ILLUSTRATIONS OF METRIC REGULARITY Adrian Lewis

Cornell University

April 2, 2008

Beijing, 2008

Joint work with: J. Bolte, J. Burke A. Daniilidis, A. Dontchev, R. Luke J. Malick, M. Overton, J. Pang R.T. Rockafellar, M. Shiota

Demmel's paradigm and metric regularity:
 ill-conditioning ↔ distance to ill-posedness ↔ algorithms.

- Demmel's paradigm and metric regularity:
 ill-conditioning ↔ distance to ill-posedness ↔ algorithms.
- Von Neumann's method of alternating projections: nonconvex versions in image-processing and control design.

- Demmel's paradigm and metric regularity:
 ill-conditioning ↔ distance to ill-posedness ↔ algorithms.
- Von Neumann's method of alternating projections: nonconvex versions in image-processing and control design.
- Linear convergence of alternating nonconvex projections, and Mordukhovich's "extremal principle".

- Demmel's paradigm and metric regularity:
 ill-conditioning ↔ distance to ill-posedness ↔ algorithms.
- Von Neumann's method of alternating projections: nonconvex versions in image-processing and control design.
- Linear convergence of alternating nonconvex projections, and Mordukhovich's "extremal principle".
- Pseudospectra and robust modelling of dynamics.

- Demmel's paradigm and metric regularity:
 ill-conditioning ↔ distance to ill-posedness ↔ algorithms.
- Von Neumann's method of alternating projections: nonconvex versions in image-processing and control design.
- Linear convergence of alternating nonconvex projections, and Mordukhovich's "extremal principle".
- Pseudospectra and robust modelling of dynamics.
- Lipschitz behavior of pseudospectra, resolvent-critical points, and loffe's semi-algebraic Sard theorem.

Distance from y to $S \subset \mathbb{R}^n$ is

$$d_S(y) \;=\; \min_{x\in S} \|x-y\|.$$

Distance from y to $S \subset \mathbb{R}^n$ is

$$egin{array}{rcl} d_S(y) &=& \min_{x\in S} \|x-y\|.\ P_S(y) &=& \{ ext{nearest points}\}. \end{array}$$

Distance from y to $S \subset \mathbb{R}^n$ is

$$egin{array}{rcl} d_S(y) &=& \min_{x\in S} \|x-y\|. \ P_S(y) &=& \{ ext{nearest points}\}. \end{array}$$

 $m{S}$ is prox-regular if $m{P}_S$ single-valued locally.

Distance from y to $S \subset \mathbb{R}^n$ is

$$egin{array}{rcl} d_S(y) &=& \min_{x\in S} \|x-y\|. \ P_S(y) &=& \{ ext{nearest points}\}. \end{array}$$

S is prox-regular if P_S singlevalued locally. Eg: convex sets, smooth manifolds....

Distance from y to $S \subset \mathbb{R}^n$ is

$$egin{array}{rll} d_S(y) &=& \min_{x\in S} \|x-y\|. \ P_S(y) &=& \{ ext{nearest points}\}. \end{array}$$

S is **prox-regular** if P_S singlevalued locally. Eg: convex sets, smooth manifolds....

Distance from y to $S \subset \mathbb{R}^n$ is

$$egin{array}{rcl} d_S(y) &=& \min_{x\in S} \|x-y\|. \ P_S(y) &=& \{ ext{nearest points}\}. \end{array}$$

S is prox-regular if P_S singlevalued locally. Eg: convex sets, smooth manifolds....

For closed S, T, to find a point in $S \cap T$,

Distance from y to $S \subset \mathbb{R}^n$ is

$$egin{array}{rcl} d_S(y) &=& \min_{x\in S} \|x-y\|. \ P_S(y) &=& \{ ext{nearest points}\}. \end{array}$$

S is prox-regular if P_S singlevalued locally. Eg: convex sets, smooth manifolds....

For closed S, T, to find a point in $S \cap T$, repeat:

$$x \leftarrow P_S(x)$$

Distance from y to $S \subset \mathbb{R}^n$ is

$$egin{array}{rcl} d_S(y) &=& \min_{x\in S} \|x-y\|. \ P_S(y) &=& \{ ext{nearest points}\}. \end{array}$$

S is prox-regular if P_S singlevalued locally. Eg: convex sets, smooth manifolds....

For closed S, T, to find a point in $S \cap T$, repeat:

$$egin{array}{rcl} x &\leftarrow & P_S(x) \ x &\leftarrow & P_T(x). \end{array}$$

Distance from y to $S \subset \mathbb{R}^n$ is

$$egin{array}{rcl} d_S(y) &=& \min_{x\in S} \|x-y\|. \ P_S(y) &=& \{ ext{nearest points}\}. \end{array}$$

S is prox-regular if P_S singlevalued locally. Eg: convex sets, smooth manifolds....

