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Trust Region Subproblem

The Trust-Region Subproblem:

minimize xTQ0x− 2bT
0 x

subject to ‖x‖ ≤ δ.
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The CDT Trust Region Subproblem

The CDT (Celis, Dennis, Tapia, 1985) Trust-Region Subproblem:

minimize xTQ0x− 2bT
0 x

subject to ‖Ax− b‖ ≤ δ1

‖x‖ ≤ δ2.
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The Radar Code Selection Problem

(Based on De Maio, De Nicola, Huang, Z., Farina, 2007)

A radar system transmits a coherent burst of pulses

s(t) = atu(t) exp (i(2πf0t + φ))

• at is the transmit signal amplitude;

• u(t) =
∑N−1

k=0 a(k)p(t− kTr) is the signal’s complex envelope;

• p(t) is the signature of the transmitted pulse, and Tr is the Pulse
Repetition Time (PRT);

• [a(0), a(1), . . . , a(N − 1)] ∈ CN is the radar code (assumed without
loss of generality with unit norm);

• f0 is the carrier frequency, and φ is a random phase.
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The Output

The filter output is

v(t) = αre
−i2πf0τ

N−1∑

k=0

a(k)ei2πkfdTrχp(t− kTr − τ, fd) + w(t)

where χp(λ, f) is the pulse waveform ambiguity function

χp(λ, f) =
∫ +∞

−∞
p(β)p∗(β − λ)ei2πfβdβ

and w(t) is the down-converted and filtered disturbance component.
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Sampling

The signal v(t) is sampled at tk = τ + kTr, k = 0, . . . , N − 1, the
output becomes

v(tk) = αa(k)ei2πkfdTrχp(0, fd) + w(tk), k = 0, . . . , N − 1

where α = αre
−i2πf0τ .

Denote

c = [a(0), a(1), . . . , a(N − 1)]T,

p = [1, ei2πfdTr , . . . , ei2π(N−1)fdTr ]T (the temporal steering vector)

w = [w(t0), w(t1), . . . , w(tN−1)]T

the backscattered signal can be written as

v = αc¯ p + w

where ¯ denotes the Hadamard product.
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Performance, Doppler Accuracy, and Similarity

The Optimal Code Design Problem can be formulated as




maxc cHRc

s.t. cHc = 1

cHR1c ≥ δa

‖c− c0‖2 ≤ ε

where R = Γ−1 ¯ (pHp) with Γ = E[wwH], and
R1 = Γ−1 ¯ (ppH)∗ ¯ (uuH)∗ with u = [0, i2π, . . . , i2π(N − 1)]T.
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Commonalities

Non-Convex Quadratically Constrained Quadratic Optimization
(QCQP), in real and/or complex variables, with a few constraints.
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Matrix Rank-One Decomposition

Theorem (Sturm and Z.; 2003).
Let A ∈ Sn. Let X ∈ Sn

+ with rank r. There exists a rank-one
decomposition for X such that

X =
r∑

i=1

xix
T
i

and xT
i Axi = A•X

r , i = 1, ..., r.
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Can we do more?

It is easy to show by example that in general it is only possible to get
a complete rank-one decomposition with respect to one matrix. But it
is possible to get a partial decomposition for two:

Theorem (Ai and Z.; 2006).
Let A1, A2 ∈ Sn and X ∈ Sn

+. If r := rank(X) ≥ 3 then one can
find in polynomial-time (real-number sense) a rank-one decompo-
sition for X,

X = x1x
T
1 + x2x

T
2 + · · ·+ xrx

T
r ,

such that
A1 • xix

T
i = A1•X

r , i = 1, ..., r

A2 • xix
T
i = A2•X

r , i = 1, ..., r − 2.
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The Hermitian case

Theorem (Huang and Z.; 2006).
Let A1, A2 ∈ Hn, and X ∈ Hn

+ with rank r. There exists a rank-
one decomposition for X such that

X =
r∑

i=1

xix
H
i

and xH
i Akxi = Ak•X

r , i = 1, ..., r; k = 1, 2.
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Analog in the Hermitian case

Theorem (Ai, Huang and Z.; 2007).
Suppose that A1, A2, A3 ∈ Hn and X ∈ Hn

+. If r = rank(X) ≥ 3,
then one can find in polynomial-time (real-number sense) a rank-
one decomposition for X,

