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OUTLINE
e Demmel’s paradigm and metric regularity:
ill-conditioning < distance to ill-posedness <« algorithms.

e Von Neumann's method of alternating projections:
nonconvex versions in image-processing and control design.

e Linear convergence of alternating nonconvex projections,
and Mordukhovich’s “extremal principle”.

e Pseudospectra and robust modelling of dynamics.

e Lipschitz behavior of pseudospectra, resolvent-critical
points, and loffe’s semi-algebraic Sard theorem.



2. PROJECTION



PROJECTION
Distance from y to S C R" is

d = mi —yll.
s(y) r;lelglllw y||



PROJECTION
Distance from y to S C R" is

d = mi —yll.
s(y) lglelglllw y||

Ps(y) = {nearest points}.



PROJECTION
Distance from y to S C R" is

d — mi —qll.
s(y) lglelglllw y||

Ps(y) = {nearest points}.

S is prox-regular if Pg single-
valued locally.



PROJECTION

Distance from y to S C R" is
d — mi —yl|.
s(y) = min|lz —y]
Ps(y) = {nearest points}.

S is prox-regular if Pg single-
valued locally. Eg: convex sets,
smooth manifolds. . ..



PROJECTION

Distance from y to S C R" is
d — mi —yl|.
s(y) = min|lz —y]
Ps(y) = {nearest points}.

S is prox-regular if Pg single-
valued locally. Eg: convex sets,
smooth manifolds. . ..




PROJECTION

Distance from y to S C R" is
d — mi —yl|.
s(y) = min|lz —y]
Pg(y) = {nearest points}.

S is prox-regular if Pg single-
valued locally. Eg: convex sets,
smooth manifolds. . ..

For closed S, T, to find
a pointin SN T,




PROJECTION

Distance from y to S C R" is
d — mi —yl|.
s(y) = min|lz —y]
Pg(y) = {nearest points}.

S is prox-regular if Pg single-
valued locally. Eg: convex sets,
smooth manifolds. . ..

For closed S, T, to find
a pointin SN T,
repeat:

x «— Pg(x)



PROJECTION

Distance from y to S C R" is
d — mi —yl|.
s(y) = min|lz —y]
Pg(y) = {nearest points}.

S is prox-regular if Pg single-
valued locally. Eg: convex sets,
smooth manifolds. . ..

For closed S, T, to find
a pointin SN T,
repeat:

x «— Pg(x)

x «— Pr(x).



PROJECTION

Distance from y to S C R" is
d — mi —yl|.
s(y) = min|lz —y]
Ps(y) = {nearest points}.

S is prox-regular if Pg single-
valued locally. Eg: convex sets,
smooth manifolds. . ..

For closed S, T, to find
a pointin SN T,
repeat:

x «— Pg(x)

x «— Pr(x).




PROJECTION

Distance from y to S C R" is
d — mi —yl|.
s(y) = min|lz —y]
Ps(y) = {nearest points}.

S is prox-regular if Pg single-
valued locally. Eg: convex sets,
smooth manifolds. . ..

For closed S, T, to find
a pointin SN T,
repeat:

x «— Ps(x)

x «— Pr(x).

dsnr(x) — 0if S and T' convex (von Neumann '33) ...,
linearly if ri S NriT # 0.



3. NONCONVEX ALTERNATING PROJECTIONS



NONCONVEX ALTERNATING PROJECTIONS

Projection may be numerically easy even for nonconvex sets, so
alternating projections also tempts as a nonconvex heuristic.



NONCONVEX ALTERNATING PROJECTIONS

Projection may be numerically easy even for nonconvex sets, so
alternating projections also tempts as a nonconvex heuristic.

Eg (Grigoriadis-Skelton '96)... Low-order control:

{X positive semidefinite : rank X < r} N {X P A(X) = b}.



NONCONVEX ALTERNATING PROJECTIONS

Projection may be numerically easy even for nonconvex sets, so
alternating projections also tempts as a nonconvex heuristic.

Eg (Grigoriadis-Skelton '96)... Low-order control:

{X positive semidefinite : rank X < r} N {X P A(X) = b}.