For closed S, T, to find a point in $S \cap T$, repeat:

$$egin{array}{rcl} x &\leftarrow & P_S(x) \ x &\leftarrow & P_T(x). \end{array}$$

Distance from y to $S \subset \mathbb{R}^n$ is

$$egin{array}{rll} d_S(y) &=& \min_{x\in S} \|x-y\|. \ P_S(y) &=& \{ ext{nearest points}\}. \end{array}$$

S is prox-regular if P_S singlevalued locally. Eg: convex sets, smooth manifolds....

For closed S, T, to find a point in $S \cap T$, repeat:

 $d_{S\cap T}(x) \to 0$ if S and T convex (von Neumann '33) ..., linearly if ri $S \cap$ ri $T \neq \emptyset$.

Projection may be numerically easy even for nonconvex sets, so alternating projections also tempts as a **nonconvex** heuristic.

Projection may be numerically easy even for nonconvex sets, so alternating projections also tempts as a **nonconvex** heuristic.

Eg (Grigoriadis-Skelton '96)... Low-order control:

 $\Big\{X ext{ positive semidefinite : rank } X \leq r \Big\} \, \cap \, \Big\{X: \mathcal{A}(X) = b \Big\}.$

Projection may be numerically easy even for nonconvex sets, so alternating projections also tempts as a **nonconvex** heuristic.

Eg (Grigoriadis-Skelton '96)... Low-order control:

 $\Big\{X ext{ positive semidefinite : rank } X \leq r \Big\} \, \cap \, \Big\{X: \mathcal{A}(X) = b \Big\}.$

Eg (Bauschke-Combettes-Luke '02)... Phase retrieval: For linear $A: \mathbb{C}^n \to \mathbb{C}^m$,

$$\Big\{(x,z):Ax=z\Big\} \hspace{.1in} \cap \hspace{.1in} \Big\{(x,z):|z_j|=b_j \hspace{.1in} orall j\Big\}.$$

... Numerical example ...

... Numerical example ...

We seek a 100-by-110 matrix X of rank 4, satisfying 450 linear equations:

$$A(X) = b.$$

We solve by alternately projecting onto

- $\{X : A(X) = b\}$ (by solving the normal equations);
- $\{X : \mathsf{rank} \ X = 4\}$ (via the singular value decomposition).

Why does alternating nonconvex projections work?

 $N_S(x)$ at $x \in S$ consists of limits of directions to points y near x from $P_S(y)$.

 $N_S(x)$ at $x \in S$ consists of limits of directions to points y near x from $P_S(y)$.

 $N_S(x)$ at $x \in S$ consists of limits of directions to points y near x from $P_S(y)$.

Extremal principle (Mordukhovich)

 $N_S(x)$ at $x \in S$ consists of limits of directions to points y near x from $P_S(y)$.

Extremal principle (Mordukhovich)

$$(*) \quad N_S(x) \cap -N_T(x) \; = \; \{0\}$$

 \Rightarrow small translations preserve a local intersection.

 $N_S(x)$ at $x \in S$ consists of limits of directions to points y near x from $P_S(y)$.

Extremal principle (Mordukhovich)

$$(*) \quad N_S(x) \cap -N_T(x) \; = \; \{0\}$$

 \Rightarrow small translations preserve a local intersection.

Algorithmic proof via...

 $N_S(x)$ at $x \in S$ consists of limits of directions to points y near x from $P_S(y)$.

Extremal principle (Mordukhovich)

$$(*) \quad N_S(x) \cap -N_T(x) \; = \; \{0\}$$

 \Rightarrow small translations preserve a local intersection.

Algorithmic proof via...

Theorem (L/Luke/Malick '07) If S or T is prox-regular, (*) \Rightarrow alternating projections converges linearly near x. ... Sketch proof ...

... Sketch proof ...

Closed S, T have regular intersection at \bar{x} :

$$N_S(ar{x}) \cap -N_T(ar{x}) = \{0\}.$$

So for some $heta > 0, \ y, z$ near $ar{x}, \ \hat{y} \in P_S(y), \ \hat{z} \in P_T(z)$ implies angle $\geq heta$
between normal vector $y - \hat{y}$ and $\hat{z} - z$.

Convergence proof For $x \in S$ near \bar{x} , $\frac{\|P_S P_T(x) - P_T(x)\|}{\|P_T(x) - x\|}$ isn't much larger than

isn't much larger than $\cos \theta$.

5. DEMMEL'S IDEA (1987): ILL-CONDITIONED \equiv NEARLY ILL-POSED \equiv SLOW CONVERGENCE

5. DEMMEL'S IDEA (1987): ILL-CONDITIONED \equiv NEARLY ILL-POSED \equiv SLOW CONVERGENCE

Find $x \in S \cap T$. Equivalently, solve $d_S(x) + d_T(x) = 0$. Three equivalent properties of instances:

5. DEMMEL'S IDEA (1987): ILL-CONDITIONED \equiv NEARLY ILL-POSED \equiv SLOW CONVERGENCE

Find $x \in S \cap T$. Equivalently, solve $d_S(x) + d_T(x) = 0$. Three equivalent properties of instances:

- "Basic" algorithms
 - converge slowly.
Find $x \in S \cap T$. Equivalently, solve $d_S(x) + d_T(x) = 0$. Three equivalent properties of instances:

- "Basic" algorithms
- converge slowly.

