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Introduction

• Most optimization problems in the world are non-convex in
nature. The existence of multiple local optima makes global
optimization a great challenge.

• Various approaches in solving general continuous global op-
timization problems can be divided into two classes, stochas-
tic/heuristic and deterministic.

• In contrast to the stochastic/heuristic methods, determin-
istic methods are more reliable, however, with a price of
expensive computational cost.



• Global solution schemes have been developed for certain
problems with special structures, for examples, concave min-
imization, monotone optimization, and polynomial optimiza-
tion.

• Branch and bound approach has been the most widely used
deterministic approach for a general problem setting. The
idea of the branch and bound approach is to divide the fea-
sible region into partitions and discard some non-promising
partitions by bounding the objective function in these par-
titions using estimated lower bounds.



Two-phase scheme

Phase 0: (Initialization) Set an initial point x0 and k := 0.

Phase 1: (Local Search) Perform local search, starting from
xk to find out a local minimizer x∗k of f .

Phase 2: (Global Search) Construct an auxiliary function such
that its minima are of objective values lower than any local
minimum of the original problem previously found and se-
lect one of them as xk+1. Let k : = k + 1 and return to
Phase 1.

When failing in global search, the incumbent local optimal
solution is taken as an approximate global optimal solution
to the problem.



Tunneling method

• The concept of the tunneling algorithms was presented by
Levy at the Seventh Biennial Conference on Numerical Anal-
ysis at Dundee, Scotland, in 1977 and the paper was pub-
lished in 1985 by Levy and Montalvo, SIAM Journal on

Scientific and Statistical Computing, Vol. 6, pp. 15-29.

• The idea of the method for finding a better minimizer x∗k+1

of f from the current minimizer x∗k of f is to find roots of
f(x) = f(x∗k), other than x∗k. A local search is then carried
out, starting from one of the identified root, to find out a
better minimizer x∗k+1.



Filled Function

• The concept of the filled functions was presented by Ge
at the Tenth Biennial Conference on Numerical Analysis at
Dundee, Scotland, in 1983, and his paper was published
in 1990 in Mathematical Programming, Vol. 46, pp. 191-
204.

• The filled function method constructs an auxiliary function
(a filled function) at the current minimum point x∗k such
that x∗k becomes a strict maximum of the filled function
and the current basin Bk becomes a part of a hill of the
filled function.



• A function p(x, x∗1) is said to be a filled function of f(x) at
the local minimizer x∗1 if it satisfies the following:

1. x∗1 is a maximizer of p(x, x∗1) and the whole basin B∗
1

of f(x) at x∗1 becomes a part of a hill of p(x, x∗1);

2. p(x, x∗1) has no minimizers or saddle points in any basin
of f(x) higher than B∗

1 ;

3. if f(x) has a basin B∗
2 at x∗2 that is lower than B∗

1 ,
then there is a point x′ ∈ B∗

2 that minimizes p(x, x∗1)
on the line through x∗1 and some x′′ which is in some
neighborhoods of x∗2.



Problem Formulation

• We consider the unconstrained programming problem:

(P ) min
x∈Rn

f(x).

• Assumption 1 f(x) is continuously differentiable on Rn.

• Assumption 2 There exist x0
0 ∈ Rn, f0 > 0 and a box set

Ω ⊂ Rn such that x0
0 ∈ Ω and f(x) ≥ f(x0

0) + f0 for any

x ∈ Rn \ intΩ, where

Ω = {x = (x1, · · · , xn) | ci ≤ xi ≤ di, i = 1, ..., n}, (1)

• Note that f(x) satisfies Assumption 2, if f(x) satisfies the
coercive condition, i.e., f(x) → +∞ as ‖x‖ → +∞.



• When concerning the global optimal solution(s) of (P ) un-
der Assumption 2, the original problem (P ) is equivalent to
the following problem (PΩ),

(PΩ) min f(x)

s.t. x ∈ Ω,

i.e., x̄∗ is a global minimizer of problem (P ) if and only if x̄∗

is a global minimizer of problem (PΩ) when Ω is sufficiently
large.

• In the remaining of the paper, we let x∗ be the incumbent
of an iterative algorithm which satisfies that f(x∗) ≤ f(x0

0),
where x0

0 satisfies Assumption 2.



