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Introduction: Subdifferential

Consider a locally Lipschitz function f defined on IRn.

The subdifferential:

∂f(x) = co
{
v ∈ IRn : ∃{xk} ⊂ D(f), x = lim

k→∞
xk and v = lim

k→∞
∇f(xk)

}
.

Generalized directional derivatives:

f0(x, g) = lim sup
y→x, α→+0

f(y + αg)− f(y)

α

Regular functions:

f ′(x, g) = f0(x, g)
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Introduction: Quasidifferential

The function f is called quasidifferentiable at a point x if

• it is locally Lipschitz continuous, directionally differentiable at

this point;

• there exist convex, compact sets ∂f (x) and ∂f(x) such that:

f ′(x, g) = max
u∈∂f (x)

〈u, g〉 + min
v∈∂f(x)

〈v, g〉.

∂f(x) - a subdifferential, ∂f(x) - a superdifferential, the pair

[∂f (x), ∂f(x)] - a quasidifferential.
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Introduction

• For regular functions a calculus exists with equalities which can

be used to estimate subgradients.

• f1 and f2 are not regular:

f(x) = f1(x) + f2(x)

∂f(x) ⊂ ∂f1(x) + ∂f2(x).
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Introduction

• Difference of two convex compact sets (Demyanov, 1983):

A and B are convex sets, pA, pB their support functions, T is

any full-measure subset.

A−B = clco{∇pA(x)−∇pB(x) : x ∈ T}.

•

∂f(x)− (−∂f(x) ⊂ ∂f(x).
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Motivation: Cluster analysis

In cluster analysis we assume that we have been given a finite set of
points A in the n-dimensional space IRn, that is

A = {a1, . . . , am}, where ai ∈ IRn, i = 1, . . . , m.

We consider the hard unconstrained partition clustering problem,
that is the distribution of the points of the set A into a given
number k of disjoint subsets Aj, j = 1, . . . , k with respect to
predefined criteria such that:

1) Aj 6= ∅, j = 1, . . . , k;

2) Aj ⋂Al = ∅, j, l = 1, . . . , k, j 6= l;

3) A =
k⋃

j=1
Aj;

4) no constraints on the clusters Aj, j = 1, . . . , k.
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Motivation: Cluster analysis

minimize fk(x) subject to x = (x1, . . . , xk) ∈ IRn×k, (1)

where

fk(x1, . . . , xk) =
1

m

m∑
i=1

min
j=1,...,k

‖xj − ai‖2. (2)

(Bagirov, Rubinov, Sukhorukova and Yearwood, TOP, 2003,

Bagirov and Yearwood, EJOR, 2006, M. Teboulle, JMLR, 2007)
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Motivation: supervised data classification

Piecewise linear separability:

Let A and B be given sets containing m and p n-dimensional

vectors, respectively:

A = {a1, . . . , am}, ai ∈ IRn, i = 1, . . . , m,

B = {b1, . . . , bp}, bj ∈ IRn, j = 1, . . . , p.

University of Ballarat, Victoria, Australia c©.



Motivation: supervised data classification
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Motivation: supervised data classification
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Motivation: supervised data classification

Max-min separability:

An averaged error function is defined as

F (x, y) = (1/m)
m∑

k=1

max

[
0, max

i∈I
min
j∈Ji

{
〈xij, ak〉 − yij + 1

}]

+(1/p)
p∑

t=1

max

[
0, min

i∈I
max
j∈Ji

{
−〈xij, bt〉 + yij + 1

}]
.

(Bagirov, Optimization Methods and Software, 2005)
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Motivation: The estimation of a regression function

In regression analysis an IRp × IR1-valued random vector (U, V ) with

EV 2 < ∞ is considered and the dependency of V on the value of U is

of interest. More precisely, the goal is to find a function ϕ : IRp → IR1

such that ϕ(U) is a “good approximation” of V .

Main aim of the analysis is minimization of the mean squared

prediction error or L2 risk

E{|ϕ(U)− V |2}.

