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proportional transaction costs

• The HJB equation governing a nonlinear obstacle problem



The American (put) option

Consider the following European put option

LV := −∂V

∂t
− 1

2
σ2(t)x2 ∂2V

∂x2
−(r(t)x−D(x, t))

∂V

∂x
+rV = 0, (1)

with the payoff and boundary conditions

V (x, t) = max(K − x, 0),

V (0, t) = K exp(−r(T − t)), V (x, t) → 0 as x →∞.

If the option can be exercise anytime before T , the value

determined by the above problem sometimes falls below its intrinsic

value.

For example, when x = 0, the intrinsic value is K, but the above



problem gives

V (x, t) = K exp(−r(T − t)) < K,

which is not true. Therefore, we need to impose the following

condition:

V (x, t) ≥ max(K − x, 0)

Combining this with the above problem we have the following

linear complementarity problem:

LV (x, t) ≥ 0 (2)

V (x, t)− V ∗(x) ≥ 0 (3)

LV (x, t) · (V (x, t)− V ∗(x)) = 0 (4)

a.e. in Ω := I × (0, T ),



Note that this also contains the European option as special case if

we assume V ∗ is sufficiently small (or V ∗ = 0).

Equivalent to the HJB equation

min{LV, V − V ∗} = 0.



Variational formulation

Before reformulating the complementarity problem (43)–(45) as a

variational problem, we first transform it into an equivalent

standard form satisfying homogeneous Dirichlet boundary

conditions.

Let V0 be the linear function satisfying the boundary conditions

(??) and (??). It is easy to show that V0 is given by

V0(x) =
(

1− x

X

)
g(t) =

(
1− x

X

)
K (5)

by (??). Introduce a new variable

U(x, t) = eβt(V (x, t)− V0(x))



where

β = sup
0<t<T

σ2(t). (6)

Taking LV0 away from both sides of (43) and transforming V in

(43)–(45) into the new variable U , it is easy to show that, the

complementarity problem (43)–(45) then becomes

LU(x, t) ≥ −f(x, t), (7)

U(x, t)− U∗(x, t) ≥ 0, (8)(
LU(x, t) + f(x, t)

)
· (U(x, t)− U∗(x, t)) = 0, (9)

where

f(t) = eβtLV0(x), U∗(x, t) = eβt(V ∗(x)− V0(x)) (10)



and LU is the self-adjoint form of LU given by

LU = −∂U

∂t
− ∂

∂x

[
a(t)x2 ∂U

∂x
+ b(t)xU

]
+ c(t)U, (11)

with

a =
1
2
σ2, (12)

b = r − σ2, (13)

c = r + b + β = 2r + β − σ2. (14)

From (??), (??), (5) and the definition of U , we see that the

boundary conditions now become

U(0, t) = 0 = U(X, t), t ∈ [0, T ). (15)

Finally, letting u = −U , the complementarity problem (7)–(9) can



further be rewritten as the following standard form:

Lu(x, t) ≤ f(x, t), (16)

u(x, t)− u∗(x, t) ≤ 0, (17)(
Lu(x, t)− f(x, t)

)
· (u(x, t)− u∗(x, t)) = 0 (18)

in QT , where QT = (0, X)× (0, T ),

f(x, t) := eβtLV0(x, t), u∗(x, t) := −eβt(V ∗(x)− V0(x, t))
(19)

and Lu is the conservative form of Lu given by

Lu = −∂u

∂t
− ∂

∂x

[
a(t)x2 ∂u

∂x
+ b(t)xu

]
+ c(t)u, (20)



with

a =
1
2
σ2, (21)

b = r − d− σ2, (22)

c = r + b− x
∂d

∂x
+ β = 2r + β − σ2 − ∂D

∂x
. (23)

Here

β := sup
QT

[
σ2(t) +

∂D

∂x

]
. (24)



Let K := {v ∈ H1
0,w(Ω) : v ≤ u∗}. It is easy to verify that K is a

convex and closed subset of H1
0,w(Ω). Using K, we define the

following problem.

Find u(t) ∈ K such that, for all v ∈ K,(
−∂u(t)

∂t
, v − u(t)

)
+A(u(t), v−u(t); t) ≥ (f(t), v−u(t))

(25)
almost everywhere (a.e.) in (0, T ), where A(·, ·; t) be a

bilinear form defined by

A(u, v; t) = (ax2u′ + bxu, v′) + (cu, v), u, v ∈ H1
0,w(Ω).

(26)

Here H1
0,w(Ω) is a weighted Sobolev space.



Lemma

There exist positive constants C and M , independent of v, such

that for any v, w ∈ H1
0,w(I),

A(v, v; t) ≥ C||v||2A (27)

A(v, w; t) ≤ M ||v||A||w||A (28)

for t ∈ (0, T ), where || · ||A is a weighted energy norm.



The Power Penalty Approach

Consider now the following semilinear equation

Luλ(x, t) + λ[uλ(x, t)− u∗(x, t)]1/k
+ = f(x, t), (x, t) ∈ QT (29)

with the given boundary and final conditions

uλ(0, t) = 0 = uλ(X, t) and uλ(x, T ) = u∗(x, T ),

where λ > 0 and k > 0 are parameters, and [·]+ denotes the

positive part of a function.