Globally descending function

• For a given adjustable parameter r > 0, we define the fol-
lowing two functions,

gr(t) =











1, t ≥ 0

−
2

r3
t3 −

3

r2
t2 + 1, −r < t ≤ 0

0, t < −r

, (2)

fr(t) =











t+ r t ≤ −r
r − 2

r3
t3 +

r − 3

r2
t2 + 1, −r < t ≤ 0

1 t > 0

.(3)



• Both gr(t) and fr(t) are differentiable on R,

g′r(t) =











0, t ≥ 0

−
6

r3
t2 −

6

r2
t, −r < t ≤ 0

0, t < −r

. (4)

f ′
r(t) =











1 t ≤ −r
3r − 6

r3
t2 +

2r − 6

r2
t, −r < t ≤ 0

0 t > 0

.(5)

• Without loss of generality, we take point x0 ∈ Rn \ Ω as

x0 = (c1 − 1, · · · , cn − 1). (6)



• Obviously, ‖x− x0‖ ≥ 1 for any x ∈ Ω and

d = (d1, · · · , dn) (7)

is the vertex of Ω farthest from x0.

• Let

ϕr,x∗(x) = exp
( 1

‖x− x0‖

)

gr

(

f(x) − f(x∗)
)

+ fr

(

f(x) − f(x∗)
)

. (8)

Note that x∗ is not a stationary point of function ϕr,x∗(x).

• Define

D =
1

‖d− x0‖2
. (9)



• Theorem 1 If Assumption 1 and Assumption 2 hold true,

then ϕr,x∗(x) satisfies the following conditions for any r > 0.

i) If x ∈ Ω satisfies f(x) ≥ f(x∗), then x is not a stationary

point of ϕr,x∗(x) and satisfies

‖∇Tϕr,x∗(x)‖ ≥ D.

ii) Any local minimizer x̄ of ϕr,x∗(x) on Ω satisfies one of

the following two conditions:

1◦ f(x̄) < f(x∗),

2◦ x̄ = d.

• According to Theorem 1, for any local minimizer or a sta-
tionary point x̄ of ϕr,x∗(x) on Ω which is not equal to d, x̄
must satisfy f(x̄) < f(x∗). A better lower local minimizer
of the original problem (P ) can be then obtained by any
local searching scheme starting from x̄.



• Let Y be the set of local minima of problem (PΩ), and let

F = {f(x) | x ∈ Y }, (10)

L(x∗) = {x̄ ∈ Y | f(x̄) < f(x∗)}, (11)

β0(x
∗) = min

x∈L

(

f(x∗) − f(x)
)

. (12)

• Theorem 2 Suppose that

i) Assumptions 1 and 2 hold and F is a finite set; and

ii) L(x∗) 6= ∅, i.e., x∗ is not a global minimizer of problem

(P ).



Then any x̄ ∈ L(x∗) will be a local minimizer and a sta-

tionary point of ϕr,x∗(x) on Ω.

Furthermore, ϕr,x∗(x̄) < ϕr,x∗(x∗) and ϕr,x∗(x̄) < ϕr,x∗(x)
for any x ∈ ∂Ω when the parameter r is chosen such that

0 < r ≤
β0(x

∗)

2
. (13)

• Theorem 3 For any x1 and x2 ∈ Ω, if f(x1) ≥ f(x∗), f(x2) ≥
f(x∗), then ‖x2−x0‖ > ‖x1−x0‖ if and only if ϕr,x∗(x2) <
ϕr,x∗(x1).



• we summarize now the properties of function ϕr,x∗(x).

1. Any point x ∈ Ω (except d) satisfying f(x) ≥ f(x∗)
is neither a local minimizer nor a stationary point of
ϕr,x∗(x) on Ω (from Theorem 1).

2. Any local minimizer, x̄, of original problem (P ) sat-
isfying f(x̄) < f(x∗) is also a local minimizer and a
stationary point of ϕr,x∗(x) on Ω when parameter r is
small enough (from Theorem 2).

3. In the local search of minimizing ϕr,x∗(x) on Ω, either
we find a point x̄ satisfying f(x̄) < f(x∗), or we reach
vertex d as the farther the point x from x0, the smaller
of ϕr,x∗(x) (from Theorem 3).