Find $x \in S \cap T$. Equivalently, solve $d_S(x) + d_T(x) = 0$. Three equivalent properties of instances:

"Basic" algorithms converge slowly.

• Small perturbations cause "ill-posedness".

Find $x \in S \cap T$. Equivalently, solve $d_S(x) + d_T(x) = 0$. Three equivalent properties of instances:

Find $x \in S \cap T$. Equivalently, solve $d_S(x) + d_T(x) = 0$. Three equivalent properties of instances:

Weak "error bounds":

Find $x \in S \cap T$. Equivalently, solve $d_S(x) + d_T(x) = 0$. Three equivalent properties of instances:

Weak "error bounds":

• $d_{S\cap T} \leq k(d_S + d_T)$ needs k large.

Find $x \in S \cap T$. Equivalently, solve $d_S(x) + d_T(x) = 0$. Three equivalent properties of instances:

$$Ax = b$$
.

Ax = b.

• Small distance to singularity $\lambda_{\min}(A)$.

Ax = b.

- Small distance to singularity $\lambda_{\min}(A)$.
- Weak error bound:

$$Ax = b.$$

- Small distance to singularity $\lambda_{\min}(A)$.
- Weak error bound:

$$\|x-A^{-1}b\| \leq rac{1}{\lambda_{\min}}\|Ax-b\|.$$

$$Ax = b.$$

- Small distance to singularity $\lambda_{\min}(A)$.
- Weak error bound:

$$\|x-A^{-1}b\| ~\leq~ rac{1}{\lambda_{\min}}\|Ax-b\|.$$

• Slow linear rate of basic algorithms.

$$Ax = b.$$

- Small distance to singularity $\lambda_{\min}(A)$.
- Weak error bound:

$$\|x-A^{-1}b\| ~\leq~ rac{1}{\lambda_{\min}}\|Ax-b\|.$$

• Slow linear rate of basic algorithms. Eg:

$$\left(rac{\lambda_{\mathsf{max}} - \lambda_{\mathsf{min}}}{\lambda_{\mathsf{max}} + \lambda_{\mathsf{min}}}
ight)^2$$

for steepest descent.

$$Ax = b.$$

- Small distance to singularity $\lambda_{\min}(A)$.
- Weak error bound:

$$\|x-A^{-1}b\| ~\leq~ rac{1}{\lambda_{\min}}\|Ax-b\|.$$

• Slow linear rate of basic algorithms. Eg:

$$\left(rac{\lambda_{\mathsf{max}} - \lambda_{\mathsf{min}}}{\lambda_{\mathsf{max}} + \lambda_{\mathsf{min}}}
ight)^2$$

for steepest descent. Conjugate gradients analogous.

$$Ax = b.$$

- Small distance to singularity $\lambda_{\min}(A)$.
- Weak error bound:

$$\|x-A^{-1}b\| ~\leq~ rac{1}{\lambda_{\min}}\|Ax-b\|.$$

• Slow linear rate of basic algorithms. Eg:

$$\left(rac{oldsymbol{\lambda}_{\mathsf{max}} - oldsymbol{\lambda}_{\mathsf{min}}}{oldsymbol{\lambda}_{\mathsf{max}} + oldsymbol{\lambda}_{\mathsf{min}}}
ight)^2$$

for steepest descent. Conjugate gradients analogous.

Extends to linear programming via interior points (Renegar '95).

$$Ax = b$$
.

- Small distance to singularity $\lambda_{\min}(A)$.
- Weak error bound:

$$\|x-A^{-1}b\| ~\leq~ rac{1}{\lambda_{\min}}\|Ax-b\|.$$

• Slow linear rate of basic algorithms. Eg:

$$\left(rac{oldsymbol{\lambda}_{\mathsf{max}} - oldsymbol{\lambda}_{\mathsf{min}}}{oldsymbol{\lambda}_{\mathsf{max}} + oldsymbol{\lambda}_{\mathsf{min}}}
ight)^2$$

for steepest descent. Conjugate gradients analogous.

Extends to linear programming via interior points (Renegar '95). How general is this pattern?

Given set-valued $F : \mathbb{R}^p \Rightarrow \mathbb{R}^q$, suppose

• F(x) is easy to compute;

Given set-valued $F : \mathbb{R}^p \Rightarrow \mathbb{R}^q$, suppose

- F(x) is easy to compute;
- $F^{-1}(y)$ is hard to compute.

Given set-valued $F : \mathbb{R}^p \Rightarrow \mathbb{R}^q$, suppose

- F(x) is easy to compute;
- $F^{-1}(y)$ is hard to compute.

Problem Given \bar{y} , find x so $\bar{y} \in F(x)$.