In this case the optimal function is the so-called regression function

m : IRp → IR1, m(u) = E{V |U = u}.
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Motivation: The estimation of a regression function

In applications, usually the distribution of (U, V ) (and hence also the

regression function) is unknown. But often it is possible to observe a

sample of the underlying distribution. This leads to the regression

estimation problem. Here (U, V ), (U1, V1), (U2, V2), . . . are independent

and identically distributed random vectors. The set of data

Dl = {(U1, V1), . . . , (Ul, Vl)}

is given, and the goal is to construct an estimate

ml(·) = ml(·,Dl) : IRp → IR1

of the regression function such that the L2 error∫
|ml(u)−m(u)|2µ(du)

is small.
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Motivation: The estimation of a regression function

For least squares estimates the given data is used to estimate the L2

risk by the so-called empirical L2 risk

1

l

l∑
i=1

|ϕ(Ui)− Vi|2,

and the regression estimate is defined by minimizing this function.

First a class Fl of functions ϕ : IRp → IR1 is chosen and then the

estimate is defined by minimizing the empirical L2 risk over Fl, i.e.,

ml(·) = arg min
ϕ∈Fl

1

l

l∑
i=1

|ϕ(Ui)− Vi|2.
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Motivation: The estimation of a regression function

Fl =

ϕ : IRp → IR1 : ϕ(u) = max
k=1,...,Kl

min
j=1,...,Lk,l

(
〈xk,j, u〉 + yk,j

)
(u ∈ IRp),

for some xk,j ∈ IRp, yk,j ∈ IR1



minimize F (x, y) =
1

l

l∑
i=1

(
max

k=1,...,Kl

min
j=1,...,Lk,l

(
〈xk,j, Ui〉 + yk,j

)
− Vi

)2

.

(Bagirov, Clausen and Kohler, COAP, 2008).
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Motivation: Wireless local area networks planning

Wireless local area networks’ (WLAN) access points are common in

large public areas. Network planning is essential in cellular networks

to warrant substantial investment savings.

Consider outdoor compact scenario characterized by valleys and

hills. All points x = (x1, x2) belong a well defined compact set X ⊂ IR2

and the surface ϕ(·) : X → IR is known continuous function. Distance

δ(x, y) between two points x, y ∈ X is defined by

δ2(x, y) = ‖x− y‖2 + (ϕ(x)− ϕ(y))2.
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Motivation: Wireless local area networks planning

S = {s1, . . . , sp} ⊂ X.

Given a set S ⊂ X and a point x ∈ X we say that x is visible from

the set S if there exists s ∈ S such that

ϕ(λx + (1− λ)s)) ≤ λϕ(x) + (1− λ)ϕ(s)), ∀λ ∈ [0, 1].

The Path Loss g(S, x) is given by

g(S, x) = 10 min
s∈S

log10

[
4π

λ
(δ2(s, x) + θ)

]
.
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Motivation: Wireless local area networks planning

Y = {x1, . . . , xq} ⊂ X

is a discretized set. V (S) is the set of all points x ∈ Y visible from

the set S.

minimize
∑

x∈Y
⋂

V (S)

[g(S, x) + µM max(0, g(S, x)− gM )]

subject to

S = (s1, . . . , sp) ∈ IR2p.

(F.J. Gonzalez-Castano, et al., COAP, 2007)
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Motivation: More examples

• Localization of sensor networks (Bagirov, Lai and Palaniswami,

2008)

• Minimization of eigenvalue products (Burke, Lewis and Overton,

SIAMOPT, 2005)

• Computation of a separating set (Grzybowski, Pallaschke and

Urbanski, OMS, 2005)
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Approximation of subgradients

Approximating subdifferentials by random sampling of gradients

(Burke, Lewis and Overton).
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Approximation of subgradients

• f is quasidifferentiable.

