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• Demmel’s paradigm and metric regularity:
ill-conditioning↔ distance to ill-posedness↔ algorithms.

• Von Neumann’s method of alternating projections:
nonconvex versions in image-processing and control design.

• Linear convergence of alternating nonconvex projections,
and Mordukhovich’s “extremal principle”.

• Pseudospectra and robust modelling of dynamics.

• Lipschitz behavior of pseudospectra, resolvent-critical
points, and Ioffe’s semi-algebraic Sard theorem.
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Distance from y to S ⊂ Rn is

dS(y) = min
x∈S
‖x− y‖.

PS(y) = {nearest points}.

S is prox-regular if PS single-
valued locally. Eg: convex sets,
smooth manifolds. . . .

For closed S, T , to find
a point in S ∩ T ,
repeat:

x ← PS(x)

x ← PT (x).

dS∩T (x)→ 0 if S and T convex (von Neumann ’33) . . . ,
linearly if ri S ∩ ri T 6= ∅.
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Projection may be numerically easy even for nonconvex sets, so
alternating projections also tempts as a nonconvex heuristic.

Eg (Grigoriadis-Skelton ’96). . . Low-order control:{
X positive semidefinite : rank X ≤ r

}
∩

{
X : A(X) = b

}
.

Eg (Bauschke-Combettes-Luke ’02). . . Phase retrieval:
For linear A : Cn → Cm,{

(x, z) : Ax = z
}
∩

{
(x, z) : |zj| = bj ∀j

}
.
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We seek a 100-by-110 matrix X of rank 4, satisfying 450
linear equations:

A(X) = b.

We solve by alternately projecting onto

• {X : A(X) = b} (by solving the normal equations);

• {X : rank X = 4} (via the singular value decomposition).

Why does alternating nonconvex projections work?
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NS(x) at x ∈ S consists of
limits of directions to points
y near x from PS(y).

Extremal principle (Mordukhovich)

(∗) NS(x) ∩ −NT (x) = {0}

⇒ small translations preserve a local intersection.

Algorithmic proof via. . .

Theorem (L/Luke/Malick ’07) If S or T is prox-regular,
(∗) ⇒ alternating projections converges linearly near x.
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Closed S, T have regular intersection at x̄:

NS(x̄) ∩ −NT (x̄) = {0}.
So for some θ > 0, y, z near x̄, ŷ ∈
PS(y), ẑ ∈ PT (z) implies angle ≥ θ

between normal vector y− ŷ and ẑ− z.

Convergence proof
For x ∈ S near x̄,

‖PSPT (x)− PT (x)‖
‖PT (x)− x‖

isn’t much larger than
cos θ.
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6. EXAMPLE: POSITIVE-DEFINITE SYSTEMS

Ax = b.

• Small distance to singularity λmin(A).

• Weak error bound:

‖x−A−1b‖ ≤
1

λmin

‖Ax− b‖.

• Slow linear rate of basic algorithms. Eg:(
λmax − λmin

λmax + λmin

)2

for steepest descent. Conjugate gradients analogous.

Extends to linear programming via interior points (Renegar ’95).

How general is this pattern?
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7. INVERTING SET-VALUED MAPPINGS

Given set-valued F : Rp →→ Rq, suppose

• F (x) is easy to compute;

• F−1(y) is hard to compute.

Problem Given ȳ, find x so ȳ ∈ F (x).

Example (Set intersection) Find x ∈ S ∩ T .
Equivalently, if

G(x) = (S − x)× (T − x),

solve
(0, 0) ∈ G(x).
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F is metrically regular for ȳ ∈ F (x̄) if, for some ρ,

dF −1(y)(x) ≤ ρdF (x)(y) for all (x, y) near (x̄, ȳ).

If not, ȳ is critical. Smallest such ρ is modulus. Examples:

• Smooth F is metrically regular wherever ∇F onto:

modulus =
1

σmin(∇F (x̄))
.

• For “set intersection”, G(x) = (S − x)× (T − x),

modulus =
1

√
1− cos θ

,

where θ is minimal angle between NS(x̄) and −NT (x̄).
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The distance to ill-posedness for ȳ ∈ F (x̄), is

inf
linear A

{
‖A‖ : irregularity for ȳ + Ax̄ ∈ (F + A)(x̄)

}
.