Given set-valued $F : \mathbb{R}^p \Rightarrow \mathbb{R}^q$, suppose

- F(x) is easy to compute;
- $F^{-1}(y)$ is hard to compute.

Problem Given \bar{y} , find x so $\bar{y} \in F(x)$.

Example (Set intersection) Find $x \in S \cap T$.

Given set-valued $F : \mathbb{R}^p \Rightarrow \mathbb{R}^q$, suppose

- F(x) is easy to compute;
- $F^{-1}(y)$ is hard to compute.

Problem Given \bar{y} , find x so $\bar{y} \in F(x)$.

Example (Set intersection) Find $x \in S \cap T$. Equivalently, if

$$G(x) = (S-x) imes (T-x),$$

Given set-valued $F : \mathbb{R}^p \Rightarrow \mathbb{R}^q$, suppose

- F(x) is easy to compute;
- $F^{-1}(y)$ is hard to compute.

Problem Given \bar{y} , find x so $\bar{y} \in F(x)$.

Example (Set intersection) Find $x \in S \cap T$. Equivalently, if

$$G(x) = (S-x) imes (T-x),$$

solve

$$(0,0)\in G(x).$$

 $m{F}$ is metrically regular for $ar{y}\in F(ar{x})$

F is metrically regular for $ar{y}\in F(ar{x})$ if, for some ho,

 $d_{F^{-1}(y)}(x) \leq
ho d_{F(x)}(y)$

F is metrically regular for $ar{y}\in F(ar{x})$ if, for some ho,

 $d_{F^{-1}(y)}(x) \leq
ho d_{F(x)}(y) \;\; ext{for all } (x,y) \; ext{near} \; (ar{x},ar{y}).$

F is metrically regular for $ar{y} \in F(ar{x})$ if, for some ho,

 $d_{F^{-1}(y)}(x) \leq
ho d_{F(x)}(y) \;\; ext{for all } (x,y) \; ext{near} \; (ar{x},ar{y}).$

If not, \bar{y} is critical.

F is metrically regular for $ar{y} \in F(ar{x})$ if, for some ho,

 $d_{F^{-1}(y)}(x) \leq
ho d_{F(x)}(y) ext{ for all } (x,y) ext{ near } (ar{x},ar{y}).$

If not, \bar{y} is critical. Smallest such ρ is modulus.

F is metrically regular for $ar{y}\in F(ar{x})$ if, for some ho,

 $d_{F^{-1}(y)}(x) \leq
ho d_{F(x)}(y) \;\; ext{for all } (x,y) \; ext{near} \; (ar{x},ar{y}).$

If not, \bar{y} is critical. Smallest such ρ is modulus. Examples:

• Smooth F is metrically regular wherever abla F onto:

F is metrically regular for $ar{y}\in F(ar{x})$ if, for some ho,

 $d_{F^{-1}(y)}(x) \leq
ho d_{F(x)}(y) \;\; ext{for all } (x,y) \; ext{near} \; (ar{x},ar{y}).$

If not, \bar{y} is critical. Smallest such ρ is modulus. Examples:

• Smooth F is metrically regular wherever abla F onto:

$$\mathsf{modulus} = rac{1}{\sigma_{\mathsf{min}}(oldsymbol{
abla} F(ar{x}))}.$$

F is metrically regular for $ar{y} \in F(ar{x})$ if, for some ho,

$$d_{F^{-1}(y)}(x) \leq
ho d_{F(x)}(y) \;\; ext{for all } (x,y) \; ext{near} \; (ar{x},ar{y}).$$

If not, \bar{y} is critical. Smallest such ρ is modulus. Examples:

• Smooth F is metrically regular wherever abla F onto:

$$\mathsf{modulus} = rac{1}{\pmb{\sigma_{\mathsf{min}}}(\pmb{
abla}\pmb{F}(ar{\pmb{x}}))}.$$

 \bullet For "set intersection", G(x)=(S-x) imes(T-x), modulus $=rac{1}{\sqrt{1-\cos heta}},$

F is metrically regular for $ar{y}\in F(ar{x})$ if, for some ho,

$$d_{F^{-1}(y)}(x) \leq
ho d_{F(x)}(y) \;\;$$
 for all (x,y) near $(ar x,ar y).$

If not, \bar{y} is critical. Smallest such ρ is modulus. Examples:

ullet Smooth F is metrically regular wherever abla F onto:

$$\mathsf{modulus} = rac{1}{\pmb{\sigma_{\mathsf{min}}}(\pmb{
abla}\pmb{F}(ar{\pmb{x}}))}.$$

 \bullet For "set intersection", G(x)=(S-x) imes(T-x), modulus = $rac{1}{\sqrt{1-\cos heta}},$

where heta is minimal angle between $N_S(ar{x})$ and $-N_T(ar{x})$.