Eg (Bauschke-Combettes-Luke '02)... Phase retrieval:
For linear A: C* — C™,

{(w,z):Aazzz} N {(a:,z):|zj|=bj ‘v’j}.
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We seek a 100-by-110 matrix X of rank 4, satisfying 450
linear equations:
A(X) =b.
We solve by alternately projecting onto
e {X : A(X) = b} (by solving the normal equations);

e {X :rank X = 4} (via the singular value decomposition).

logIA(X, )- bll -

L L L
) 1000 1500 ;00

iteration k

=)

Why does alternating nonconvex projections work?
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Ng(x) at € S consists of
limits of directions to points
y near x from Pgs(y). y

N(x)
Extremal principle (Mordukhovich)
(*)  Ns(z) N —Nr(z) = {0}

= small translations preserve a local intersection.
Algorithmic proof via. . .

Theorem (L/Luke/Malick '07) If S or T is prox-regular,
(%) = alternating projections converges linearly near x.
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Closed S, T have regular intersection at Z:

Ns(Z) N —Nz(z) = {0}.

So for some @ > 0, y,z near &, § €
Ps(y), 2 € Pr(z) implies angle > 6
between normal vector y — ¢y and 2 — z.

Convergence proof P-(x)
For x € S near T,

| PsPr(x) — Pr(z)|l
| Pr(z) — x| s

isn't much larger than
cos 6. X FsPr)

prox-regularity
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DEMMEL'’S IDEA (1987): ILL-CONDITIONED =
NEARLY ILL-POSED = SLOW CONVERGENCE

Findx € SNT. Equivalently,

solve dg(x) + dr(x) = 0.

Three equivalent properties of instances:

“Basic” algorithms
converge slowly.

Small perturbations
cause “ill-posedness” .

Weak “error bounds”:
o ds~r < k(ds + dr)
needs k large.
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Ax = b.
e Small distance to singularity Amin(A).

e Weak error bound:
1

min

|z — A7 <

||Ax — bl|.

e Slow linear rate of basic algorithms. Eg:

(}\max - >\min>2
>\max + >\min

for steepest descent. Conjugate gradients analogous.

Extends to linear programming via interior points (Renegar '95).

How general is this pattern?
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INVERTING SET-VALUED MAPPINGS

Given set-valued F' : RP = RY, suppose
e F(x) is easy to compute;

e F~!(y) is hard to compute.

Problem Given g, find  so g € F(x).

Example (Set intersection) Findax € SNT.
Equivalently, if

G(z) = (S — ) x (T — ),

solve

(0,0) € G(x).
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LOCAL ERROR BOUNDS

F is metrically regular for y € F(&) if, for some p,

dp-1(y)(x) < pdp@)(y) forall (z,y) near (Z, ).
If not, 9 is critical. Smallest such p is modulus. Examples:
e Smooth F' is metrically regular wherever V F' onto:

1
Tmin(VF(Z))

modulus =

e For “set intersection”, G(z) = (S — z) X (T — x),
1
V1 —cos6’

where 6 is minimal angle between Ng(&) and —Np(&).

modulus =
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CONDITIONING AND SPEED
The distance to ill-posedness for y € F (&), is

inf {||A|| : irregularity for y + Az € (F + A)(a‘c)}

linear A

Examples

e For smooth F', distance is omin(VEF(Z)):
underlies solution speed for F'(x) = 0.

e For set intersection, distance is v/1 — cos 6.
Alternating projections converges linearly, rate cos 6.

Theorem (Dontchev/L/Rockafellar '03) For any closed F',
1

distance to ill-posedness = ——.
modulus
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The modulus often controls local linear convergence rates:

e Proximal point methods: lusem-Pennanen-Svaiter '03,
Aragén-Artacho-Dontchev-Geoffroy '05.

e Klatte/Kummer '07 several conceptual algorithms.

e Luo-Tseng '93: error bounds and descent methods.

Demmel '87: for a square matrix,

spectrum hard to compute

¢

defective matrices are nearby.
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PSEUDOSPECTRA (Trefethen-Embree '05)

Asymptotics of & = Ax depend on spectrum A(A).

But transient stability depends on the pseudospectra
Ac(A) = {z:0mn(A — 2I) < €}.

Kreiss Matrix Theorem (1962) Equivalent properties:

e & = Ax has big transient peaks

e A.(A) grows quickly into right halfplane as 0 < €

1 5 52 53 547
015 5253
Demmel’'s example: A=—|{00 1 5 5?2
000 1 5
(000 0 1
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-1.2

5 —
£
4 g
=
3 o
— ] —;
‘ £
1 =
o
=
n) je— )
-1
-2
—
-3
-4
3 | — R
£ -4 -2 1] 2

A 01(A) intersects right halfplane, so
an unstable X satisfies || X — A|| < .01,

At
lle*™ |

transient hehaviour
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... Resolvent-critical points ...