• We classify function ϕr,x∗(x) as a globally descending func-

tion as it enables us to proceed to a better local solution
of the original problem by by finding local minimizer or sta-
tionary point of such a function.

• Definition 1 A function px∗(x) is said to be a globally de-

scending function of problem (PΩ) at x∗ if px∗
(x) satisfies

the following conditions:

i) For any stationary point x̄ of function px∗(x) on Ω,

f(x̄) < f(x∗) holds;

ii) For any local minimizer x̄ of px∗(x) on Ω that is not a

vertex of Ω, f(x̄) < f(x∗) holds;

iii) If L(x∗) 6= ∅, i.e., x∗ is not a global minimizer of prob-

lem (P ), then any x̄ ∈ L(x∗) is a local minimizer and a

stationary point of px∗(x) on Ω.



Furthermore,

px∗(x̄) < px∗(x∗)

px∗(x̄) < px∗(x), for any x ∈ ∂Ω.

iv) One of the following conditions holds:

1◦ For any x1 and x2 ∈ Ω, if f(x1) ≥ f(x∗) and f(x2) ≥
f(x∗), then ‖x2 − x0‖ > ‖x1 − x0‖ if and only if p(x2) <
p(x1);

2◦ for any x1, x2 ∈ Ω, if f(x1) ≥ f(x∗) and f(x2) ≥ f(x∗),
then ‖x2 − x0‖ < ‖x1 − x0‖ if and only if p(x2) < p(x1).

• Function ϕr,x∗(x) satisfies the conditions of i), ii), iii) and
1◦ of iv). Thus, ϕr,x∗(x) is a globally descending function

at x∗.



• Let

ψr,x∗(x) = exp(−
1

‖x− x0‖
)gr

(

f(x)−f(x∗)
)

+fr

(

f(x)−f(x∗)
)

.

(14)

• Function ψr,x∗(x) satisfies the conditions i), ii), iii) and 2◦

of iv) in Definition 1, thus is another globally descending

function.

• Function ψr,x∗(x) also possesses the following properties.

(1) Any x ∈ Ω satisfying f(x) ≥ f(x∗) satisfies

‖∇Tψr,x∗(x)‖ ≥
D

e
. (15)

(2) Any local minimizer x̄ of ψr,x∗(x) on Ω either satisfies
f(x̄) < f(x∗) or satisfies x̄ = c.



• Functions (ϕr,x∗(x) and ψr,x∗(x)) essentially form a glob-

ally descending function pair of problem (PΩ) at x∗. For
a globally descending function pair, we have some further
interesting properties, which are useful in our proposed so-
lution algorithm.

• Proposition 1 For any direction d ∈ Rn and any x ∈ Ω
satisfying f(x) ≥ f(x∗), dT∇ϕr,x∗(x) > 0 if and only if

dT∇ψr,x∗(x) < 0.

• Proposition 2 Let u be a unit vector in Rn, i.e., ‖u‖ = 1.
Let d(x) = x−x0

‖x−x0‖
. For any x ∈ Ω satisfying f(x) ≥

f(x∗), we have that ∇Tϕr,x∗(x)(d(x) + u) = 0 if and only

if d(x) + u = 0.



Globally Descending Algorithm (GDA):

Step 0. Select i) a point x0 ∈ Rn \ Ω (usually taken as
(c1 − 1, · · · , cn − 1)) and ii) an initial point x0

0 ∈ Ω satisfying
Assumption 2. Take a positive integer number K0 and unit di-
rections ui, i.e., ‖ui‖ = 1, i = 1, · · · ,K0. Choose a positive
number r0 as the initial value of parameter r. Let r := r0 and
k := 0.

Step 1. Let x∗k be the local minimizer of problem (PΩ) by any
local search method starting from the point x0

k.
Step 2. Let

ϕr,x∗
k
(x) = exp(

1

‖x− x0‖
)gr

(

f(x) − f(x∗k)
)

+ fr

(

f(x) − f(x∗k)
)

,

ψr,x∗
k
(x) = exp(−

1

‖x− x0‖
)gr

(

f(x) − f(x∗k)
)

+ fr

(

f(x) − f(x∗k)
)

.