X =
r∑

i=1

xix
H
i ,

such that

A1 • xix
H
i = δ1/r,A2 • xix

H
i = δ2/r, for all i = 1, . . . , r;

A3 • xix
H
i = δ3/r, for i = 1, . . . , r − 2.
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Solving QP by Matrix Decomposition

Quadratically Constrained Quadratic Programming (QCQP):

(Q) minimize q0(x) = xHQ0x− 2Re bH
0 x

subject to qi(x) = xHQix− 2Re bH
i x + ci ≤ 0, i = 1, ..., m.

Shuzhong Zhang, SEEM, CUHK



Matrix rank-one decomposition and applications 15

SDP Relaxation

Let

M(q0) :=


 0 −bH

0

−b0 Q0


, M(qi) :=


 ci −bH

i

−bi Qi


, for i = 1, ...,m.

Then, (Q) is equivalently written as

(Q) min M(q0) •

 t

x





 t

x




H

= xHQ0x− 2Re bH
0 xt̄

s.t. M(qi) •

 t

x





 t

x




H

= xHQix− 2bH
i xt̄ + ci|t|2 ≤ 0, i = 1, ..., m

|t|2 = 1.
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SDP Relaxation

The so-called SDP relaxation of (Q) is

(SP ) minimize M(q0) •X

subject to M(qi) •X ≤ 0, i = 1, ..., m

I00 •X = 1

X º 0 X rank one

where I00 =


 1 0

0 0


 ∈ Hn+1. The dual problem of (SP ) is:

(SD) maximize y0

subject to Z = M(q0)− y0I00 +
∑m

i=1 yiM(qi) º 0

yi ≥ 0, i = 1, ..., m.
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Complementary Slackness

Under suitable conditions, (SP ) and (SD) have complementary
optimal solutions, X∗ and Z∗:

X∗Z∗ = 0.

If we can decompose X∗ into rank-one summations, evenly satisfying
all the constraints, then each of the rank-one vectors will be optimal!
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Consequences of the Matrix Decomposition Theorems

Polynomially solvable cases of the nonconvex quadratic programs:

Real quadratic program:

m = 1 (m = 2 if homogeneous) ⇐= (Sturm & Z., 2003)

Real quadratic program:

m = 2 (m = 3 if h.) rank(X∗) ≥ 3 ⇐= (Ai & Z., 2006)

Complex quadratic program:

m = 2 (m = 3 if h.) ⇐= (Huang & Z., 2005)

Complex quadratic program:

m = 3 (m = 4 if h.) rank(X∗) ≥ 3 ⇐= (Ai, Huang & Z., 2007)
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Further Theoretical Applications

Field of Values of a Matrix

Let A be any n× n matrix, the field of values of A is given by

F(A) := {zHAz | zHz = 1} ⊆ C.

This set, like the spectrum set, contains a lot of information about the
matrix A.

The set is known to be convex.

Reference: R.A. Horn and C.R. Johnson. Topics in Matrix analysis.
Cambridge University Press, Cambridge, 1991.
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Joint Numerical Ranges

In general, the joint numerical range of matrices is defined to be

F(A1, ..., Am) :=








zHA1z
...

zHAmz




∣∣∣∣∣∣∣∣∣
zHz = 1, z ∈ Cn





.

Theorem (Hausdorff; 1919).
If A1 and A2 are Hermitian, then F(A1, A2) is a convex set.
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A Theorem of Brickman

Theorem (Brickman; 1961).
Suppose that A1, A2, A3 are n× n Hermitian matrices. Then








zHA1z

zHA2z

zHA3z




∣∣∣∣∣∣∣∣
z ∈ Cn





is a convex set.
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The S-Procedure

It is often useful to consider the following implication

G1(x) ≥ 0, G2(x) ≥ 0, ..., Gm(x) ≥ 0 =⇒ F (x) ≥ 0.

A sufficient condition is:

∃τ1 ≥ 0, τ2 ≥ 0, ..., τm ≥ 0 such that F (x)−
m∑

i=1

τiGi(x) ≥ 0∀x.

