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Definition of an LPCC

Given: c ∈ Rn, d ∈ Rm, e ∈ Rm, f ∈ Rk, A ∈ Rk×n, B ∈ Rk×m, and

C ∈ Rk×m.

Find (x, y, w) ∈ Rn × Rm × Rm in order to globally

minimize
(x,y,w)

cTx + dTy + eTw

subject to Ax + By + Cw ≥ f

and 0 ≤ y ⊥ w ≥ 0,

where a ⊥ b means that the two vectors are orthogonal; i.e.,

aT b = 0.
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Preliminary observations

An LPCC is equivalent to 2m linear programs, each called a piece
and derived from a subset α ⊆ {1, · · · , m} with complement ᾱ:

LP(α) :

minimize
(x,y,w)

cTx + dTy + eTw

subject to Ax + By + Cw ≥ f

wα ≥ 0 = yα

and wᾱ = 0 ≤ yᾱ

Thus, there are 3 states of an LPCC in general:
• infeasibility–all pieces are infeasible
• unboundedness–one piece is feasible and unbounded below
• global solvability–objective is bounded below on all feasible
pieces and at least one piece is feasible.

4



Goals

To develop a finite-time algorithm to resolve an LPCC in one of

its 3 states, without complete enumeration of all the pieces and

without any a priori assumptions and/or bounds.

To provide certificates for the respective states at termination:

• no infeasible piece, if LPCC is infeasible

• an unbounded piece, if LPCC is feasible but unbounded below

• a globally optimal solution, if it exists.

To leverage the state-of-the-art advances in linear and integer

programming.

To apply the developed methodology broadly.
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Fundamental importance

The LPCC plays the same important role in disjunctive

nonlinear programs as a linear program does in convex pro-

grams. In addition to many applications of its own.

Novel paradigms in mathematical programming
• hierarchical optimization/equilibration

• inverse optimization/equilibration

• parameter identification/model validation in optimization/equilibration.

Key formulations for
• General quadratic programs

• B-stationary conditions of MPECs

– verification and computation without MPEC-constraint qualification

• global resolution of nonconvex quadratic programs.
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Inverse Convex Quadratic Programming

Given: Q ∈ Rn×n symmetric positive semidefinite, A ∈ Rm×n, (x̄, b̄, c̄) in

Rn+m+n, a polyhedron Ω ⊆ Rn+m+n, and a polyhedral norm ‖ • ‖ on Rn+m+n.

Find (x, b, c) ∈ Rn+m+n in order to

minimize
(x,b,c)

‖ (x, b, c )− ( x̄, b̄, c̄ ) ‖

subject to (x, b, c ) ∈ Ω

and
x ∈ argmin

x ′
1
2 (x ′ )TQx ′ + cTx ′

subject to Ax ′ ≤ b and x ′ ≥ 0

where argmin = the set of minimizers of the lower-level optimization problem.

Rewriting the lower-level convex QP in terms of its equivalent
KKT conditions yields an LPCC.
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B-stationarity of MPCCs

Consider the mathematical program with complementarity con-
ditions (Scheel and Scholtes 2000):

minimize
z

θ(z)

subject to g(z) ≤ 0

and 0 ≤ G(z) ⊥ H(z) ≥ 0

A feasible solution z∗ is B-stationary if (an LPCC in horizontal form):

0 ∈ argmin
v

θ(z∗) +∇θ(z∗)Tv

subject to g(z∗) + Jg(z∗)v ≤ 0

and 0 ≤ G(z∗) + JG(z∗)v ⊥ H(z∗) + JH(z∗)v ≥ 0
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Nonconvex quadratic programming

Consider the nonconvex quadratic program:

minimize
x

1
2 xTQx + cTx

subject to Ax ≤ b,

where Q is symmetric but not positive semidefinite.

On the set of stationary points,

objective value = cTx− bT ξ, for any KKT multiplier ξ,

leading to the (equivalent??) LPCC:

minimize
(x,ξ)

cTx− bT ξ

subject to 0 = c + Qx + AT ξ

and 0 ≤ ξ ⊥ b−Ax ≥ 0.
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(Giannessi-Tomasin 1973) If QPmin is finite, then QPmin = LPCCmin.

