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1 Why being afraid of nonsmooth analysis?

• abundance of concepts

• uncertainty of terminology

• lack of coherence in notation: T
C

(E, x) / f 0(x, v)

• feeling of unsecurity

2 Why being seduced by nonsmooth analysis?

• any sort of function or set can be treated

• new operations such as taking infima or suprema are no more out of reach

• the passages from functions to sets and to multimaps bring a unification of
mathematics
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3 Various forms of continuity and differentiability

Let g : X0 → L(X, Y ), where X, Y are n.v.s. and X0 ⊂ X is open, x0 ∈ X0

g is continuous at x0 if ‖g(x)− g(x0)‖ → 0 as x → x0

g is pointwise continuous at x0 if x → g(x).u is continuous at x0, ∀ u ∈ X

g is jointly continuous if (x, u) 7→ g(x).u is continuous.

g is directionally continuous if ∀v ∈ SX , g(x + tw) → g(x) as (w, t) → (v, 0+).

=⇒ Various forms of continuous differentiability when g = f ′
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4 Subdifferentials

F(X) ⊂ S(X), the set of lsc functions f : X → R∞ := R∪{+∞}.
A subdifferential is here a correspondence ∂ : F(X)×X ⇒ X∗ satisfying:

• 0 ∈ ∂f(x) when x is a minimizer of f ∈ F(X).

Other conditions:

• (Exact mean value theorem) ∂ is Lipschitz-valuable on X if ∀f ∈ L(X),
x, y ∈ X ∃w ∈ [x, y], w∗ ∈ ∂f(w) s.t. f(y)− f(x) = 〈w∗, y − x〉.

• (Fuzzy mean value theorem) ∂ is valuable on X if ∀f ∈ F(X), x ∈ dom f ,
y ∈ X\{x}, r ∈ R s.t. f(y) ≥ r, there exist u ∈ [x, y) and sequences (u∗n),
(un) → u s.t. u∗n ∈ ∂f(un), (f(un)) → f(u), lim infn〈u∗n, y − x〉 ≥ r − f(x)
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4.1 Some subdifferentials

• The firm (or Fréchet) subdifferential:

x∗ ∈ ∂Ff(x) ⇔ f(x + u) ≥ f(x) + 〈x∗, u〉 − o(‖u‖).

• The p-proximal subdifferential : o(‖u‖) = c ‖u‖p for some c > 0.

• The limiting subdifferential associated to a subdifferential ∂ :

∂Lf(x) := w∗ − lim sup
(u,f(u))→(x,f(x))

∂f(u),

where the w∗-limsup is the set of cluster points of bounded sequences (u∗i )
with u∗i ∈ ∂f(ui), (ui) → x, (f(ui)) → f(x).

• Subdifferentials associated with directional derivatives via

∂(·)f(x) := {x∗ ∈ X∗ : x∗(u) ≤ f (·)(x, u)∀u ∈ X}.
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4.2 Directional derivatives

• The (lower) directional derivative (or lower Hadamard derivative) of f

fD(x, v) := lim inf
(t,w)→(0+,v)

f(x + tw)− f(x)

t
.

• The Clarke–Rockafellar derivative

fC(x, v) := inf
r>0

lim sup
(t,y)→(0+,x)

f(y)→f(x)

inf
w∈B(v,r)

f(y + tw)− f(y)

t
.

• The moderate derivative of Michel-Penot
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4.3 Tangent cones

• The directional or contingent tangent cone TD(E, e) to E ⊂ X at e ∈ cl(E) is

the set of v ∈ X s.t. there exist (tn) → 0+, (en)
E→ e with ((en−e)/tn) → v.

• The firm tangent cone T F (E, e) to E⊂X at e ∈ cl(E) is the set of v∗∗ ∈ X∗∗

s.t. there exist (tn) → 0+, (en)
E→ e with ((en − e)/tn) → v∗∗ in (X∗∗, σ∗∗).