When k = 1, it becomes a linear penalty method. In this case,

large values of λ are needed which causes computational problems.



The corresponding variational form is

Find uλ(t) ∈ H1
0,w(Ω) such that, for all v ∈ H1

0,w(Ω),(
−∂uλ(t)

∂t
, v

)
+ A(uλ(t), v; t) + λ

(
[uλ(t)− u∗(t)]1/k

+ , v
)

= (f(t), v) (30)

a.e. in (0, T ) and uλ(x, T ) = g3(x).



The above problem has a unique solution.

The proof (by Wang, Yang & Teo) is essentially to show∫ T

0

[ (
L(v1 − v2), v1 − v2

)
+

λ
(
[v1 − u∗]1/k

+ − [v2 − u∗]1/k
+ , v1 − v2

) ]
dτ

≥ C||v1 − v2||2L2(0,T ;H1
0 (I)).



Convergence of the penalty approach

Let u and uλ be the solutions to (25) and (30), respectively. If
∂u
∂t ∈ Lk+1(QT ), then there exists a non-negative constant C > 0,

independent of u, uλ and λ, such that

‖u− uλ‖L∞(0,T ;L2(Ω)) + ‖u− uλ‖L2(0,T ;H1
0,w(Ω)) ≤

C

λk/2
, (31)

where k is the parameter used in (30) and QT = (0, X)× (0, T ).

The significance of this result is that the convergence rate can be

of any order, depending on the choice of k.

Therefore, we can choose rather small λ, but large k.



Discretisation of the nonlinear PDE

Consider

−∂u

∂t
(x, t)− ∂

∂x

[
a(t)x2 ∂u

∂x
(x, t) + b(x, t)xu(x, t)

]
+c(x, t)u(x, t) + Ψ(u(x, t), t) = f(x, t) (32)

Mesh:

Ii := (xi, xi+1), i = 0, . . . , N − 1.

Integrating the equation (32) over Ωi := (xi−1/2, xi+1/2),
i = 1, . . . , N − 1,

−
∫

Ωi

u̇ dx− [xρ(u)]
xi+1/2
xi−1/2

+
∫

Ωi

cu dx +
∫

Ωi

Ψ(u, ·)dx =
∫

Ωi

f dx ,

(33)



where ρ = axv′ + bv denotes the flux.

The flux can be approximated locally by solving

(axv′ + bi+1/2v)′ = 0, x ∈ Ii (34)

v(xi) = ui, v(xi+1) = ui+1, (35)

where bi+1/2 = b(xi+1/2, t). This gives

ρi(u) = bi+1/2

xαi
i+1ui+1 − xαi

i ui

xαi
i+1 − xαi

i

, (36)

where αi = bi+1/2/a.

Substituting into (33),

−∂ui(t)
∂t

li + Ei(t)u(t) + di(ui(t)) = fi(t)li, (37)



for i = 1, 2, ..., N − 1, where

Ei = (0, .., 0, ei,i−1(t), ei,i(t), ei,i+1(t), 0, ..., 0).



Time discretisation

2-level discretisation:

um+1
i − um

i

−∆tm
li + θ

[
Em+1

i um+1 + di(um+1
i )

]
+(1− θ)

[
Em

i um + di(um
i )
]

= (θfm+1
i + (1− θ)fm

i )li

for m = 0, 1, ...,M − 1, where θ ∈ [1/2, 1].

θ = 1 – Backward Euler; θ = 1/2 – Crank-Nicolson.

Properties of the system matrix

The system matrix is an M -matrix.

The discretization is monotone, which guarantees the solution is

non-negative.



Error estimates for the spatial discretization

Let Θ ∈ [1/2, 1], U0 = Ihu0 and k = 1. Then, if

u, u̇ ∈ L2(0, T ;H1(Ω)), ü ∈ L2(0, T ;L2(Ω)) and

ρ(u) ∈ C(0, T ;W 1
∞(Ω)), the following estimate holds:

‖Ihu(0)− UM‖0,h ≤ C(h + ∆t).

A proof is given in Angermann & Wang, Numer. Math. (2007).



Error estimates for the spatial discretization

Let Θ ∈ [1/2, 1], U0 = Ihu0 and k = 1. Then, if

u, u̇ ∈ L2(0, T ;H1(Ω)), ü ∈ L2(0, T ;L2(Ω)) and

ρ(u) ∈ C(0, T ;W 1
∞(Ω)), the following estimate holds:

‖Ihu(0)− UM‖0,h ≤ C(h + ∆t).

A proof is given in Angermann & Wang, Numer. Math. (2007).

Remark: Under stronger smoothness assumptions on u than those

in the above theorem and by more detailed considerations, it can

also be shown that the Crank–Nicolson method (Θ = 1/2) is of

2nd order accuracy in ∆t.



Numerical experiments

θ = 1/2 – Crank-Nicholson scheme for the time stepping.