(Recall the classical result of Curtis Eaves for QPmin > −∞.)

However, equivalence breaks down if QPmin = −∞.

(Trivial counter-example: minimize −x2.)

Therefore, is there an equivalent LPCC formulation in general?

The answer is yes! See next.

There is a strong need for the global resolution of an LPCC.
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Known facts of a feasible QP

(Majthay71) A feasible vector x is a (strict) local minimum if and only if x is
a KKT point and Q is (strictly) copositive on the critical cone of the QP at
x.

(Eaves71) The QP attains a global minimum solution if and only if its ob-
jective function is bounded below on the feasible set, or equivalently, on the
feasible rays; furthermore, this holds if and only if (a) Q is copositive on the
recession cone of the feasible set, and (b) (c + Qx)Td ≥ 0 for all feasible
vectors x and recession directions d satisfying dTQd = 0.

(Luo-Tseng92) The quadratic objective function attains finitely many values
on the set of stationary points.

(Giannessi-Tomasin73) If the QP has a finite optimal solution, then the min-
imum objective value is equal to the minimum stationary values.

There is yet no finite test for the complete resolution of a QP.
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The complete LPCC formulation

minimize
(x,d,ξ,λ,µ,t,s)∈R2n+3m+2

− t

subject to

0 = c + Qx + ATξ + t 1n Lagrangian equation augmented by t

0 = Qd + ATλ−AT µ + s 1n derived from a ray problem

0 ≤ ξ ⊥ b−Ax ≥ 0 standard complementarity

0 ≤ µ ⊥ b−Ax ≥ 0 connecting ray condition with feasibility

0 ≤ λ ⊥ −Ad ≥ 0 ray complementarity I

0 ≤ ξ ⊥ −Ad ≥ 0 connecting KKT multiplier with ray

0 ≤ µ ⊥ −Ad ≥ 0 ray complementarity II

0 ≤ s, 1T
nd ≥ 1 ensuring nonzero ray

assuming, without loss of generality, that {d : Ad ≤ 0} ⊆ <n
+; otherwise, write

x = x+ − x− with x± ≥ 0 and substitute throughout.
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Sketch of derivation and equivalence

The truncated QP: for ρ > 0,

minimize
x

1
2 xTQx + cTx

subject to Ax ≤ b and 1Tx ≤ ρ.

The truncated homogeneous QP (copositivity test)

minimize
d

1
2 dTQd

subject to Ad ≤ 0 and 1Td = ρ.

Theorem. Suppose that the QP is feasible. This QP is un-

bounded below if and only if the LPCC has a feasible solution

with a negative objective value.
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Simplification under copositivity

Suppose that Q is copositive on the recession cone (checkable
by solving an LPCC).

The auxiliary variable µ can be removed, resulting in

minimize
(x,d,ξ,λ,t,s)∈R2n+2m+2

−t

subject to 0 = c + Qx + AT ξ + t 1n

0 = Qd + ATλ + s 1n

0 ≤ ξ ⊥ b−Ax ≥ 0

0 ≤ λ ⊥ −Ad ≥ 0

0 ≤ ξ ⊥ −Ad ≥ 0

0 ≤ s, 1T
nd ≥ 1.
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The global resolution of the LPCC
The LPCC:

minimize
(x,y,w)

cTx + dTy + eTw

subject to Ax + By + Cw ≥ f

and 0 ≤ y ⊥ w ≥ 0

Introducing a conceptually very large scalar θ > 0,

minimize
(x,y,w,z)

cTx + dTy + eTw

subject to Ax + By + Cw ≥ f

θ z ≥ w ≥ 0

θ( 1− z ) ≥ y ≥ 0

and z ∈ {0,1 }m
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Deficiencies and a resolution

Applicable only to feasible LPCCs with bounded variables.

Checking feasibility is difficult, especially when B 6= 0.