9. CONDITIONING AND SPEED

9. CONDITIONING AND SPEED

The distance to ill-posedness for $\bar{y} \in F(\bar{x})$,

9. CONDITIONING AND SPEED

The distance to ill-posedness for $ar{y}\in F(ar{x})$, is

 $\inf_{ ext{linear}\;A}\Big\{\|A\|: ext{irregularity for}\; ar{y}+Aar{x}\in (F+A)(ar{x})\Big\}.$
The distance to ill-posedness for $ar{y} \in F(ar{x})$, is

 $\inf_{ ext{linear}\;A}\Big\{\|A\|: ext{irregularity for}\; ar{y}+Aar{x}\in (F+A)(ar{x})\Big\}.$

Examples

ullet For smooth $oldsymbol{F}$,

The distance to ill-posedness for $ar{y} \in F(ar{x})$, is

 $\inf_{ ext{linear}\;A}\Big\{\|A\|: ext{irregularity for}\; ar{y}+Aar{x}\in (F+A)(ar{x})\Big\}.$

Examples

• For smooth F, distance is $\sigma_{\min}(\nabla F(\bar{x}))$:

The **distance to ill-posedness** for $\bar{y} \in F(\bar{x})$, is

 $\inf_{ ext{linear }A}\Big\{\|A\|: ext{irregularity for }ar{y}+Aar{x}\in (F+A)(ar{x})\Big\}.$

Examples

• For smooth F, distance is $\sigma_{\min}(\nabla F(\bar{x}))$: underlies solution speed for F(x) = 0.

The distance to ill-posedness for $ar{y} \in F(ar{x})$, is

 $\inf_{ ext{linear }A}\Big\{\|A\|: ext{irregularity for } ar{y}+Aar{x}\in (F+A)(ar{x})\Big\}.$

Examples

- For smooth F, distance is $\sigma_{\min}(\nabla F(\bar{x}))$: underlies solution speed for F(x) = 0.
- For set intersection,

The **distance to ill-posedness** for $\bar{y} \in F(\bar{x})$, is

 $\inf_{ ext{linear }A}\Big\{\|A\|: ext{irregularity for } ar{y}+Aar{x}\in (F+A)(ar{x})\Big\}.$

Examples

- For smooth F, distance is $\sigma_{\min}(\nabla F(\bar{x}))$: underlies solution speed for F(x) = 0.
- For set intersection, distance is $\sqrt{1 \cos \theta}$.

The distance to ill-posedness for $ar{y}\in F(ar{x})$, is

 $\inf_{ ext{linear }A}\Big\{\|A\|: ext{irregularity for } ar{y}+Aar{x}\in (F+A)(ar{x})\Big\}.$

Examples

- For smooth F, distance is $\sigma_{\min}(\nabla F(\bar{x}))$: underlies solution speed for F(x) = 0.
- For set intersection, distance is $\sqrt{1 \cos \theta}$. Alternating projections converges linearly, rate $\cos \theta$.

The distance to ill-posedness for $ar{y}\in F(ar{x})$, is

 $\inf_{ ext{linear }A}\Big\{\|A\|: ext{irregularity for } ar{y}+Aar{x}\in (F+A)(ar{x})\Big\}.$

Examples

- For smooth F, distance is $\sigma_{\min}(\nabla F(\bar{x}))$: underlies solution speed for F(x) = 0.
- For set intersection, distance is $\sqrt{1 \cos \theta}$. Alternating projections converges linearly, rate $\cos \theta$.

Theorem (Dontchev/L/Rockafellar '03) For any closed F, distance to ill-posedness = $\frac{1}{\text{modulus}}$ Other examples ...

... Other examples ...

The modulus often controls local linear convergence rates:

- Proximal point methods: Iusem-Pennanen-Svaiter '03, Aragón-Artacho-Dontchev-Geoffroy '05.
- Klatte/Kummer '07 several conceptual algorithms.
- Luo-Tseng '93: error bounds and descent methods.

Demmel '87: for a square matrix,

spectrum hard to compute t defective matrices are nearby.

Asymptotics of $\dot{x} = Ax$ depend on spectrum $\Lambda(A)$.

Asymptotics of $\dot{x} = Ax$ depend on spectrum $\Lambda(A)$.

But transient stability depends on the pseudospectra

$$\Lambda_\epsilon(A) \;=\; \{z: \sigma_{\min}(A-zI) \leq \epsilon\}.$$

Asymptotics of $\dot{x} = Ax$ depend on spectrum $\Lambda(A)$.