On C, the resolvent norm
1
Omin(A — zI)

= (A —=zD)7

can't have local maxima (by the Maximum Modulus Principle),
but can have other smooth and nonsmooth critical points.

| local
minimizer

T

smooth saddle nonsmooth saddle

% 5 -1 o5 o o0s 1 15 2 -1

2 15 -1 05 o 05 1 15 2 6 4 2 o 2

(Aside: Largest saddle value X distance to defectiveness = 1.)



12.  COMPUTING WITH PSEUDOSPECTRA



COMPUTING WITH PSEUDOSPECTRA

Example: a(A) = max {Re)\ A€ AG(A)}.



COMPUTING WITH PSEUDOSPECTRA

Example: a(A) = max {Re)\ A€ AG(A)}.

Key pseudospectral properties:



COMPUTING WITH PSEUDOSPECTRA

Example: a(A) = max {Re)\ A€ AG(A)}.

Key pseudospectral properties:

e Components contain
eigenvalues.



COMPUTING WITH PSEUDOSPECTRA

Example: a(A) = max {Re)\ A€ AG(A)}.

Key pseudospectral properties:

e Components contain
eigenvalues.

e Hamiltonian eigensolvers
(Benner et al. '00) compute
intersections with lines.



COMPUTING WITH PSEUDOSPECTRA

Example: a(A) = max {Re)\ A€ AG(A)}.

Key pseudospectral properties:

e Components contain
eigenvalues.

e Hamiltonian eigensolvers
(Benner et al. '00) compute
intersections with lines.

Hence eigtool’s reliable
criss-cross algorithm for c..



COMPUTING WITH PSEUDOSPECTRA

Example: a(A) = max {Re)\ A€ AG(A)}.

Key pseudospectral properties: step (D

®

e Components contain
eigenvalues.

e Hamiltonian eigensolvers
(Benner et al. '00) compute

4G,

intersections with lines. eigenvalues

Hence eigtool’s reliable

criss-cross algorithm for c..

AN
\/kj/)

® ©®



COMPUTING WITH PSEUDOSPECTRA

Example: a(A) = max {Re)\ A€ AG(A)}.

Key pseudospectral properties: step (D

®

e Components contain
eigenvalues.

e Hamiltonian eigensolvers
(Benner et al. '00) compute

4G,

intersections with lines. eigenvalues

Hence eigtool’s reliable

AN
\/kj/)

criss-cross algorithm for c..

Global and quadratic convergence: (Burke/L/Overton '03).

® ©®



COMPUTING WITH PSEUDOSPECTRA

Example: a(A) = max {Re)\ A€ AG(A)}.

Key pseudospectral properties: step (D

®

e Components contain
eigenvalues.

e Hamiltonian eigensolvers
(Benner et al. '00) compute

4G,

intersections with lines. eigenvalues

Hence eigtool’s reliable

criss-cross algorithm for c..

AN
\/kj/)

Global and quadratic convergence: (Burke/L/Overton '03).

Nonsmooth methods can optimize .

® ©®



COMPUTING WITH PSEUDOSPECTRA

Example: a(A) = max {Re)\ A€ AG(A)}.

Key pseudospectral properties: step (D

®

e Components contain
eigenvalues.

e Hamiltonian eigensolvers
(Benner et al. '00) compute

4G,

intersections with lines. eigenvalues

Hence eigtool’s reliable

criss-cross algorithm for c..

AN
\/kj/)

Global and quadratic convergence: (Burke/L/Overton '03).

Nonsmooth methods can optimize o (and H™

norm:

® ©®



COMPUTING WITH PSEUDOSPECTRA

Example: a(A) = max {Re)\ A€ AG(A)}.

Key pseudospectral properties: step (D ®| |®

®

e Components contain
eigenvalues.

®

4G,

e Hamiltonian eigensolvers
(Benner et al. '00) compute
intersections with lines. eigenvalues

Hence eigtool’s reliable
criss-cross algorithm for c..

AN
\/kj/)

Global and quadratic convergence: (Burke/L/Overton '03).

Nonsmooth methods can optimize . (and H* norm: HIFOO).



13. CRITICAL VALUES OF SET-VALUED MAPPINGS



CRITICAL VALUES OF SET-VALUED MAPPINGS

If metric regularity fails for b € F'(x), then value b is critical.



CRITICAL VALUES OF SET-VALUED MAPPINGS

If metric regularity fails for b € F'(x), then value b is critical.

