On Linear Programs with Linear
Complementarity Constraints
Jong-Shi Pang
Department of Industrial and Enterprise Systems Engineering

University of Illinois at Urbana-Champaign
presented at

The Second International Conference on Nonlinear
Programming with Applications
Academy of Mathematics and Systems Science, Beijing China

Tuesday April 08, 2008, 09:15-10:25 AM

reporting joint work with John Mitchell and Jing Hu



Contents of Presentation

Definition of an LPCC and goals of research

Fundamental roles in mathematical programming

An LPCC formulation of a general quadratic program (new!)
T he global resolution of the LPCC, via a logical Benders approach
An application: a simply-bounded indefinite quadratic program
Numerical results on bounded-variable quadratic programs

Concluding remarks



Definition of an LPCC

Given: c e R?, d e R™, e ¢ R™, f € Rk, A € REXn B ¢ RkX™ and
C € Rkxm,

Find (z,y,w) € R™® x R™ x R™ in order to globally

minimize CT;U—I—dTy—I—eTw
(z,y,w)

subject to Ax+By+Cw > f

and O <y L w>0,

where a L. b means that the two vectors are orthogonal; i.e.,
Ty —
a*b=0.



Preliminary observations

An LPCC is equivalent to 2™ linear programs, each called a piece
and derived from a subset o C {1,--- ,m} with complement a:

minimize clz+dly+elw
(z,y,w)

' >
LP(a) : subject to Ax+By+Cw > f

wa > 0 = yqo

and wyg = 0 < y5

Thus, there are 3 states of an LPCC in general:

e infeasibility—all pieces are infeasible

e Unboundedness—one piece is feasible and unbounded below

e global solvability—objective is bounded below on all feasible
pieces and at least one piece is feasible.



Goals

To develop a finite-time algorithm to resolve an LPCC in one of
its 3 states, without complete enumeration of all the pieces and
without any a priori assumptions and/or bounds.

To provide certificates for the respective states at termination:
e NO infeasible piece, if LPCC is infeasible

e an unbounded piece, if LPCC is feasible but unbounded below
e a globally optimal solution, if it exists.

To leverage the state-of-the-art advances in linear and integer
programming.

To apply the developed methodology broadly.



Fundamental importance

The LPCC plays the same important role in disjunctive
nonlinear programs as a linear program does in convex pro-
grams. In addition to many applications of its own.

Novel paradigms in mathematical programming

e hierarchical optimization/equilibration

e inverse optimization/equilibration

e parameter identification/model validation in optimization/equilibration.

Key formulations for

e General quadratic programs

e B-stationary conditions of MPECs

— verification and computation without MPEC-constraint qualification
e global resolution of nonconvex quadratic programs.



Inverse Convex Quadratic Programming

Given: @Q € R™”™ symmetric positive semidefinite, A € R™*", (z,b,c) in
RPT™m+7 3 polyhedron  C R*™™*" and a polyhedral norm || e | on R*tmtn,

Find (z,b,¢) € R**T™m*7 in order to

minimize || (z,b,¢) — (Z,b,¢) ||
(x,b,c)
subject to (z,b,c) € Q
x € argmin %(w’)TQa:’—I—cTa:"
and x/
subject to Az’ < bandz/ >0

where argmin = the set of minimizers of the lower-level optimization problem.

Rewriting the lower-level convex QP in terms of its equivalent
KKT conditions vields an LPCC.



B-stationarity of MPCCs

Consider the mathematical program with complementarity con-
ditions (Scheel and Scholtes 2000):

minimize 0(z)
subject to g(z) < 0
and 0 < G(z) L Hk) >0

A feasible solution z* is B-stationary if (an LPCC in horizontal form):

0 € argmin 0(z*) + VO(z*) 1w
v
subject to g¢g(z*) + Jg(z*)v < O
and 0 <G4+ JGE)v L Hz*)+JH(z")v > 0
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Nonconvex quadratic programming

Consider the nonconvex quadratic program:
minixmize %ZI}TQZE + clx
subject to Ax < b,

where () is symmetric but not positive semidefinite.

On the set of stationary points,

objective value = ¢tz — bl'¢, for any KKT multiplier ¢,

leading to the (equivalent??) LPCC:
minimize c¢f'z —bl¢
(,8)
subject to 0 = ¢+ Qz + A'¢

and 0<¢Lb—Ax > 0.



(Giannessi-Tomasin 1973) If QP pin is finite, then QP min = LPCCin-
(Recall the classical result of Curtis Eaves for QPmin > —00.)

However, equivalence breaks down if QPmin = —o0.

(Trivial counter-example: minimize —x2.)
T herefore, is there an equivalent LPCC formulation in general?

The answer is yes! See next.

There is a strong need for the global resolution of an LPCC.
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Known facts of a feasible QP

(Majthay71) A feasible vector x is a (strict) local minimum if and only if z is

a KKT point and Q is (strictly) copositive on the critical cone of the QP at
xZ.