But transient stability depends on the pseudospectra

$$\Lambda_\epsilon(A) \;=\; \{z: \sigma_{\min}(A-zI) \leq \epsilon\}.$$

Kreiss Matrix Theorem (1962) Equivalent properties:

• $\dot{x} = Ax$ has big transient peaks

Asymptotics of $\dot{x} = Ax$ depend on spectrum $\Lambda(A)$. But **transient** stability depends on the **pseudospectra**

$$\Lambda_\epsilon(A) \;=\; \{z: \sigma_{\min}(A-zI) \leq \epsilon\}.$$

Kreiss Matrix Theorem (1962) Equivalent properties:

- ullet $\dot{x} = Ax$ has big transient peaks
- $\Lambda_\epsilon(A)$ grows quickly into right halfplane as $0<\epsilon\uparrow$

Asymptotics of $\dot{x}=Ax$ depend on spectrum $\Lambda(A)$. But transient stability depends on the pseudospectra

$$\Lambda_\epsilon(A) \;=\; \{z: \sigma_{\min}(A-zI) \leq \epsilon\}.$$

Kreiss Matrix Theorem (1962) Equivalent properties:

- ullet $\dot{x} = Ax$ has big transient peaks
- $\Lambda_\epsilon(A)$ grows quickly into right halfplane as $0<\epsilon\uparrow$

Demmel's example:
$$A = - \begin{bmatrix} 1 & 5 & 5^2 & 5^3 & 5^4 \\ 0 & 1 & 5 & 5^2 & 5^3 \\ 0 & 0 & 1 & 5 & 5^2 \\ 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \dots$$

 $\Lambda_{.01}(A)$ intersects right halfplane, so an unstable X satisfies $||X - A|| \leq .01$.

 $\Lambda_{.01}(A)$ intersects right halfplane, so an unstable X satisfies $||X - A|| \leq .01$.

... Resolvent-critical points ...

... Resolvent-critical points ...

On $\mathbb{C},$ the resolvent norm

$$rac{1}{\sigma_{\min}(A-zI)}=\|(A-zI)^{-1}\|$$

can't have local maxima (by the Maximum Modulus Principle), but can have other smooth and nonsmooth critical points.

(Aside: Largest saddle value \times distance to defectiveness = 1.)

Example:
$$lpha_\epsilon(A) = \max\Big\{\mathsf{Re}\,\lambda:\lambda\in\Lambda_\epsilon(A)\Big\}.$$

Example:
$$lpha_\epsilon(A) = \max\Big\{\mathsf{Re}\,\lambda:\lambda\in\Lambda_\epsilon(A)\Big\}.$$

Key pseudospectral properties:

Example:
$$lpha_\epsilon(A) = \max\Big\{\mathsf{Re}\,\lambda:\lambda\in\Lambda_\epsilon(A)\Big\}.$$

Key pseudospectral properties:

• Components contain eigenvalues.

Example:
$$lpha_\epsilon(A) = \max\Big\{\mathsf{Re}\,\lambda:\lambda\in\Lambda_\epsilon(A)\Big\}.$$

Key pseudospectral properties:

- Components contain eigenvalues.
- Hamiltonian eigensolvers (Benner et al. '00) compute intersections with lines.

Example:
$$lpha_\epsilon(A) = \max\Big\{\mathsf{Re}\,\lambda:\lambda\in\Lambda_\epsilon(A)\Big\}.$$

Key pseudospectral properties:

- Components contain eigenvalues.
- Hamiltonian eigensolvers (Benner et al. '00) compute intersections with lines.

Hence eigtool's reliable criss-cross algorithm for α_{ϵ} .

Example:
$$lpha_\epsilon(A) = \max\Big\{\mathsf{Re}\,\lambda:\lambda\in\Lambda_\epsilon(A)\Big\}.$$

Key pseudospectral properties:

- Components contain eigenvalues.
- Hamiltonian eigensolvers (Benner et al. '00) compute intersections with lines.

Hence eigtool's reliable criss-cross algorithm for α_{ϵ} .

Example:
$$lpha_\epsilon(A) = \max\Big\{\mathsf{Re}\,\lambda:\lambda\in\Lambda_\epsilon(A)\Big\}.$$

Key pseudospectral properties:

- Components contain eigenvalues.
- Hamiltonian eigensolvers (Benner et al. '00) compute intersections with lines.

Hence eigtool's reliable criss-cross algorithm for α_{ϵ} .

Global and quadratic convergence: (Burke/L/Overton '03).

Example:
$$lpha_\epsilon(A) = \max\Big\{\mathsf{Re}\,\lambda:\lambda\in\Lambda_\epsilon(A)\Big\}.$$

Key pseudospectral properties:

- Components contain eigenvalues.
- Hamiltonian eigensolvers (Benner et al. '00) compute intersections with lines.

Hence eigtool's reliable criss-cross algorithm for α_{ϵ} .

Global and quadratic convergence: (Burke/L/Overton '03).

Nonsmooth methods can optimize $lpha_\epsilon$

Example:
$$lpha_\epsilon(A) = \max\Big\{\mathsf{Re}\,\lambda:\lambda\in\Lambda_\epsilon(A)\Big\}.$$

Key pseudospectral properties:

- Components contain eigenvalues.
- Hamiltonian eigensolvers (Benner et al. '00) compute intersections with lines.

Hence eigtool's reliable criss-cross algorithm for α_{ϵ} .

Global and quadratic convergence: (Burke/L/Overton '03).

