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1. The Problem
In this talk, we consider the following global homogeneous polynomial mini-
mization problem

min f(x) =
n∑

i1,i2,··· ,im=1
ai1i2···imxi1xi2 · · ·xim

subject to xTx = 1,
(1)

where x ∈ <n, m,n ≥ 2, f is a homogeneous polynomial of degree m with n
variables.

This problem has wide applications in engineering and sciences. However, these
applications are scattered in journals of very different disciplines and used not
to be recognized as a global polynomial optimization problem in the form (1).
In the next section, we will describe four such applications and analyze their
relationships with problem (1). The first one is the multivariate form positive
definiteness problem in automatic control, where m is even. The second one is
the best rank-one approximation problem in statistical data analysis, where m is
small but n can be very large. The third one is the strong ellipticity problem in
solid mechanics, where m = 4 and n = 2 (in the plane) or 3 (in the space). The
fourth one is the diffusion kurtosis imaging problem in biomedical engineering,
where m = 4 and n = 3.
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2. Applications of This Problem
• The Multivariate Form Definiteness Problem

• The Best Rank-One Approximation Problem

• The Strong Ellipticity Problem

• The Diffusion Kurtosis Imaging Problem
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2.1. The Multivariate Form Definiteness Problem

Suppose that f(x) =
n∑

i1,i2,··· ,im=1
ai1i2···imxi1xi2 · · ·xim. In automatic control, such

a homogeneous polynomial is called a multivariate form. If f(x) > 0 as long as
x 6= 0, then we say that f(x) is positive definite. Clearly, this definition is only
meaningful when m, the order of f , is even. The problem to identify if an even
order multivariate form is positive definite or not plays an important role in the
stability study of nonlinear autonomous systems via Liapunov’s direct method
in automatic control.

The multivariate form f(x) is positive definite if and only if the global optimal
objective function value of (1) is positive. Hence, if we solve (1), we solve the
multivariate form positive definiteness problem. On the other hand, to solve
the multivariate form positive definiteness problem, we do not need to find a
global minimizer of (1) or the exact global optimal objective function value of
(1). Hence, the multivariate form positive definiteness problem is a little easier
than the global minimization problem (1).
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2.2. Study on the Positive Definiteness

[1]. B.D. Anderson, N.K. Bose and E.I. Jury, “Output feedback stabilization
and related problems-solutions via decision methods”, IEEE Trans. Automat.
Contr. AC20 (1975) 55-66.

[2]. N.K. Bose and P.S. Kamt, “Algorithm for stability test of multidimensional
filters”, IEEE Trans. Acoust., Speech, Signal Processing, ASSP-22 (1974) 307-
314.

[3]. N.K. Bose and A.R. Modaress, “General procedure for multivariable poly-
nomial positivity with control applications”, IEEE Trans. Automat. Contr.
AC21 (1976) 596-601.

[4]. N.K. Bose and R.W. Newcomb, “Tellegon’s theorem and multivariate real-
izability theory”, Int. J. Electron. 36 (1974) 417-425.

[5]. M. Fu, “Comments on ‘A procedure for the positive definiteness of forms
of even-order’ ”, IEEE Trans. Autom. Contr. 43 (1998) 1430.
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[6]. M.A. Hasan and A.A. Hasan, “A procedure for the positive definiteness of
forms of even-order”, IEEE Trans. Autom. Contr. 41 (1996) 615-617.

[7]. J.C. Hsu and A.U. Meyer, Modern Control Principles and Applications,
McGraw-Hill, New York, 1968.

[8]. E.I. Jury and M. Mansour, “Positivity and nonnegativity conditions of a
quartic equation and related problems” IEEE Trans. Automat. Contr. AC26
(1981) 444-451.

[9]. W.H. Ku, “Explicit criterion for the positive definiteness of a general quartic
form”, IEEE Trans. Autom. Contr. 10 (1965) 372-373.

[10]. Q. Ni, L. Qi and F. Wang, “An eigenvalue method for the positive defi-
niteness identification problem”, to appear in: IEEE Transactions on Automatic
Control.