• its subdifferential ∂f(x) and superdifferential ∂f(x) at any x ∈ IRn

are polytopes:

A = {a1, . . . , am}, ai ∈ IRn, i = 1, . . . , m, m ≥ 1

and

B = {b1, . . . , bp}, bj ∈ IRn, j = 1, . . . , p, p ≥ 1

such that

∂f (x) = coA, ∂f(x) = coB.
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Approximation of subgradients

G = {e ∈ IRn : |ei| = 1, i = 1, . . . , n}

Take e ∈ G. Consider sets:

R0 = A, R0 = B,

Rj =
{
v ∈ Rj−1 : vjej = max{wjej : w ∈ Rj−1}

}
,

Rj =
{
v ∈ Rj−1 : vjej = min{wjej : w ∈ Rj−1}

}
.

Proposition 1 The sets Rn and Rn are singletons.
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Approximation of subgradients

Take e ∈ G and consider vectors ej = ej(α), j = 1, . . . , n with α ∈ (0, 1] :

e1 = (αe1, 0, . . . , 0),
e2 = (αe1, α

2e2, 0, . . . , 0),
. . . = . . . . . . . . .

en = (αe1, α
2e2, . . . , α

nen).
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Approximation of subgradients

R(x, ej(α)) =
{
v ∈ A : 〈v, ej〉 = max

u∈A
〈u, ej〉

}
,

R(x, ej(α)) =
{
w ∈ B : 〈w, ej〉 = min

u∈B
〈u, ej〉

}
.

Proposition 2 There exists α0 > 0 such that

R(x, ej(α)) ⊂ Rj, R(x, ej(α)) ⊂ Rj, j = 1, . . . , n, ∀α ∈ (0, α0).

Corollary 1 There exits α0 > 0 such that

f ′(x, ej(α)) = f ′(x, ej−1(α))+vjα
jgj+wjα

jgj, ∀v ∈ Rj, w ∈ Rj, j = 1, . . . , n.

for all α ∈ (0, α0].
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Approximation of subgradients

Take e ∈ G and define the following points

x0 = x, xj = x0 + λej(α), j = 1, . . . , n.

xj = xj−1 + (0, . . . , 0, λαjej, 0, . . . , 0), j = 1, . . . , n.

Let v = v(α, λ) ∈ IRn be a vector with the following coordinates:

vj = (λαjej)
−1
[
f(xj)− f (xj−1)

]
, j = 1, . . . , n. (3)

Introduce the following set:

V (e, α) =
{
w ∈ IRn : ∃(λk → +0, k → +∞), w = lim

k→+∞
v(α, λk)

}
.
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Approximation of subgradients

Proposition 3 There exists α0 > 0 such that

V (g, α) ⊂ ∂f(x)

for any α ∈ (0, α0].
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Approximation of subgradients

Let x ∈ IRn be a given point. The above described scheme allows us

to easily check whether the function is strictly differentiable at this

point.

• Take any e ∈ G, a sufficiently small α ∈ (0, 1] and compute a

subgradient v1 ∈ ∂f(x).

• Then we take a vector e2 ∈ G such that e2 = −e and compute a

subgradient v2 ∈ ∂f(x).

Proposition 4 If v1 = v2 then the function f is strictly differentiable

at x, otherwise f is nondifferentiable at x.
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Approximation of subgradients

Let x0 ∈ IRn be a given point.

• There exist α0 ∈ (0, 1] and λ0 > 0 such that the funstion f is

strictly differentiable at points xn(e) = x0 + λen(α) for all e ∈ G,

α ∈ (0, α0] and λ ∈ (0, λ0].
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Approximation of subgradients

S1 = {g ∈ IRn : ‖g‖ = 1},

P = {z(λ) : z(λ) ∈ IR1, z(λ) > 0, λ > 0, λ−1z(λ) → 0, λ → 0}.