Nonsmooth methods can optimize $lpha_\epsilon$ (and \mathbf{H}^∞ norm:

Example:
$$lpha_\epsilon(A) = \max\Big\{\mathsf{Re}\,\lambda:\lambda\in\Lambda_\epsilon(A)\Big\}.$$

Key pseudospectral properties:

- Components contain eigenvalues.
- Hamiltonian eigensolvers (Benner et al. '00) compute intersections with lines.

Hence eigtool's reliable criss-cross algorithm for α_{ϵ} .

Global and quadratic convergence: (Burke/L/Overton '03).

Nonsmooth methods can optimize α_{ϵ} (and \mathbf{H}^{∞} norm: HIFOO).

13. CRITICAL VALUES OF SET-VALUED MAPPINGS

13. CRITICAL VALUES OF SET-VALUED MAPPINGS

If metric regularity fails for $b \in F(x)$, then value b is critical.

13. CRITICAL VALUES OF SET-VALUED MAPPINGS

If metric regularity fails for $b \in F(x)$, then value b is critical.

Theorem (Sard '42) Sufficiently smooth F have almost no critical values, so F(x) = b "typically" behaves well.
If metric regularity fails for $b \in F(x)$, then value b is critical.

Theorem (Sard '42) Sufficiently smooth F have almost no critical values, so F(x) = b "typically" behaves well.

Example (Whitney '35) $F: \mathbb{R}^2 \to \mathbb{R}$ is C^1 yet nonconstant along an arc of critical points (\Rightarrow interval of critical values).

If metric regularity fails for $b \in F(x)$, then value b is critical.

Theorem (Sard '42) Sufficiently smooth F have almost no critical values, so F(x) = b "typically" behaves well.

Example (Whitney '35) $F: \mathbb{R}^2 \to \mathbb{R}$ is C^1 yet nonconstant along an arc of critical points (\Rightarrow interval of critical values).

Concrete examples often have **semi-algebraic** graphs:

$$igcup_i igcup_i \left\{ x \in \mathbb{R}^n : p_{ij}(x) igcup_{<}^{=}
ight\} 0
ight\}$$

for polynomials p_{ij} .

If metric regularity fails for $b \in F(x)$, then value b is critical.

Theorem (Sard '42) Sufficiently smooth F have almost no critical values, so F(x) = b "typically" behaves well.

Example (Whitney '35) $F: \mathbb{R}^2 \to \mathbb{R}$ is C^1 yet nonconstant along an arc of critical points (\Rightarrow interval of critical values).

Concrete examples often have **semi-algebraic** graphs:

$$igcup_i igcup_i \left\{ x \in \mathbb{R}^n : p_{ij}(x) igcup_{<}^{=}
ight\} 0
ight\}$$

for polynomials p_{ij} . Eg: pseudospectrum $\Lambda_\epsilon\colon \mathbb{M}^n
ightarrow \mathbb{C}$,

If metric regularity fails for $b \in F(x)$, then value b is critical.

Theorem (Sard '42) Sufficiently smooth F have almost no critical values, so F(x) = b "typically" behaves well.

Example (Whitney '35) $F: \mathbb{R}^2 \to \mathbb{R}$ is C^1 yet nonconstant along an arc of critical points (\Rightarrow interval of critical values).

Concrete examples often have **semi-algebraic** graphs:

$$igcup_i igcup_j \left\{ x \in \mathbb{R}^n : p_{ij}(x) igcup_{<}^{=}
ight) 0
ight\}$$

for polynomials p_{ij} . **Eg:** pseudospectrum $\Lambda_{\epsilon} \colon \mathbb{M}^n \Rightarrow \mathbb{C}$, but **not** Whitney's example.

If metric regularity fails for $b \in F(x)$, then value b is critical.

Theorem (Sard '42) Sufficiently smooth F have almost no critical values, so F(x) = b "typically" behaves well.

Example (Whitney '35) $F: \mathbb{R}^2 \to \mathbb{R}$ is C^1 yet nonconstant along an arc of critical points (\Rightarrow interval of critical values).

Concrete examples often have **semi-algebraic** graphs:

$$igcup_i igcup_j \left\{ x \in \mathbb{R}^n : p_{ij}(x) igcup_{<}^{=}
ight) 0
ight\}$$

for polynomials p_{ij} . **Eg:** pseudospectrum $\Lambda_{\epsilon} \colon \mathbb{M}^n \Rightarrow \mathbb{C}$, but **not** Whitney's example.

Semi-algebraic sets are easy to recognize (Tarski-Seidenberg),

If metric regularity fails for $b \in F(x)$, then value b is critical.

Theorem (Sard '42) Sufficiently smooth F have almost no critical values, so F(x) = b "typically" behaves well.

Example (Whitney '35) $F: \mathbb{R}^2 \to \mathbb{R}$ is C^1 yet nonconstant along an arc of critical points (\Rightarrow interval of critical values).