Consider the following two problems:

min
x∈Ω

ϕr,x∗
k
(x) (16)

and

min
x∈Ω

ψr,x∗
k
(x). (17)

Let d0,k =
x∗k − x0

‖x∗k − x0‖
and di,k = d0,k + ui, i = 1, · · · ,K0.

Without loss of generality, we assume that, for any i = 1, · · · ,K0,
di,k 6= 0 (i.e., d0,k 6= −ui), as otherwise we can change this
specific ui. Let i := 0.

Step 3. If i > K0, go to Step 6, else go to Step 4 if
dT

i,k∇ϕr,x∗
k
(x∗k) < 0, or go to Step 5 otherwise.

Step 4. Starting from point x∗k, minimize ϕr,x∗
k
(x) along

direction di,k by using any local searching method. If, during



this local search process, f(y∗k) < f(x∗k) holds, let x0
k+1 := y∗k

k := k + 1, and go to Step 1 ; Otherwise, continue the mini-
mization of ϕr,x∗

k
(x) on Ω. If the local minimizer x̄r,x∗

k
is equal

to d, let i := i + 1 and go to Step 3; Otherwise, let x0
k+1 :=

x̄r,x∗
k
, k := k + 1, and go to Step 1.

Step 5. Starting from point x∗k, minimize ψr,x∗
k
(x) along direc-

tion di,k by any local searching method. If, during the local search
process, f(y∗k) < f(x∗k) holds, let x0

k+1 := y∗k, k := k + 1, and
go to step 1 ; Otherwise, continue the minimization of ψr,x∗

k
(x)

on Ω. If the local minimizer x̄r,x∗
k

is equal to c, let i := i+1 and

go to Step 3; Otherwise, let x0
k+1 := x̄r,x∗

k
, k := k + 1, and go

to Step 1.

Step 6. If r > µ, decrease r, for example, by setting r :=
r

10
,

and go to Step 2 ; Otherwise, stop and x∗k is an (approximate)
global minimizer of problem (PΩ).



Quasi Globally Descending Function

• Starting from x∗k, a local (non-global) minimizer of problem
(P ), solving problem (16) or problem (17) may end up with
the local minimizer x̄r,x∗

k
at d or c, respectively, which is not

a better point which we are seeking.

• In such situations, we need to increase the number of search
directions, ui, i = 1, · · · ,K0, in order to increase the prob-
ability that we find out a better point.

• We develop next a way to overcome this problem by intro-
ducing a quasi globally descending function.



• From Assumption 3 that f(x) ≥ f(x0
0) + f0 for any x ∈

∂Ω, and the current local minimizer or stationary point x∗

satisfies f(x∗) ≤ f(x0
0). Therefore, f(x) ≥ f(x∗) + f0 for

any x ∈ ∂Ω.

• Let

hr(t) =











2, t ≥ r

−
4 − r

r3
t3 +

6 − 2r

r2
t2 + t, 0 < t < r

t, t ≤ 0

.(18)

• hr(t) is continuously differentiable on R with

h′r(t) =











0, t ≥ r

−
12 − 3r

r3
t2 +

12 − 4r

r2
t+ 1, 0 < t < r

1, t ≤ 0

.(19)



• Choose a given point x0 ∈ Rn \Ω such that ‖x− x0‖ ≥ 1
for any x ∈ Ω. Let

Hq,r,x∗(x) = q

(

exp

(

1

‖x− x0‖

)

gr

(

f(x) − f(x∗)
)

+ hr

(

f(x) − f(x∗)
)

)

,

where q is used to speed up the the descending rate.

• Theorem 4 Suppose that both Assumptions 1 and 2 hold.

Then, we have the following for any r > 0.

i) Any x ∈ Ω satisfying f(x) ≥ f(x∗)+r is not a stationary

point of Hq,r,x∗(x);

ii) Any x satisfying ∇f(x) = 0 and 0 ≤ f(x)−f(x∗) < r is

not a stationary point ofHq,r,x∗(x), in special, ∇Hq,r,x∗(x∗) 6=
0.



• Theorem 5 Suppose that F is finite and

i) Both Assumptions 1 and 2 hold;

ii) x∗ is not a global minimizer of problem (P ), i.e., L(x∗) 6=
∅.