We take any g ∈ S1 and define |gi| = max{|gk|, k = 1, . . . , n}. We

define a sequence of n + 1 points as follows:

x0 =
x1 =
x2 =
. . . =
xn =

x+ λg,

x0+ z(λ)e1(α),
x0+ z(λ)e2(α),
. . . . . .

x0+ z(λ)en(α).
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Approximation of subgradients

Definition 1 The discrete gradient of the function f at the point

x ∈ IRn is the vector Γi(x, g, e, z, λ, α) = (Γi
1, . . . , Γ

i
n) ∈ IRn, g ∈ S1 with the

following coordinates:

Γi
j = [z(λ)αjej)]

−1
[
f(xj)− f(xj−1)

]
, j = 1, . . . , n, j 6= i,

Γi
i = (λgi)

−1

f(x + λg)− f(x)− λ
n∑

j=1,j 6=i

Γi
jgj

 .
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Approximation of subgradients

For a given α > 0 we define the following set:

B(x, α) = {v ∈ IRn : ∃(g ∈ S1, e ∈ G, zk ∈ P, zk → +0, λk → +0, k → +∞),

v = lim
k→+∞

Γi(x, g, e, zk, λk, α)}. (4)

Proposition 5 Assume that f is semismooth, quasidifferentiable

function and its subdifferential and superdifferential are polytopes at

a point x. Then there exists α0 > 0 such that

coB(x, α) ⊂ ∂f(x)

for all α ∈ (0, α0].
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Approximation of subgradients

Consider two polytopes A and B. Given a vector e ∈ G we can

construct sets:

Rj(e, A), Rj(e, B) j = 1, . . . , n.

The sets Rn(e, A), Rn(e, B) are singletons. For g ∈ S1 define the sets:

QA(g) = Argmax {〈v, g〉 : v ∈ A} , QB(g) = Argmax {〈v, g〉 : v ∈ B} .

The difference between two polytopes A and B:

A−̂B = {v ∈ IRn : ∃(g ∈ S1, e ∈ G) : v = w1 − w2,

w1 ∈ Rn(e, QA(g)), w2 ∈ Rn(e, QB(g))}

∂f(x) = ∂f (x)−̂(−∂f(x)).
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Computation of descent directions

Let e ∈ G, λ > 0, the number c ∈ (0, 1) and a tolerance δ > 0 be given.

Algorithm 1 Computation of the descent direction.

Step 1. Choose g1 ∈ S1 and compute v1 = Γi(x, g1, e, z, λ, α). Set

D1(x) = {v1} and k = 1.

Step 2. Compute ‖wk‖2 = min{‖w‖2 : w ∈ Dk(x)}. If ‖wk‖ ≤ δ, stop.

Step 3. Compute the search direction by gk+1 = −‖wk‖−1wk.

Step 4. If f(x + λgk+1)− f (x) ≤ −cλ‖wk‖, stop.

Step 5. Compute vk+1 = Γi(x, gk+1, e, z, λ, α), construct the set

Dk+1(x) = co {Dk(x)
⋃
{vk+1}}, set k = k + 1 and go to Step 2.
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Minimization algorithm

Let sequence δk, λk > 0, δk, λk → 0, k →∞ be given.

Algorithm 2 Discrete gradient method

Step 1. Choose any starting point x0 ∈ IRn and set k = 0.

Step 2. Apply Algorithm 1 for the computation of the descent
direction at x = xk, δ = δk, λ = λk. This algorithm terminates after a
finite number of iterations. As a result it either finds the descent
direction or that the point xk is δk-stationary point.

Step 3. If it finds the descent direction do line search and update
the point xk, otherwise update λk and δk and go to Step 2.

If the function f is semismooth quasidifferentiable, its subdifferential
and superdifferential are polytopes then the algorithm converges to
Clarke stationary points.
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Computational results

The method was applied to solve the following problems:

1. Cluster analysis problems (Bagirov and Yearwood, EJOR, 2006,

2008);

2. Supervised data classification problems (Bagirov, OMS, 2005,

Bagirov, Ugon and Webb, 2008) ;

3. Estimation of regression functions (Bagirov, Clausen and Kohler,

COAP, 2008).

4. Localization of sensor networks (Bagirov, Lai and Palaniswami,

2008).
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The estimation of a regression function

x1

x2

y

x1

x2

y
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Conclusions

THANK YOU!
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