• The Clarke tangent cone TC(E, e) to E at e is the set of v ∈ X s.t. for any

sequence (en)
E→ e there exist (tn) → 0+, (yn) in E s.t. ((yn − en)/tn) → v.

Proposition 1

lim inf
e(∈E)→e

TD(E, e) ⊂ TC(E, e) ⊂ lim inf
e(∈E)→e

T F (E, e).
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4.4 Normal cones

To a subdifferential ∂ is associated a notion of normal cone to E at e ∈ E:

N(E, e) := R+∂ιE(e),

where ιE is the indicator function of E (ιE(x) = 0 if x ∈ E, +∞ otherwise).
Conversely, a normal cone notion N yields a notion of subdifferential ∂ :

∂f(x) := {x∗ ∈ X∗ : (x∗,−1) ∈ N(Ef , xf)}

where Ef := {(x, r) ∈ X × R : r ≥ f(x)} and xf := (x, f(x)).

Examples:

• The normal cone ND(E, x) to E at x ∈ cl(E) is the polar cone to TD(E, x).

• The Clarke normal cone NC(E, x) to E at x is the polar to TC(E, x).

• The firm normal cone (or Fréchet normal cone) to E at x is given by

x∗ ∈ NF (E, x) ⇔ 〈x∗, u− x〉 ≤ o(‖u− x‖) u ∈ E.
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Proposition 2 NF (E, x) = (T F (E, x))0.

Proposition 3 NLF (E, x) ⊂ NC(E, x).

Theorem 4 Let E be a closed subset of an Asplund space X and let x ∈ E.
Then,

NC(E, x) = co∗(NLF (E, x)) := co∗(lim sup
E

e→x

NF (E, e)).

If X is a reflexive Banach space one has

TC(E, x) = lim inf
e

E→x

T F (E, e) = lim inf
e

E→x

co(T F (E, e)).
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5 Sleekness and regularity

E ⊂ X is Clarke regular at x if TD(E, x) = TC(E, x).

E ⊂ X is sleek at x if TD(E, x) = lim infx(∈E)→x TD(E, x).

Characterizations:

E ⊂ X is sleek at x ⇐⇒ for all v ∈ TD(E, x) there exists v : E → X
continuous at x such that v(x) = v and v(x) ∈ TD(E, x) for all x ∈ E.

E is sleek at x ⇐⇒ TD(E, ·) is lower semicontinuous at x on E.

Proposition 5 (a) E ⊂ X is Clarke regular at x⇐⇒ ND(E, x) = NC(E, x).
(b) E is sleek at x =⇒ E is regular at x

Proof : (a) take polar cones.
(b) TC(E, x) ⊂ TD(E, x) ⊂ lim infx(∈E)→x TD(E, x) ⊂ TC(E, x).

f : X → R is sleek at x if Ef := epi f is sleek at xf := (x, f(x)).
f : X → R is regular at x if Ef := epi f is regular at xf
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6 Softness and regularity

Proposition 6 If E is a closed subset of an Asplund space and if x ∈ E, then,
among the following assertions, one has the implications (a)⇒(b)⇔(c)⇔(d):

(a) E is sleek at x:

TD(E, x) ⊂ lim inf
x

E→x

TD(E, x);

(b) E is soft at x:
NL(E, x) = ND(E, x);

(c) E is Clarke regular at x:

NC(E, x) = ND(E, x), TC(E, x) = TD(E, x);

(d) E is pseudo-sleek at x:

TD(E, x) ⊂ lim inf
x

E→x

TD(E, x)00.

If moreover E has the cone property (= is epi-Lipschitz) around x, all these
properties are equivalent.
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7 Firm softness and firm regularity

(a) E is firmly tangentially regular at x if T F (E, x) = TC(E, x)

(b) E is firmly (normally) regular at x if NF (E, x) = NC(E, x)

(c) E is firmly soft at x if NLF (E, x) = NF (E, x):
(x∗i ) →∗ x∗, bounded, x∗i ∈ NF (E, xi) for all i =⇒ x∗ ∈ NF (E, x)

(d) E is firmly metrically soft at x if dE is firmly soft at x

(e) E is firmly sleek at x if T F (E, x) = lim infx(∈E)→x T F (E, x)

f is firmly soft at x if its epigraph is firmly soft at xf := (x, f(x)).