Then, when 0 < r ≤ β0(x∗)
2

, any x̄ ∈ L(x∗) is a local

minimizer and a stationary point of Hq,r,x∗(x) on Ω.

Furthermore, Hq,r,x∗(x̄) < Hq,r,x∗(x∗) and Hq,r,x∗(x̄) <

Hq,r,x∗(x) for any x ∈ ∂Ω.

• Theorem 6 Suppose that both Assumptions 1 and 2 hold.

Let x̄ be a local minimizer resulted from minimization of

Hq,r,x∗(x) on Ω starting from x∗. Then x̄ ∈ intΩ for any

0 < r ≤ f0, where f0 is given in Assumption 2.



• Although quasi globally descending function Hq,r,x∗(x) is
not a globally descending function, it enjoys some nice
properties which a globally descending function does not.

• Any local minimizer of the quasi globally descending func-

tion on Ω is in the interior of Ω, i.e., the local search process
will not reach the boundary of Ω;

• Our numerical results reveal much better outcomes of quasi
globally descending functionHq,r,x∗(x) compared to globally
descending functions.

• The local minimizer of Hq,r,x∗(x) on Ω can be efficiently
obtained by using the optimization subroutine of the opti-
mization Toolbox in Matlab 6.1.



Algorithm QGDA:

Step 0. Choose i) a small positive number µ > 0 as the
tolerance value of parameter r for terminating the minimization
process of problem (P ); ii) a large positive number M > 0 as
the tolerance value of q, iii) a point x0 ∈ Rn \ Ω such that
‖x − x0‖ ≥ 1 for any x ∈ Ω and iv) an initial point x0

0 ∈ Ω
such that Assumption 2) is satisfied. In the following examples,
we take µ = 10−10 and M = 1010. Set q0 and r0 as the initial
values of parameters q and r, respectively. (In the following
examples, we take q0 = 100 and r0 = 1). Let k := 0.

Step 1. Let x∗k be a local minimizer of problem (PΩ) by imple-
menting a local search procedure starting from the initial point
x0

k.



Step 2. Let

Hq,r,x∗
k
(x) = q

[

exp

(

1

‖x− x0‖

)

gr

(

f(x)−f(x∗k)
)

+hr

(

f(x)−f(x∗k)
)]

.

Solve the problem:

min
Ω
Hq,r,x∗

k
(x) (20)

by a local search method starting from x∗k. Let x̄q,r,x∗
k

be the local
minimizer generated from the solution process. If f(x̄q,r,x∗

k
) <

f(x∗k), set x0
k+1 := x̄q,r,x∗

k
, k := k+1 and goto Step 1 ; Otherwise

(f(x̄q,r,x∗
k
) ≥ f(x∗k)), goto Step 3.



Step 3 If q < M , increase q, for example in our numerical
calculation, by setting q := 10q, and goto Step 2 ; Otherwise
goto Step 4.

Step 4 If r > µ , set q = q0, decrease r, for example in our

numerical calculation, by setting r :=
r

10
), and go to Step 2 ;

Otherwise, stop and x∗k is an approximate global minimizer of
problem (P ).

We can obtain an approximate global minimizer of problem
(P ) in finite steps by using the Algorithm QGDA and local search
methods.



Example 1 Two-dimensional Shubert II Function (n =
2)

min fS(x) =

(

5
∑

i=1

i cos[(i+ 1)x1 + i]

)(

5
∑

i=1

i cos[(i+ 1)x2 + i]

)

+
1

2

[

(x1 + 1.42513)2 + (x2 + 0.80032)2
]

(21)

s.t. −10 ≤ xi ≤ 10, i = 1, 2.

We take x0 = (11, 11) and the initial point x0
0 = (1, 1).



Table 1: Results for Shubert II function by QGDA

k 0 1

x0
k

(1, 1) (−1.4251, −0.8003)

x∗
k

(1.3119, 1.7980) (−1.4251, −0.8003)

f(x∗
k
) −0.8464 −186.7309

q, r 104, 1 for any q ≤ 1010 and r ≥ 10−5

x̄
q,r,x∗

k
(−1.4251, −0.8003)

f(x̄
q,r,x∗

k
) −186.7309 f(x̄

q,r,x∗
k

) ≥ −186.7309



Figure 1: Behavior of Two-Dimensional Shubert Function