Theorem (Sard '42) Sufficiently smooth F' have almost no
critical values, so F'(x) = b "typically” behaves well.



CRITICAL VALUES OF SET-VALUED MAPPINGS

If metric regularity fails for b € F'(x), then value b is critical.

Theorem (Sard '42) Sufficiently smooth F' have almost no
critical values, so F'(x) = b "typically” behaves well.

Example (Whitney '35) F:R? — R is C! yet nonconstant
along an arc of critical points (= interval of critical values).



CRITICAL VALUES OF SET-VALUED MAPPINGS

If metric regularity fails for b € F'(x), then value b is critical.

Theorem (Sard '42) Sufficiently smooth F' have almost no
critical values, so F'(x) = b "typically” behaves well.

Example (Whitney '35) F:R? — R is C! yet nonconstant
along an arc of critical points (= interval of critical values).

Concrete examples often have semi-algebraic graphs:
e e min (]

for polynomials p;;.



CRITICAL VALUES OF SET-VALUED MAPPINGS

If metric regularity fails for b € F'(x), then value b is critical.

Theorem (Sard '42) Sufficiently smooth F' have almost no
critical values, so F'(x) = b "typically” behaves well.

Example (Whitney '35) F:R? — R is C! yet nonconstant
along an arc of critical points (= interval of critical values).

Concrete examples often have semi-algebraic graphs:
e e min (]

for polynomials p;;. Eg: pseudospectrum A.: M"™ = C,



CRITICAL VALUES OF SET-VALUED MAPPINGS

If metric regularity fails for b € F'(x), then value b is critical.

Theorem (Sard '42) Sufficiently smooth F' have almost no
critical values, so F'(x) = b "typically” behaves well.

Example (Whitney '35) F:R? — R is C! yet nonconstant
along an arc of critical points (= interval of critical values).

Concrete examples often have semi-algebraic graphs:
e e min (]

for polynomials p;;. Eg: pseudospectrum Ac: M"™ = C, but
not Whitney's example.



CRITICAL VALUES OF SET-VALUED MAPPINGS

If metric regularity fails for b € F'(x), then value b is critical.

Theorem (Sard '42) Sufficiently smooth F' have almost no
critical values, so F'(x) = b "typically” behaves well.

Example (Whitney '35) F:R? — R is C! yet nonconstant
along an arc of critical points (= interval of critical values).

Concrete examples often have semi-algebraic graphs:
e e min (]

for polynomials p;;. Eg: pseudospectrum Ac: M"™ = C, but
not Whitney's example.

Semi-algebraic sets are easy to recognize (Tarski-Seidenberg),



CRITICAL VALUES OF SET-VALUED MAPPINGS

If metric regularity fails for b € F'(x), then value b is critical.

Theorem (Sard '42) Sufficiently smooth F' have almost no
critical values, so F'(x) = b "typically” behaves well.

Example (Whitney '35) F:R? — R is C! yet nonconstant
along an arc of critical points (= interval of critical values).

Concrete examples often have semi-algebraic graphs:
UN{e =2 (3 of
i j
for polynomials p;;. Eg: pseudospectrum Ac: M"™ = C, but
not Whitney's example.

Semi-algebraic sets are easy to recognize (Tarski-Seidenberg),
and well-behaved.



CRITICAL VALUES OF SET-VALUED MAPPINGS

If metric regularity fails for b € F'(x), then value b is critical.

Theorem (Sard '42) Sufficiently smooth F' have almost no
critical values, so F'(x) = b "typically” behaves well.

Example (Whitney '35) F:R? — R is C! yet nonconstant
along an arc of critical points (= interval of critical values).

Concrete examples often have semi-algebraic graphs:
UN{e =2 (3 of
i j
for polynomials p;;. Eg: pseudospectrum Ac: M"™ = C, but
not Whitney's example.

Semi-algebraic sets are easy to recognize (Tarski-Seidenberg),
and well-behaved. Many applications in optimization.
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Theorem (loffe '07) For any semi-algebraic F': R™ = R™,
dim {critical values} < m.
So the system b € F'(x) is well-posed for almost all b.
Application |s pseudospectrum A +— A (A) well-behaved?
Using (loffe '07) (or (Bolte/Daniiliidis/L /Shiota '05)),
z — Omin(A — 2I)

has only finitely many critical values. Hence (via variational
calculus and Toeplitz-Hausdorff Theorem):

A is Lipschitz around A for all small e > 0
(L/Pang '06). Unlike the spectrum. ..
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