Theorem 7 (a)=⇒(b) and (a)=⇒(e)=⇒(c)⇐⇒(d)

Theorem 8 If X is Asplund (a)=⇒(b)⇐⇒(c)⇐⇒(d)

Theorem 9 If X is reflexive (a), (b), (c), (d), (e) are equivalent.
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8 Some favorable classes of functions

• tangentially convex functions introduced by Pshenichnyi, Janin, P...

• d.c. functions and t.d.s. functions: Tuy, Lethi, Tao, Caprari-P...

• partially smooth functions: Lewis

• semismooth functions introduced by Mifflin and Ngai-P in the lsc case

• lower Ck functions studied by Spingarn, Rockafellar, P, Daniilidis-Malick...

• amenable functions introduced by Rockafellar and used by Poliquin

• prox-regular functions introduced by Poliquin-Rockafellar and extended
to the infinite dimensional case by Bernard-Thibault

• primal lower nice functions introduced by Poliquin and studied by Bernard,
Marcellin, Thibault...

• piecewise C1 functions studied by Kojima, Pallaschke, Ralph, Scholtes...

• sums of convex and C1 functions used by Michel, Szulkin...
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• p-paraconvex functions studied by Rolewicz and Bougeard-P-Pommellet,
Canino, Castellani-Pappalardo, Duda-Zajicek, Jourani, Ngai-P, P, P-Volle...

• for p = 2 these functions are also called semiconvex (Lasry-Lions, Attouch-
Azé, Cannarsa-Sinestrari), subsmooth (Aussel-Daniilidis-Thibault), prop-
erty ω (Colombo-Goncharov), weakly convex (Vial), lower-C2 (Spingarn...)

• (p, q)-convex functions introduced by De Giorgi-Marino-Tosques and stud-
ied by Canino, Degiovanni, and their co-authors

• approximately convex functions introduced by Ngai-Luc-Théra and stud-
ied by Aussel-Daniilidis-Thibault, Colombo-Goncharov, Daniilidis-Georgiev,
Ngai-P,....

• approximately starshaped functions P, Ngai-P

Definition 10 A function f ∈ F(X) finite at a, is said to be approximately
starshaped at a if for any ε > 0 there exists δ > 0 such that for any x ∈ B(a, δ),
t ∈ [0, 1], one has

f((1− t)a + tx) ≤ (1− t)f(a) + tf(x) + εt(1− t) ‖x− a‖ .

Directional versions of the concepts...
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9 Differences of convex functions

Theorem 11 If f = g − h with g finite at x ∈ core(dom h), g approximately
starshaped at x and h approximately convex at x, then

∂Df(x) = ∂Dg(x) � ∂Dh(x),

where for two subsets A, B of X∗ one sets

A � B = {x∗ : B + x∗ ⊂ A}.
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10 Can one generalize the notion of function of class C1?

Among many different means:
f is said to be equi-subdifferentiable at a if ∂Df(a) 6= ∅ and if for every ε > 0

one can find δ > 0 s.t. for all x ∈ B(a, δ), a∗ ∈ ∂Df(a)

〈a∗, x− a〉 ≤ f(x)− f(a) + ε ‖x− a‖ .

The function f is said to be continuously ∂-subdifferentiable at a if for all ε > 0
one can find some δ > 0 such that for all x ∈ B(a, δ) with |f(x)− f(a)| < δ,
x∗ ∈ ∂f(x), y ∈ B(x, δ) one has

〈x∗, y − x〉 ≤ f(y)− f(x) + ε ‖y − x‖ .

Proposition 12 If f is continuously ∂-subdifferentiable at a then f is ∂-soft at
a : ∂Lf(a) = ∂Ff(a).