(Eaves71) The QP attains a global minimum solution if and only if its ob-
jective function is bounded below on the feasible set, or equivalently, on the
feasible rays; furthermore, this holds if and only if (a) @ is copositive on the
recession cone of the feasible set, and (b) (c + Qxz)d > 0 for all feasible
vectors x and recession directions d satisfying d'Qd = 0.

(Luo-Tseng92) The quadratic objective function attains finitely many values
on the set of stationary points.

(Giannessi-Tomasin73) If the QP has a finite optimal solution, then the min-
imum objective value is equal to the minimum stationary values.

There is yet no finite test for the complete resolution of a QP.
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The complete LPCC formulation

minimize —t
(,d,& N\, pu,t,5) ER2+3m+2
subject to
0 =c+ Qe+ AT¢+t1, Lagrangian equation augmented by ¢
0 = Qd+ A"\ — AT |+ s1, derived from a ray problem
0<E&ELb—Ax >0 standard complementarity
O< ulb—Ax >0 connecting ray condition with feasibility
O< ANL -Ad >0 ray complementarity I
0<¢E1L —-Ad >0 connecting KKT multiplier with ray
O<ul —Ad >0 ray complementarity II
0 < s, 1'£d > 1 ensuring nonzero ray

assuming, without loss of generality, that {d : Ad < 0} C R, ; otherwise, write
r =zT — 2z~ with z* > 0 and substitute throughout.
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Sketch of derivation and equivalence

The truncated QP: for p > 0,
minixmize %:BTQ:c—I—ch
subject to Az < b and 11z < p.

The truncated homogeneous QP (copositivity test)

minicllmize £dTQd

subject to Ad < 0 and 11d = p.

Theorem. Suppose that the QP is feasible. This QP is un-
bounded below if and only if the LPCC has a feasible solution

with a negative objective value.
13



Simplification under copositivity

Suppose that @ is copositive on the recession cone (checkable
by solving an LPCCQC).

T he auxiliary variable u can be removed, resulting in

minimize —t
(2,d,E )\ t,5)ER2n+2m+2

subject to 0= c+Qz+ AT¢ + 11,
0=Qd+ AN +5s1,
0<E&ELb—-—Ax >0
0< AL —-Ad >0
0< &1L —Ad >0
0<s, 1ld>1.
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T he global resolution of the LPCC

The LPCC:
mi(nimi)ze cle+dTy+efw
xr,y,w
subject to Az + By+Cw > f
and O<ylw>20

Introducing a conceptually very large scalar 8 > O,

minimize ¢z +dTy+elw
(z,y,w,2)
subject to Ar+By+Cw > f
0z >w > 0
0(1-2) >y > O
and z € {0,1}™




Deficiencies and a resolution

Applicable only to feasible LPCCs with bounded variables.
Checking feasibility is difficult, especially when B # 0.

Lastly, computing the bounds of the variables is time consuming,
if theoretically doable

(think about bounding the dual variables of a lower-level LP in a bilevel linear
program)

Can the scalar 0 be treated implicitly, even if it does not exist?
(think about the 2-phase implementation of the big-M simplex method)
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Toward a parameter-free IP formulation

For a binary z € {0,1}™ and a scalar 6 > 0, the LP(9; z):

minimize clz4+dTy+elw

Su(bj:C’)c to Ar+By+Cw > f (N\)
—w > —0z (u
-y > —0(1-=z2) (v)
and w,y > 0,

and its dual DP(0; z):

maximize  fTA -0 [zTu+ (1 —2)Tv]

(\u*,v)
subject to ATX = ¢
BT\ —v < d
CThA—u < e
and (N u,v) > 0,

which is feasible if and only if 3\ > 0 satisfying ATX = c.
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The (un-parameterized) master

Given a binary z with o = supp(z) and complement a,

maximize  fT)
A

subject to AT\ = ¢
(B'X\)a< d
(CTN)a < e
and A > 0,

obtained from DP(6; z) by respecting the constraint
Zu+(1-2)v<o.

The master LP, which is dual to the primal LP(«) piece,

(a) has a finite optimal solution

(b) is feasible and unbounded, or
(c) is infeasible.



Logical Benders cuts: of the satisfiability kind

In case (a), let A\? be an optimal solution, add the point cut:
>, mt ), (1-=)2>1
i€a:(CTA—e ), >0 i€a:( BTAw—d);>0
In case (b), let A" be an optimal solution, add the ray cut:
>, st Y, (l-z)>1
ea:(CTX);>0 1€a:( BT\ ), >0

In case (c¢), solve the homogeneous dual problem:

maximize  fI\
X

subject to ATXA = 0

max = oo = Vvalid ray cut
T - < :
(B'A)a< 0 max = 0 = unbounded LPCC
(CTA\)a <0
and A > 0,
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The key steps in a finite algorithm

e Generate initial cuts by a problem-dependent pre-processing procedure.

e Solve a satisfiability feasibility system to determine a binary vector z with
supp(z).

e Solve the primal/dual master LP(«) to obtain either a point or ray cut,
or an unboundedness certificate; in the process, (improved) upper bounds to
LPCCnin are obtained.

e Apply a problem-dependent procedure to sparsify the obtained cuts, by
solving tight LP relaxations restricted by the sparsified cuts under testing,
obtaining lower bounds to the LPCC,in in the process.