[11]. F. Wang and L. Qi, “Comments on ‘Explicit criterion for the positive
definiteness of a general quartic form’ ”, IEEE Trans. Autom. Contr. 50 (2005)
416- 418.
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2.3. The Best Rank-One Approximation Problem

The best rank-one approximation to a supersymmetric tensor has applications
in signal processing, wireless communication systems, signal and image pro-
cessing, data analysis, higher-order statistics, as well as independent component
analysis. An mth order n-dimensional real supersymmetric tensor A is an m-
way array whose entries are addressed via m indices, and it is said to be su-
persymmetric if its entries ai1···im are invariant under any permutation of their
indices {i1, · · · , im}. Given a higher order supersymmetric tensor A, if there

exist a scalar λ and a unit-norm vector u such that the rank-one tensor Ā 4
= λum

minimizes the least-squares cost function

τ(Ā) = ‖A − Ā‖2
F

over the manifold of rank-one tensors, where ‖ · ‖F is the Frobenius norm, then
λum is called the best rank-one approximation to tensor A.
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2.4. Its Relation with Problem (1)

Denote

Axm =
n∑

i1,i2,··· ,im=1

ai1i2···imxi1xi2 · · ·xim.

The best rank-one approximation to tensor A can be obtained by solving the
global polynomial minimization problem (1). When m is odd, a global mini-
mizer x of (1) and its corresponding objective function value λ = Axm form
the best rank-one approximation λxm to A. When m is even, let y and z be a
global minimizer and a global maximizer of (1), respectively. Let λ1 = Aym

and λ2 = Azm. If |λ1| ≥ |λ2|, let x = y and λ = λ1; otherwise let x = z and
λ = λ2. Then λxm is the best rank-one approximation to A. Note that we may
change the sign of A in (1) and solve the problem to find z. Hence, if we solve
(1), then we may solve the best rank-one approximation problem. On the other
hand, it is not difficult to show that if we solve the best rank-one approximation
problem, we may also solve problem (1). Hence, we may say that these two
problems are mathematically equivalent.
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2.5. Study on the Best Rank-One Approximation Problem

[12]. J.F. Cardoso, “High-order contrasts for independent component analysis”,
Neural Computation 11 (1999) 157-192.

[13]. P. Comon, “Independent component analysis, a new concept?” Signal
Processing 36 (1994) 287-314.

[14]. P. Comon, G. Golub, L-H. Lim and B. Mourrain, “Symmetric tensors and
symmetric tensor rank”, to appear in: SIAM J. Matrix Anal. Appl.

[15]. L. De Lathauwer, B. De Moor and J. Vandewalle, “On the best rank-1 and
rank-(R1, R2, · · · , RN ) approximation of higher-order tensor”, SIAM J. Matrix
Anal. Appl. 21 (2000) 1324-1342.

[16]. L. De Lathauwer, P. Comon, B. De Moor and J. Vandewalle, “Higher-
order power method—application in indepedent component analysis”, in Pro-
cedings of the International Symposium on Nonlinear Theory and its Applica-
tions (NOLTA’95), Las Vegas, NV, 1995, pp. 91-96.
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[17]. V.S. Grigorascu and P.A. Regalia, “Tensor displacement structures and
polyspectral matching”, Chapter 9 of Fast Reliable Algorithms for Structured
Matrices, T. Kailath and A.H. Sayed, eds., SIAM Publications, Philadeliphia,
1999.

[18]. E. Kofidis and P.A. Regalia, “On the best rank-1 approximation of higher-
order supersymmetric tensors”, SIAM J. Matrix Anal. Appl. 23 (2002) 863-884.

[19]. C.L. Nikias and A.P. Petropulu, Higher-Order Spectra Analysis, A Nonlin-
ear Signal Processing Framework, Prentice-Hall, Englewood Cliffs, NJ, 1993.

[20]. Y. Wang and L. Qi, “On the Successive Supersymmetric Rank-1 Decom-
position of Higher Order Supersymmetric Tensors”, Numerical Linear Algebra
with Applications 14 (2007) 503-519.