Concrete examples often have **semi-algebraic** graphs:

$$igcup_i igcup_j \left\{ x \in \mathbb{R}^n : p_{ij}(x) igcup_{<}^{=}
ight) 0
ight\}$$

for polynomials p_{ij} . **Eg:** pseudospectrum $\Lambda_{\epsilon} \colon \mathbb{M}^n \Rightarrow \mathbb{C}$, but **not** Whitney's example.

Semi-algebraic sets are easy to recognize (Tarski-Seidenberg), and well-behaved.

If metric regularity fails for $b \in F(x)$, then value b is critical.

Theorem (Sard '42) Sufficiently smooth F have almost no critical values, so F(x) = b "typically" behaves well.

Example (Whitney '35) $F: \mathbb{R}^2 \to \mathbb{R}$ is C^1 yet nonconstant along an arc of critical points (\Rightarrow interval of critical values).

Concrete examples often have **semi-algebraic** graphs:

$$igcup_i igcup_j \left\{ x \in \mathbb{R}^n : p_{ij}(x) igcup_{<}^{=}
ight) 0
ight\}$$

for polynomials p_{ij} . **Eg:** pseudospectrum $\Lambda_{\epsilon} \colon \mathbb{M}^n \Rightarrow \mathbb{C}$, but **not** Whitney's example.

Semi-algebraic sets are easy to recognize (Tarski-Seidenberg), and well-behaved. Many applications in optimization.

Theorem (loffe '07) For any semi-algebraic $F \colon \mathbb{R}^n \Rightarrow \mathbb{R}^m$,

dim {critical values} < m.

Theorem (loffe '07) For any semi-algebraic $F \colon \mathbb{R}^n \Rightarrow \mathbb{R}^m$, dim {critical values} < m.

So the system $b \in F(x)$ is well-posed for almost all b.

Application Is pseudospectrum $A\mapsto \Lambda_\epsilon(A)$ well-behaved?

Theorem (loffe '07) For any semi-algebraic $F \colon \mathbb{R}^n \Rightarrow \mathbb{R}^m$, dim {critical values} < m.

So the system $b \in F(x)$ is well-posed for almost all b.

Application Is pseudospectrum $A \mapsto \Lambda_{\epsilon}(A)$ well-behaved?

Using (loffe '07) (or (Bolte/Daniiliidis/L/Shiota '05)),

$$z \;\mapsto\; \sigma_{\min}(A-zI)$$

has only finitely many critical values.

Theorem (loffe '07) For any semi-algebraic $F \colon \mathbb{R}^n \Rightarrow \mathbb{R}^m$, dim {critical values} < m.

So the system $b \in F(x)$ is well-posed for almost all b.

Application Is pseudospectrum $A \mapsto \Lambda_{\epsilon}(A)$ well-behaved?

Using (loffe '07) (or (Bolte/Daniiliidis/L/Shiota '05)),

$$z \mapsto \sigma_{\min}(A-zI)$$

has only finitely many critical values. Hence (via variational calculus and Toeplitz-Hausdorff Theorem):

 Λ_ϵ is Lipschitz around A for all small $\epsilon>0$ (L/Pang '06).

Theorem (loffe '07) For any semi-algebraic $F \colon \mathbb{R}^n \Rightarrow \mathbb{R}^m$, dim {critical values} < m.

So the system $b \in F(x)$ is well-posed for almost all b.

Application Is pseudospectrum $A \mapsto \Lambda_{\epsilon}(A)$ well-behaved?

Using (loffe '07) (or (Bolte/Daniiliidis/L/Shiota '05)),

$$z \mapsto \sigma_{\min}(A-zI)$$

has only finitely many critical values. Hence (via variational calculus and Toeplitz-Hausdorff Theorem):

 Λ_{ϵ} is Lipschitz around A for all small $\epsilon > 0$ (L/Pang '06). Unlike the spectrum...

Central theoretical ideas:

 $\begin{array}{cccc} \text{metric regularity} & \leftrightarrow & \text{distance to ill-posedness} \\ & \uparrow & & \uparrow \\ \text{Lipschitz behavior} & \leftrightarrow & \text{critical points} & \leftrightarrow & \text{speed of algorithms} \end{array}$

Central theoretical ideas:

```
\begin{array}{cccc} \text{metric regularity} & \leftrightarrow & \text{distance to ill-posedness} \\ & & \uparrow & & \uparrow \\ \text{Lipschitz behavior} & \leftrightarrow & \text{critical points} & \leftrightarrow & \text{speed of algorithms} \end{array}
```

Examples:

- alternating projections
- pseudospectra

Central theoretical ideas:

 $\begin{array}{cccc} \text{metric regularity} & \leftrightarrow & \text{distance to ill-posedness} \\ & & \uparrow & & \uparrow \\ \text{Lipschitz behavior } \leftrightarrow & \text{critical points } \leftrightarrow & \text{speed of algorithms} \end{array}$

Examples:

- alternating projections
- pseudospectra

people.orie.cornell.edu/~aslewis