This procedure is called lossless if the above condition is also
necessary.
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The S-Lemma

Theorem (Jakubovic; 1971).
Suppose that m = 1, and F,G1 are real quadratic forms. Moreover,
there is x0 ∈ <n such that xT

0 G1x0 > 0. Then the S-procedure is
lossless.

Theorem (Jakubovic; 1971).
Suppose that m = 2, and F, G1, G2 are Hermitian quadratic forms.
Moreover, there is x0 ∈ Cn such that xH

0 Gix0 > 0, i = 1, 2. Then
the S-procedure is lossless.
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Proof of the S-Lemma: The Hermitian case

We need only to show that the S-procedure is lossless in this case. Let
Gi(x) = xHAix, i = 1, 2, and F (x) = xHA3x.

Consider the following cone







xHA1x

xHA2x

xHA3x




∣∣∣∣∣∣∣∣
x ∈ Cn





.

It is a convex cone in <3 by Brickman’s theorem.

Moreover, it does not intersect with <++ ×<++ ×<−−.
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Proof of the S-Lemma (continued)

By the separation theorem, there is (t1, t2, t3) 6= 0, such that

t1x1 + t2x2 + t3x3 ≤ 0, ∀x1 > 0, x2 > 0, x3 < 0,

and
t1x

HA1x + t2x
HA2x + t3x

HA3x ≥ 0, ∀x ∈ Cn.

The first condition implies that t1 ≤ 0, t2 ≤ 0, and t3 ≥ 0. We see that
t3 > 0 in this case, and so

A3 − t1
t3

A1 − t2
t3

A2 º 0.
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But how to prove Brickman’s theorem?

Clearly, it will be sufficient if we can show







zHA1z

zHA2z

zHA3z




∣∣∣∣∣∣∣∣
z ∈ Cn





=








A1 • Z

A2 • Z

A3 • Z




∣∣∣∣∣∣∣∣
Z º 0




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Proof of the Brickman Theorem

Take any nonzero vector



v1

v2

v3


 =




A1 • Z

A2 • Z

A3 • Z


 .

Suppose that v3 6= 0. Consider two matrix equations
(
A1 − v1

v3
A3

)
• Z = 0

(
A2 − v2

v3
A3

)
• Z = 0
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Proof of the Brickman Theorem (continued)

Using our decomposition, there will be Z =
r∑

i=1

ziz
H
i such that

zH
i

(
A1 − v1

v3
A3

)
zi = 0

zH
i

(
A2 − v2

v3
A3

)
zi = 0

for i = 1, ..., r. Among these, there will be one vector such that zH
i A3zi

has the same sign as A3 • Z.

Let ρ :=
√

v3/zH
i A3zi, and z := ρzi. Then,

zHA3z = ρ2zH
i A3zi = v3, zHAkz =

vk

v3
zHA3z = vk, k = 1, 2.
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A Result of Yuan

Theorem (Yuan; 1990).
Let A1 and A2 be in Sn. If

max{xTA1x, xTA2x} ≥ 0 ∀x ∈ <n

then there exist µ1 ≥ 0, µ2 ≥ 0, µ1 + µ2 = 1 such that

µ1A1 + µ2A2 º 0.
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Extension

Theorem (Ai, Huang, Zhang; 2007).
Let A1, A2, A3 be in Hn. If

max{zHA1z, zTA2z, zTA3z} ≥ 0 ∀z ∈ Cn

then there exist µ1, µ2, µ3 ≥ 0, µ1 + µ2 + µ3 = 1 such that

µ1A1 + µ2A2 + µ3A3 º 0.
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Further Extension

Theorem (Ai, Huang, Zhang; 2007).
Suppose that n ≥ 3, Ai ∈ Hn, i = 1, 2, 3, 4, and there are λi ∈ <, i =
1, 2, 3, 4, such that λ1A1 + λ2A2 + λ3A3 + λ4A4 Â 0. If

max{zHA1z, zHA2z, zHA3z, zHA4z} ≥ 0, ∀z ∈ Cn

then there are µi ≥ 0, i = 1, 2, 3, 4, such that µ1 + µ2 + µ3 + µ4 = 1 such
that

µ1A1 + µ2A2 + µ3A3 + µ4A4 º 0.
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