Lastly, computing the bounds of the variables is time consuming,

if theoretically doable

(think about bounding the dual variables of a lower-level LP in a bilevel linear

program)

Can the scalar θ be treated implicitly, even if it does not exist?

(think about the 2-phase implementation of the big-M simplex method)
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Toward a parameter-free IP formulation

For a binary z ∈ {0,1}m and a scalar θ > 0, the LP(θ; z):

minimize
(x,y,w)

cTx + dTy + eTw

subject to Ax + By + Cw ≥ f (λ )

−w ≥ −θ z (u )

−y ≥ −θ ( 1− z ) ( v )

and w, y ≥ 0,

and its dual DP(θ; z):

maximize
(λ,u±,v)

fTλ− θ
[
zTu + ( 1− z )Tv

]
subject to ATλ = c

BTλ− v ≤ d

CTλ− u ≤ e

and (λ, u, v ) ≥ 0,

which is feasible if and only if ∃λ ≥ 0 satisfying ATλ = c.
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The (un-parameterized) master LP

Given a binary z with α = supp(z) and complement ᾱ,

maximize
λ

fTλ

subject to ATλ = c

(BTλ )ᾱ ≤ d

(CTλ )α ≤ e

and λ ≥ 0,

obtained from DP(θ; z) by respecting the constraint

zTu + (1− z)v ≤ 0.

The master LP, which is dual to the primal LP(α) piece,

(a) has a finite optimal solution

(b) is feasible and unbounded, or

(c) is infeasible.
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Logical Benders cuts: of the satisfiability kind

In case (a), let λp be an optimal solution, add the point cut:∑
i∈ᾱ:(CTλp−e )i>0

zi +
∑

i∈α:(BTλp−d )i>0

( 1− zi ) ≥ 1

In case (b), let λr be an optimal solution, add the ray cut:∑
i∈ᾱ:(CTλr )i>0

zi +
∑

i∈α:(BTλr )i>0

( 1− zi ) ≥ 1

In case (c), solve the homogeneous dual problem:

maximize
λ

fTλ

subject to ATλ = 0

(BTλ )ᾱ ≤ 0

(CTλ )α ≤ 0

and λ ≥ 0,

:

{
max = ∞ ⇒ valid ray cut

max = 0 ⇒ unbounded LPCC
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The key steps in a finite algorithm

• Generate initial cuts by a problem-dependent pre-processing procedure.

• Solve a satisfiability feasibility system to determine a binary vector z with
supp(z).

• Solve the primal/dual master LP(α) to obtain either a point or ray cut,
or an unboundedness certificate; in the process, (improved) upper bounds to
LPCCmin are obtained.

• Apply a problem-dependent procedure to sparsify the obtained cuts, by
solving tight LP relaxations restricted by the sparsified cuts under testing,
obtaining lower bounds to the LPCCmin in the process.∑

i∈I

zi +
∑
j∈J

( 1− zj ) ≥ 1

split into (I1 ∪ I2 ⊆ I and J1 ∪ J2 ⊆ J ):∑
i∈I1

zi +
∑
j∈J1

( 1− zj ) ≥ 1 and
∑
i∈I2

zi +
∑
j∈J2

( 1− zj ) ≥ 1;

• Add the sparsified cuts to update satisfiability system. Return.
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An application: Simply-bounded indefinite QPs

Consider the nonconvex quadratic program:

minimize
x

1
2

xTQx + cTx

subject to 0 ≤ x ≤ 1n

and the equivalent LPCC formulation:

minimize
(x,ξ)

cTx− 1T
nξ

subject to 0 ≤ x ⊥ c + Qx + ξ ≥ 0

and 0 ≤ ξ ⊥ 1n − x ≥ 0.

The conceptual IP:

minimize
(x,ξ,z,λ)

cTx− 1T
nξ

subject to x ≤ 1n − z, 0 ≤ c + Qx + ξ ≤ θ z

and ξ ≤ θ λ, 1n − x ≤ 1− λ

x, ξ ≥ 0, z, λ ∈ {0,1 }n.
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Some ideas and key steps
• The logical cut: λ+z ≤ 1, expressing x cannot equal 0 and 1 simultaneously.