[21]. T. Zhang and G.H. Golub, “Rank-1 approximation of higher-order ten-
sors”, SIAM J. Matrix Anal. Appl. 23 (2001) 534-550.
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2.6. The Strong Ellipticity Problem

The elasticity tensor E is a fourth order tensor of dimension two (in the plane)
or three (in the space). It is not supersymmetric. Its entries eijkl satisfy the
following symmetry: for any i, j, k, l, we have eijkl = ekjli = eiklj. The strong
ellipticity is a very important property in solid mechanics. Recently, Qi, Dai
and Han [34] identified that this property holds if and only if the global optimal
objective function value of the following minimization problem

min g(x, y) ≡ Exyxy ≡
n∑

i,j,k,l=1
eijklxiyjxkyl

subject to xTx = 1, yTy = 1,
(2)

where x, y ∈ <n, n = 2 (in the plane) or 3 (in the space). Comparing with
problem (1), the dimension of problem (2) is low (n = 2 or 3), but the additional
variable y makes the problem a little complicated. If we let x = y in (2), then
we have (1) with m = 4. Roughly speaking, the difficulty of problem (2) when
n = 2 is equivalent to the difficulty of problem (1) when n = 3. When n = 3,
in the case of anisotropic elastic materials, Han, Dai and Qi [27] show that
problem (2) can be solved by solving three instances of problem (1) with m = 2
and n = 3 (these are 3× 3 matrices), three instances of problem (1) with m = 4
and n = 3, and one instance of problem (1) with m = 6 and n = 3. This links
the strong ellipticity problem with problem (1).
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2.7. Study on the Strong Ellipticity Problem

[22]. R.C. Abeyaratne, “Discontinuous deformation gradients in plane finite
elastostatic of imcompressible materials”, Journal of Elasticity 10 (1980) 255-
293.

[23]. S. Chiriţǎ and M. Ciarletta, “Spatial estimates for the constrained
anisotropic elastic cylinder”, Journal of Elasticity 85 (2006) 189-213.

[24]. S. Chiriţǎ, A. Danescu and M. Ciarletta, “On the strong ellipticity of the
anisotropic linearly elastic materials”, Journal of Elasticity 87 (2007) 1-27.

[25]. B. Dacorogna, “Necessary and sufficient conditions for strong ellipticity
for isotropic functions in any dimension”, Dynamical Systems 1B (2001) 257-
263.

[26]. M.E. Gurtin, “The linear theory of elasticity”, In Truesdell, C. (ed.) Hand-
buch der Physik, vol. VIa/2. Springer, Berlin, 1972.

[27]. D. Han, H.H. Dai and L. Qi, “Conditions for strong ellipticity of
anisotropic elastic materials”, Preprint, Department of Applied Mathematics,
The Hong Kong Polytechnic University, August 2007.
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[28]. J.K. Knowles and E. Sternberg, “On the ellipticity of the equations of
non-linear elastostatics for a special material”, J. Elasticity 5 (1975) 341-361.

[29]. J.K. Knowles and E. Sternberg, “On the failure of ellipticity of the equa-
tions for finite elastostatic plane strain”, Arch. Ration. Mech. Anal. 63 (1977)
321-336.

[30]. J. Merodio and R.W. Ogden, “Instabilities and loss of ellipticity in fiber-
reinforced compressible nonlinearly elastic solids under plane deformation”, In-
ternational Journal of Solids Structure 40 (2003) 4707-4727.

[31]. R.W. Ogden, “Elements of the theory of finite elasticity”, In: Nonlinear
Elasticity: Theory and Applications (eds. Y. Fu and R.W. Ogden), Cambridge
University Press, Cambridge, 2001, pp. 1-57.

[32]. C. Padovani, “Strong ellipticity of transversely isotropic elasticity ten-
sors”, Meccanica 37 (2002) 515-525.

[33]. R.G. Payton, Elastic wave propagation in transversely isotropic media,
Martinus Nijhoff Publishers§Boston, 1983.
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[34]. L. Qi, H.H. Dai and D. Han, “Conditions for Strong Ellipticity”, Preprint,
Department of Applied Mathematics, The Hong Kong Polytechnic University,
July 2007.

[35]. P. Rosakis, “Ellipticity and deformations with discontinuous deformation
gradients in finite elastostatics”, Arch. Ration. Mech. Anal. 109 (1990) 1-37.

