i (x0

k , x0
−k)

+
∑m1

i=1 y1
i (s)g1

i (x0
k , x1

k (s); x0
−k , x1

−k(s); s)

for (x0
k , x1

k ) ∈ Xk , meaning (x0
k , x1

k (s)) ∈ Xk(s) for all s, and
(y0, y1) ∈ Y , meaning y0 ∈ IRm0

+ and y1(s) ∈ IRm1
+ for all s

Corresponding first-order conditions: generalized KKT
−∇x0,x1Lk(x0

k , x1
k ; x0

−k , x1
−k ; y0, y1) ∈ NXk

(x0
k , x1

k ),
∇y0,y1Lk(x0

k , x1
k ; x0

−k , x1
−k ; y0, y1) ∈ NY (y0

k , y1
k )

Equilibrium: ȳ0, ȳ1, and x̄0
k , x̄1

k (s) for k = 1, . . . ,K such that the
generalized KKT conditions hold simultaneously for all k



Variational Inequality for Equilibrium With Uncertainty

Assume each Xk(s) is bounded and polyhedral convex, for reducing
the Xk conditions to the given sets Xk(s), and let

Ek(x0
k , x1

k ; x0
−k , x1

−k ; y0, y1) =∑S
s=1 p(s)∇x0

k
Lk(x0

k , x1
k (s); x0

−k , x1
−k(s); y0, y1(s))

ek(x0
k , x1

k (s); x0
−k , x1

−k(s); y0, y1(s); s) =
p(s)∇x1

k (s)Lk(x0
k , x1

k (s); x0
−k , x1

−k(s); y0, y1(s))

g0 = (g0
1 , . . . , g0

m0
), g1 = (g1

1 , . . . , g1
m1

)

Components of the desired variational inequality:

−
(
Ek(x̄0

k , x̄1
k ; x̄0

−k , x̄1
−k ; ȳ0, ȳ1), ek(x̄0

k , x̄1
k (s); x̄0

−k , x̄1
−k(s); ȳ0, ȳ1(s); s)

)
∈ NXk (s)(x̄

0
k , x̄1

k (s)) for k = 1, . . . ,K and s = 1, . . . ,S ,

g0(x̄k
1 , . . . , x̄0

K ) ∈ NIR
m0
+

(ȳ0),

g1(x̄0
1 , x̄1

1 (s); . . . ; x̄0
K , x̄1

K (s); s) ∈ NIR
m1
+

(ȳ1(s)) for s = 1, . . . ,S

Existence of equilibrium: Under full convexity and a Slater
condition, or without that by introducing exogenous prices
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4. A. Jofré, R. T. Rockafellar and R. J-B Wets, “Variational
inequalities and economic equilibrium,” Math. of Operations
Research 32 (2007), 32–50.

5. R. T. Rockafellar, S. Uryasev and M. Zabarankin,
“Equilibrium with investors using a diversity of deviation
measures,” Journal of Banking and Finance 31 (2007), 3251–3268.

Downloads: www.math.washington.edu/∼rtr/mypage.html