Test Problem: American Put option. Parameters: X = 100,

T = 1.5, r = 0.03, σ = 0.4 and K = 50.
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Figure 1: Computed value V , ∆ and Γ of the option, and the
constraint V − V ∗ for k = 4 and λ = 10.
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Figure 2: Computed ∆ and Γ of the option for k = 1 and
λ = 10.
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Figure 3: Computed ∆ and Γ of the option for k = 2 and
λ = 10.
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Figure 4: Computed ∆ and Γ of the option for k = 6 and
λ = 10.
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Figure 5: Computed ∆ and Γ of the option for k = 8 and λ = 4.



HJB equation for Two-asset American options (Zhang, Wang Yang Teo)

HJB equation:

min{LV, V − V ∗} = 0,

where

LV = −∂V

∂t
− 1

2

[
σ2

1x
2 ∂2V

∂x2
+ 2ρσ1σ2xy

∂2V

∂x∂y
+ σ2

2y
2 ∂2V

∂y2

]

−r

[
x

∂V

∂x
+ y

∂V

∂y

]
+ rV,



Options with proportional transaction costs

Question: how can we define the issuing price of a call or put

option?

Consider the following problems.

Problem 1. Utility maximization for an investor without an option:

Suppose that the investor trades only in the underlying stock and

the bond. At time t ∈ [0, T ], the investor holds β dollars in the

bond and α shares of the stock whose price is S. The objective of

the investor is to maximize the expected utility of wealth at

terminal time T .



Problem 2. Utility maximization for an investor buying an option

Assume that the investor trades in the market for the stock and

the bond, and in addition, purchases a cash-settling European call

option written on the stock with strike price K and expiry date T .

Then, the investor’s time t expected utility of terminal wealth is to

be maximized over the set of feasible strategies.

Problem 3 Utility maximization for an investor writing an option: If

the investor trades in the market for the stock and the bond, and,

in addition, sells a cash-settling European call option written on

the stock with strike price K and expiry date T . Then, the investor

wishes to maximize expected utility of terminal wealth over the set

of feasible strategies.

Using these and the no arbitrage principle we can define the values

of the put and call options.



The HJB equations:

min {L1V,L2V,L3V } = 0, (38)

where

L1 = −

(
∂

∂t
+ rβ

∂

∂β
+ µS

∂

∂S
+

1
2
σ2S2 ∂2

∂S2

)
, (39)

L2 = − ∂

∂α
+ (1 + θ)S

∂

∂β
, (40)

L3 =
∂

∂α
− (1− θ)S

∂

∂β
. (41)

with different terminal and boundary conditions.

α – value of shares.

β – value of bonds.



Penalty approach:

L1Vλ1,λ2 + λ1[L2Vλ1,λ2 ]
− + λ2[L3Vλ1,λ2 ]

− = 0. (42)

We have shown that there exists a unique viscosity solution to (42)

and Vλ1,λ2 → V as λ1, λ2 →∞.

We have also constructed a numerical method for solving (42).



A nonlinear obstacle problem

∂u

∂t
+ T (u(x, t))− f(x, t) ≤ 0 (43)

u(x, t)− u∗(x, t) ≤ 0 (44)(
∂u

∂t
+ T (u(x, t))− f(x, t)

)
· (u(x, t)− u∗(x, t)) = 0 (45)

for (x, t) ∈ Ω× (0, T ] =: Q with given initial and boundary

conditions, where

T (u(x, t)) = −∇ · (A(x)∇u(x, t)) + G(u(x, t)), (46)

A(x) = (aij(x)) is an n× n matrix, and

G(·) : R 7→ R is monotone.



Penalty approach

∂uλ

∂t
+T (uλ(x, t))+λ

(
φ(uλ(x, t)) + ε

)1/k = f(x, t)+λε1/k, (47)

for (x, t) ∈ Ω where

φ(v(x, t)) = [v(x, t)− u∗(x, t)]+ = max{v(x, t)− u∗(x, t), 0}.



Convergence Result

Let u and uλ be the solutions to the original and the penalized

problems, respectively. If ∂u
∂t ∈ Lk+1(Q), then there exists a

constant C > 0, independent of u, uλ and λ, such that

||u− uλ||L∞(0,T ;L2(Ω)) + ||u− uλ||L2(0,T ;H1
0 (Ω))

≤ C

[
1
λk

+ ε(λε1/k + 1)
]1/2

,

If λε1/k ≤ O(1), then

||u− uλ||L∞(0,T ;L2(Ω)) + ||u− uλ||L2(0,T ;H1
0 (Ω)) ≤

C

λk/2
.



Numerical Results

Example 1. a11 = a22 = 1, a12 = a21 = 0 and G(u) = u2,

u∗ = −0.05(x− 1) + 0.05. ε = 10−8.
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Figure 6: Computed solution for Example 1.



Example 2. a11 = 3 + sin(2πy), a22 = 3 + sin(2πx),
a12 = a21 = 0, G(u) = u2, u∗ = 0.2(x + 2 sin(2πx)) + 0.3.
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Figure 7: Computed solution for Example 2.