Proposition 13 If f is continuous around a, approximately starshaped at a with
∂Df(a) 6= ∅, then f is equi-∂D-subdifferentiable at a and ∂Df(a) = ∂Ff(a).
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11 Approximately convex functions

Definition 14 (Ngai-Luc-Théra) A function f : X → R∪{+∞} is said to be
approximately convex at x0 ∈ X if for any ε > 0 there exists δ > 0 s.t. ∀x, y ∈
B(x0, δ), t ∈ [0, 1] one has

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) + εt(1− t) ‖x− y‖ .

This class has interesting stability properties (cf Ngai-Luc-Théra):

Proposition 15 The set of approximately convex functions around x0 ∈ X is a
convex cone containing the functions which are strictly differentiable at x0.

It is stable under finite suprema. Moreover, if f = h ◦ g, where g : X → Y

is strictly differentiable at x0 and h : Y → R∞ is approximately convex around
g(x0), then f is approximately convex around x0.

It can be shown that approximately convex functions retain some of the nice
properties of convex functions. In particular they are continuous on segments
contained in their domains and have radial derivatives.
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12 Approximate convexity versus approximate monotonicity

Characterizations of approximate convexity ?
Previous results for the Lipschitz case: Daniilidis-Georgiev, Aussel-Daniilidis-
Thibault

In order to look for characterizations, we need the following notion.

Definition 16 (Spingarn) A multimap M : X ⇒ X∗ is said to be approximately
monotone around x on E ⊂ X if for any ε > 0 there exists some δ > 0 such
that for any x1, x2 ∈ E ∩B(x, δ), x∗1 ∈ M(x1), x∗2 ∈ M(x2) one has

〈x∗1 − x∗2, x1 − x2〉 ≥ −ε ‖x1 − x2‖ .

For E = X one says that M is approximately monotone around x.
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Theorem 17 Let x0 ∈ dom f, f lsc. Suppose ∂f ⊂ ∂Cf. Then, among the
following assertions, one has the implications (a)⇒(b)⇒(c)⇒(d).
If moreover ∂ is valuable on X, all these assertions are equivalent.

(a) f is approximately convex around x0;
(b) ∀ε > 0 ∃ρ > 0 s.t. ∀x ∈ B(x0, ρ), ∀v ∈ B(0, ρ) one has

fC(x, v) ≤ f(x + v)− f(x) + ε ‖v‖ ;

(c) ∀ε > 0 ∃ρ > 0 s.t. ∀x ∈ B(x0, ρ), ∀x∗ ∈ ∂f(x), ∀v ∈ B(0, ρ)

〈x∗, v〉 ≤ f(x + v)− f(x) + ε ‖v‖ ;

(d) ∂f is approximately monotone around x0.
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Corollary 18 The preceding assertions (a), (b), (c), (d) are equivalent when
(i) X is arbitrary and ∂ = ∂C, the Clarke subdifferential;
(ii) X is an Asplund space and ∂ = ∂F or ∂ = ∂D.

13 Approximate convexity of sets

Definition 19 E ⊂ X is said to be approximately convex around x if dE is
approximately convex around x.
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Theorem 20 Let ∂ be a subdifferential s.t. ∂f ⊂ ∂Cf ∀f ∈ L(X). Among
the following assertions, one has the implications (a)⇒(b)⇒(c)⇔(d)⇔(e). If
moreover ∂ is Lipschitz-valuable on X, all these assertions are equivalent.

(a) E is approximately convex around x;
(b) ∀ε > 0 ∃ρ > 0 s.t. ∀x ∈ B(x, ρ), v ∈ B(0, ρ) one has

dC(x, v) ≤ dE(x + v)− dE(x) + ε ‖v‖ ;

(c) ∀ε > 0 ∃ρ > 0 s.t. ∀x ∈ B(x, ρ), x∗ ∈ ∂dE(x), v ∈ ρBX one has

〈x∗, v〉 ≤ dE(x + v)− dE(x) + ε ‖v‖ ;

(d) ∂dE is approximately monotone around x;
(e) ∀ε > 0 ∃σ > 0 s.t. ∀x, y ∈ B(y, σ), x∗ ∈ ∂dE(x) one has

dE(x) + 〈x∗, y − x〉 ≤ dE(y) + ε ‖y − x‖ .