Zzi"‘Z(l_Zj) > 1
€L JjeJ
split into (Z1UZ> C7Z and J1UJ2 C J):
dzm+) (1-z)>1and > z+» (1-2z) > 1;
i€, JET 1€l JET>
e Add the sparsified cuts to update satisfiability system. Return.
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An application: Simply-bounded indefinite QPs

Consider the nonconvex quadratic program:
minixmize %xTQa: +cTx
subjectto 0 < x <1,

and the equivalent LPCC formulation:

mi?;gize e —1%¢

subjectto 0 <z L c+Qx+¢ >0

and 0<¢L1,—z > 0.
The conceptual IP:

minimize ¢’z — 11

(:6757’27)\)
subjectto 2 <1,—2, 0< c+Qx+& < 0z
and £ < 0, 1, —z<1-—-X\
x,& > 0, z,A € {0,1}™,
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Some ideas and key steps

e [ helogical cut: A4z < 1, expressing x cannot equal O and 1 simultaneously.

e T he second-order cuts: A cut of the satisfiability kind can be generated if
the second-order necessary condition is violated at a stationary point.

e The master LP: Given binary z and X with o = supp(z) and v = supp(})
satisfying an~y = 0 and with respective complements & and 7:

minimize E Ck Tk
keany

>» 0, + = 1,...,n,

subject to c¢; + Z Qik Tk <
keany

\ — 7
and O0< z, <1, ke any

N

where ¢; = ¢; + Zqij. Solving this LP or its dual yields a point or ray cut.
JjeY
e Local search to recover stationarity, occurring in sparsification.
e Convex second-order cone program relaxation, time consuming.
22



Numerical resultsS compared with Vandenbussche-Nemhauser (2005)

50-vars; density 30% and 40%

iter Time VN Time LPcnt VN LPcnt cnt.rx c¢cnt.dual cnt.M Gtime

1 4.23 (13.28) 262 (434) 259 0 3 0.27
40 13.36 (127.07) 978 (4825) 697 267 14 1.78
44 13.47 (87.91) 932 (2827) 690 229 13 0.05
53 43.28 (464.51) 1767 (11356) 1120 640 7 0.01
75 51.97 (455.61) 1927 (10561) 1205 712 10 0.34
35 42.33 (263.06) 1494 (6464) 978 511 5 0.01
iter — # of satisfiability IPs solved
Time = total time (in seconds), including verification of global optimality
LPcnt = c¢nt_rx 4+ cnt_dual 4+ cnt_M
cnt_rx = # of relaxed LPs solved in sparsification (lower bounding)
cnt_dual — # of homogeneous dual LPs solved in generation of ray cuts
cnt_M — # of master LPs solved in cut generation
Gtime = time global solution is found but global optimality is not verified
computer = Core Duo CPU 2.33 GHz 1.95 GB of RAM
computer = SUN ultra-80/2x450-MHz Ulta-SPARC-II proc. and 1-GB memory
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40-variables; density 60% to 100%

iter Time* VN Time LPcnt VN LPcnt cntrx cnt dual cntM Gtime
44 64.59 983.32 2063 20590 1480 573 10 0.08
10 10.34 14.42 473 568 442 25 6 0.06
1 15.02 10.09 403 350 400 0 3 0.06
94 79.20 229.41 2068 7622 1551 515 2 0.03
37 59.00 138 1574 4490 1182 386 6 0.08
20 28.14 26.86 809 1081 6382 123 4 0.27
53 138.02 359.03 2484 9729 1740 740 4 0.02
42 82.00 515.81 1699 12690 1242 453 4 0.08
42 58.27 117.31 1149 3687 931 212 6 1.23
32 90.34 199.48 1454 6246 1077 372 5 0.06
38 111.16 241 1745 7202 1267 467 11 0.50
35 86.41 73.32 1408 2589 1093 312 3 0.01
38 183.97 263.61 2053 7190 1481 569 3 0.13
35 148.33 2169.81 1852 27928 1308 541 3 0.01
39 171.47 |58.84% 2096 36207 1460 628 3 7.01

* As of a few days ago, these times are reduced, some up to 25%.
Boxed problem is suboptimal obtained by VN after 4000 seconds.
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Concluding remarks

e LPCCs are a fundamental class of nonconvex programs deserving full study.
e Presented a complete LPCC for a general indefinite QP.

e Sketched a parameter-free IP-based algorithm for the complete resolution
of a general LPCC.

e Applied to the simply-bounded QP and described some novel cuts and ideas.
e Numerical results are superior to those of Nemhauser-VVandenbussche (2005).

e Currently comparing with Burer-Vandenbussche (2007) on large sized bounded-
variable QPs.

e On-going work: extension, refinement, and application.

Thank youl!
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