Examples

• For smooth F , distance is σmin(∇F (x̄)):
underlies solution speed for F (x) = 0.

• For set intersection, distance is
√

1− cos θ.
Alternating projections converges linearly, rate cos θ.

Theorem (Dontchev/L/Rockafellar ’03) For any closed F ,

distance to ill-posedness =
1

modulus
.
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The modulus often controls local linear convergence rates:

• Proximal point methods: Iusem-Pennanen-Svaiter ’03,
Aragón-Artacho-Dontchev-Geoffroy ’05.

• Klatte/Kummer ’07 several conceptual algorithms.

• Luo-Tseng ’93: error bounds and descent methods.

Demmel ’87: for a square matrix,

spectrum hard to compute
m

defective matrices are nearby.
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10. PSEUDOSPECTRA (Trefethen-Embree ’05)

Asymptotics of ẋ = Ax depend on spectrum Λ(A).

But transient stability depends on the pseudospectra

Λε(A) = {z : σmin(A− zI) ≤ ε}.

Kreiss Matrix Theorem (1962) Equivalent properties:

• ẋ = Ax has big transient peaks

• Λε(A) grows quickly into right halfplane as 0 < ε ↑

Demmel’s example: A = −


1 5 52 53 54

0 1 5 52 53

0 0 1 5 52

0 0 0 1 5
0 0 0 0 1

 . . .
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. . . Resolvent-critical points . . .

On C, the resolvent norm

1

σmin(A− zI)
= ‖(A− zI)−1‖

can’t have local maxima (by the Maximum Modulus Principle),
but can have other smooth and nonsmooth critical points.

(Aside: Largest saddle value × distance to defectiveness = 1.)
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Theorem (Sard ’42) Sufficiently smooth F have almost no
critical values, so F (x) = b “typically” behaves well.

Example (Whitney ’35) F : R2 → R is C1 yet nonconstant
along an arc of critical points (⇒ interval of critical values).

Concrete examples often have semi-algebraic graphs:⋃
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⋂
j

{
x ∈ Rn : pij(x)

(=
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)
0

}
for polynomials pij. Eg: pseudospectrum Λε : Mn →→ C, but
not Whitney’s example.

Semi-algebraic sets are easy to recognize (Tarski-Seidenberg),
and well-behaved. Many applications in optimization.
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Application Is pseudospectrum A 7→ Λε(A) well-behaved?

Using (Ioffe ’07) (or (Bolte/Daniiliidis/L/Shiota ’05)),

z 7→ σmin(A− zI)

has only finitely many critical values. Hence (via variational
calculus and Toeplitz-Hausdorff Theorem):

Λε is Lipschitz around A for all small ε > 0

(L/Pang ’06). Unlike the spectrum. . .



15. SUMMARY



15. SUMMARY

Central theoretical ideas:

metric regularity ↔ distance to ill-posedness
l l

Lipschitz behavior ↔ critical points ↔ speed of algorithms



15. SUMMARY

Central theoretical ideas:

metric regularity ↔ distance to ill-posedness
l l

Lipschitz behavior ↔ critical points ↔ speed of algorithms

Examples:

• alternating projections

• pseudospectra



15. SUMMARY

Central theoretical ideas:

metric regularity ↔ distance to ill-posedness
l l

Lipschitz behavior ↔ critical points ↔ speed of algorithms

Examples:

• alternating projections

• pseudospectra

people.orie.cornell.edu/∼aslewis


	red OUTLINE
	red PROJECTION
	red NONCONVEX ALTERNATING PROJECTIONS
	red KEY IDEA: THE NORMAL CONE
	red DEMMEL'S IDEA (1987): ILL-CONDITIONED  NEARLY ILL-POSED  SLOW CONVERGENCE 
	red EXAMPLE: POSITIVE-DEFINITE SYSTEMS
	red INVERTING SET-VALUED MAPPINGS
	red LOCAL ERROR BOUNDS
	red CONDITIONING AND SPEED
	red PSEUDOSPECTRA blue(Trefethen-Embree '05)
	red EIGTOOL PLOTS blue(T. Wright)
	red COMPUTING WITH PSEUDOSPECTRA
	red CRITICAL VALUES OF SET-VALUED MAPPINGS
	red A TAME SARD THEOREM
	red SUMMARY