Corollary 21 If E is approximately convex around x then dE is firmly (Clarke)
regular at x.
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14 Intrinsic approximate convexity

Definition 22 E ⊂ X is intrinsically approximately convex around x ∈ E if for
any ε > 0 there exists ρ > 0 s.t. for any x1, x2 ∈ E ∩B(x, ρ), t ∈ [0, 1], one has

dE((1− t)x1 + tx2) ≤ εt(1− t) ‖x1 − x2‖ .

This definition does not depend on the choice of the norm (up to equivalence).

Theorem 23 Let E ⊂ X and let ∂ be a subdifferential such that ∂f ⊂ ∂Cf for
f ∈ L(X). Then, among the following assertions, one has (a)⇒(b)⇒(c)⇔(d)⇐(e).
When X is a Lipschitz ∂-subdifferentiability space one has (e)⇒(a).

(a) E is intrinsically approximately convex around x;
(b) ∀ε > 0 ∃δ > 0 s.t. ∀x, x′ ∈ E ∩B(x, δ), one has

dC(x, x′ − x) ≤ ε ‖x− x′‖ ;

(c) ∀ε > 0 ∃δ > 0 s.t. ∀x, x′ ∈ E ∩B(x, δ), x∗ ∈ ∂dE(x), one has

〈x∗, x′ − x〉 ≤ ε ‖x− x′‖ ;

(d) ∂dE(·) is approximately monotone around x on E;
(e) ∀ε > 0 ∃σ > 0 s.t. ∀w ∈ B(x, σ), x ∈ E ∩B(x, σ), w∗ ∈ ∂dE(w) one has

dE(w) + 〈w∗, w − x〉 ≤ ε ‖w − x‖ .

Corollary 24 If E is intrinsically approximately convex around x, then for any
subdifferential ∂ s.t. ∂F ⊂ ∂ ⊂ ∂C one has ∂FdE(x) = ∂dE(x) = ∂CdE(x).
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Some specializations:

Corollary 25 If X is Asplund and ∂ = ∂F these assertions are equivalent to
(f) ∀ε > 0 ∃δ > 0 s.t. ∀x, x′ ∈ E ∩B(x, δ), x∗ ∈ NF (E, x) one has

〈x∗, x′ − x〉 ≤ ε ‖x∗‖ ‖x− x′‖ ;

(g) ∀ε > 0 ∃δ > 0 s.t. ∀xi ∈ E ∩B(x, δ), x∗i ∈ NF (E, xi), i = 1, 2, one has

〈x∗1 − x∗2, x2 − x1〉 ≥ −ε max (‖x∗1‖ , ‖x∗2‖) ‖x1 − x2‖ . (1)

Corollary 26 If X is an Asplund space and ∂ = ∂LF then all these assertions
are equivalent.

Corollary 27 If ∂ = ∂C , among the assertions of the preceding Theorem, the
following implications hold: (e)⇒(a)⇒(b)⇔(c)⇔(d).

If X is an Asplund space, all these assertions are equivalent.
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15 Approximately convex sets and functions

We endow X := W×R with a product norm, i.e. a norm such that the projections
and the insertions w 7→ (w, 0) and r 7→ (0, r) are nonexpansive.

Proposition 28 Let W be a n.v.s. and let f : W → R∞ be a l.s.c. function
which is approximately convex around w ∈ W. Then, for any r ≥ f(w) the
epigraph E of f is intrinsically approximately convex around x := (w, r).

A kind of converse:

Theorem 29 Let W be a Banach space and let f : W → R be a function which
is locally Lipschitzian around w ∈ W and such that the epigraph E of f is an
intrinsically approximately convex subset of X := W ×R around x := (w, f(w)).
Then f is an approximately convex function around w.