• The second-order cuts: A cut of the satisfiability kind can be generated if
the second-order necessary condition is violated at a stationary point.

• The master LP: Given binary z and λ with α = supp(z) and γ = supp(λ)
satisfying α ∩ γ = ∅ and with respective complements ᾱ and γ̄:

minimize
xi:i∈ᾱ∩γ̄

∑
k∈ᾱ∩γ̄

c̄k xk

subject to c̄i +
∑

k∈ᾱ∩γ̄

qik xk


≥

=

≤

 0, i = 1, . . . , n,

and 0 ≤ xk ≤ 1, k ∈ ᾱ ∩ γ̄

where c̄i ≡ ci +
∑
j∈γ

qij. Solving this LP or its dual yields a point or ray cut.

• Local search to recover stationarity, occurring in sparsification.

• Convex second-order cone program relaxation, time consuming.
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Numerical results compared with Vandenbussche-Nemhauser (2005)

50-vars; density 30% and 40%

iter Time VN Time LPcnt VN LPcnt cnt rx cnt dual cnt M Gtime
1 4.23 (13.28) 262 (434) 259 0 3 0.27
40 13.36 (127.07) 978 (4825) 697 267 14 1.78
44 13.47 (87.91) 932 (2827) 690 229 13 0.05
53 43.28 (464.51) 1767 (11356) 1120 640 7 0.01
75 51.97 (455.61) 1927 (10561) 1205 712 10 0.34
35 42.33 (263.06) 1494 (6464) 978 511 5 0.01

iter = # of satisfiability IPs solved
Time = total time (in seconds), including verification of global optimality
LPcnt = cnt rx + cnt dual + cnt M
cnt rx = # of relaxed LPs solved in sparsification (lower bounding)
cnt dual = # of homogeneous dual LPs solved in generation of ray cuts
cnt M = # of master LPs solved in cut generation
Gtime = time global solution is found but global optimality is not verified
computer = Core Duo CPU 2.33 GHz 1.95 GB of RAM
computer = SUN ultra-80/2x450-MHz Ulta-SPARC-II proc. and 1-GB memory
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40-variables; density 60% to 100%

iter Time* VN Time LPcnt VN LPcnt cnt rx cnt dual cnt M Gtime
44 64.59 983.32 2063 20590 1480 573 10 0.08
10 10.34 14.42 473 568 442 25 6 0.06
1 15.02 10.09 403 350 400 0 3 0.06
94 79.20 229.41 2068 7622 1551 515 2 0.03
37 59.00 138 1574 4490 1182 386 6 0.08
20 28.14 26.86 809 1081 682 123 4 0.27
53 138.02 359.03 2484 9729 1740 740 4 0.02
42 82.00 515.81 1699 12690 1242 453 4 0.08
42 58.27 117.31 1149 3687 931 212 6 1.23
32 90.34 199.48 1454 6246 1077 372 5 0.06
38 111.16 241 1745 7202 1267 467 11 0.50
35 86.41 73.32 1408 2589 1093 312 3 0.01
38 183.97 263.61 2053 7190 1481 569 3 0.13
35 148.33 2169.81 1852 27928 1308 541 3 0.01

39 171.47 58.84% 2096 36207 1460 628 8 7.01

* As of a few days ago, these times are reduced, some up to 25%.

Boxed problem is suboptimal obtained by VN after 4000 seconds.
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Concluding remarks

• LPCCs are a fundamental class of nonconvex programs deserving full study.

• Presented a complete LPCC for a general indefinite QP.

• Sketched a parameter-free IP-based algorithm for the complete resolution
of a general LPCC.

• Applied to the simply-bounded QP and described some novel cuts and ideas.

• Numerical results are superior to those of Nemhauser-Vandenbussche (2005).

• Currently comparing with Burer-Vandenbussche (2007) on large sized bounded-
variable QPs.

• On-going work: extension, refinement, and application.

Thank you!
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