Proposition 30 Let f : W → R be a function which is Lipschitz with rate c > 0
on some ball B(w, ρ). Suppose X := W × R is endowed with the norm given by
‖(w, r)‖ = c ‖w‖ + |r| . If f is approximately convex around w, then, for any
r ≥ f(w), the epigraph E of f is approximately convex around x := (w, r).
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Recall that E satisfies the cone property around x if there exist r, ρ > 0 and
u ∈ SX such that for every x ∈ E ∩ B(x, ρ), v ∈ B(u, r), t ∈ (0, r) one has
x + tv ∈ E.

Corollary 31 Suppose E satisfies the cone property around x. Then E is intrin-
sically approximately convex around x if, and only if, it is approximately convex
around x for some compatible norm on X.

Let us turn to sublevel sets.

Proposition 32 Let X be an Asplund space and let f : X → R be a continuous
function. Suppose f is approximately convex around x ∈ S := {x ∈ X : f(x) ≤
0} and there exist c > 0, r > 0 such that ‖x∗‖ ≥ c for all x ∈ (X\S) ∩ B(x, r)
and all x∗ ∈ ∂Ff(x). Then S is intrinsically approximately convex around x.
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16 Approximately convex sets and projections

Lemma 33 Let X be uniformly smooth and let E ⊂ X. Then −dE is firmly
(Clarke) regular at any w ∈ X \ E : ∂C(−dE) = ∂F (−dE).

Theorem 34 Suppose that the norm of X is differentiable on X\{0}. Let E ⊂
X and let U be an open subset of X. Consider the following assertions:

(a) Each w ∈ U has a unique metric projection PE(w) in E and PE(·) is
continuous on U \ E.

(b) dE(·) is continuously differentiable on U \ E.
(c) dE(·) is approximately convex on U \ E.

Then, one has (a)⇒(b)⇒(c). If X is uniformly Fréchet smooth, then (a)⇒(b)⇔(c).
If, in addition, X is strictly convex and the norm of X has the Kadec-Klee
property, then (a)⇔(b)⇔(c).
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17 p-paraconvexity and p-paramonotonicity

Definition 35 Given some p ≥ 1, a function f : X → R∪{+∞} on a n.v.s. X

is said to be p-paraconvex around x ∈ dom f := f−1(R) if there exist c, δ > 0 s.t.
for any x, y ∈ B(x, δ) and any t ∈ [0, 1] one has

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) + ct(1− t) ‖x− y‖p .

Definition 36 A multimapping M : X ⇒ X∗ is said to be p-paramonotone
around x on a subset E of X if there exist some m, δ > 0 s.t. for any x1, x2 ∈
E ∩B(x, δ), x∗1 ∈ M(x1), x∗2 ∈ M(x2) one has

〈x∗1 − x∗2, x1 − x2〉 ≥ −m ‖x1 − x2‖p .

For E = X one simply says that M is p-paramonotone around x.
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18 Generic differentiability

It is a deep and famous result of D. Preiss that any locally Lipschitzian function
on an Asplund space is Fréchet differentiable at the points of a dense subset.

However, it is not known whether this set is a Gδ, i.e. a countable intersection
of open subsets.

We need an important characterization of Asplund spaces.

Lemma 37 X is an Asplund space if and only if X∗ has the Radon-Nikodým
property, i.e. if every nonempty bounded subset A of X∗ admits weak* slices of
arbitrary small diameter.
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18.1 Generic differentiability of approx. convex functions

Theorem 38 Let f : U → R be a lower semicontinuous, approximately convex
function on an open subset U of an Asplund space. Then f is Fréchet differen-
tiable on a dense Gδ-subset of U .

18.2 An extension to regular functions

Theorem 39 Let U be an open subset of an Asplund space X and let f : U → R
be a locally Lipschitzian regular function. Then f is Fréchet differentiable at each
point of a dense Gδ-subset of U .
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