[36]. H.C. Simpson and S.J. Spector, “On copositive matrices and strong ellip-
ticity for isotrropic elstic materials”, Arch. Rational Mech. Anal., 84 (1983)
55-68.

[37]. J.R. Walton and J.P. Wilber, “Sufficient conditions for strong ellipticity for
a class of anisotropic materials”, International Journal of Non-Linear Mechan-
ics 38 (2003) 441-455.

[38]. Y. Wang and M. Aron, “A reformulation of the strong ellipticity conditions
for unconstrained hyperelastic media”, Journal of Elasticity, 44 (1996) 89-96.

[39]. L. Zee and E. Sternberg, “Ordinary and strong ellipticity in the equilibrium
theory of impressible hyperelastic solids”, Archive for Rational Mechanics and
Analysis 83 (1983) 53-90.
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2.8. The Diffusion Tensor Imaging

A popular magnetic resonance imaging (MRI) model in medical engineering is
called diffusion tensor imaging (DTI. The MR measurement of an effective dif-
fusion tensor of water in tissues can provide unique biologically and clinically
relevant information that is not available from other imaging modalities. A dif-
fusion tensor D is a second order three dimensional fully symmetric tensor. It
has six independent elements. After obtaining the values of these six indepen-
dent elements by MRI techniques, the medical engineering researchers will fur-
ther calculate some characteristic quantities of this diffusion tensor. These char-
acteristic quantities are rotationally invariant, independent from the choice of the
laboratory coordinate system. They include the three eigenvalues λ1 ≥ λ2 ≥ λ3
of D, the mean diffusivity (MD), the fractional anisotropy (FA), etc. The largest
eigenvalue λ1 describes the diffusion coefficient in the direction parallel to the
fibres in the human tissue. The other two eigenvalues describe the diffusion
coefficient in the direction perpendicular to the fibres in the human tissue.
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2.9. The Diffusion Kurtosis Imaging Problem

However, DTI is known to have a limited capability in resolving multiple fibre
orientations within one voxel. This is mainly because the probability density
function for random spin displacement is non-Gaussian in the confining environ-
ment of biological tissues and, thus, the modeling of self-diffusion by a second
order tensor breaks down. Recently, a new MRI model is presented by medical
engineering researchers. They propose to use a fourth order three dimensional
fully symmetric tensor, called the diffusion kurtosis (DK) tensor, to describe the
non-Gaussian behavior. The values of the fifteen independent elements of the
DK tensor W can be obtained by the MRI technique. The diffusion kurtosis
imaging (DKI) has important biological and clinical significance.
What are the coordinate system independent characteristic quantities of the DK
tensor W ? Are there some type of eigenvalues of W , which can play a role
here?
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2.10. The D-Eigenvalues

Qi, Wang and Wu [45] answered these two questions. They defined D-
eigenvalues for the DK tensor W = (Wijkl). Here, “D” stands for the word
diffusion. D-eigenvalues are invariant under co-ordinate system rotations. In
particular, the smallest and the largest D-eigenvalues and their D-eigenvectors
correspond to the smallest and the largest diffusion kurtosis coefficients and their
directions. The smallest and the largest D-eigenvalues are the global minimizer
and the global maximizer of the following problem:

min f(x) =
3∑

i,j,k,l=1
wijklyiyjykyl

subject to yTDy = 1.
(3)

If we let x = D
1
2y, we may convert (3) to (1) with m = 4 and n = 3. Here, D

is positive definite.
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2.11. Study on Diffusion Tensor Imaging and Diffusion Kurtosis
Imaging

[40]. P.J. Basser and D.K. Jones, “Diffusion-tensor MRI: theory, experimental
design and data analysis - a technical review”, NMR in Biomedicine, 15 (2002)
456-467.

[41]. J.H. Jensen, J.A. Helpern, A. Ramani, H. Lu and K. Kaczynski, “Diffu-
sional kurtosis imaging: The quantification of non-Gaussian water diffusion by
means of maganetic resonance imaging”, Magnetic Resonance in Medicine, 53
(2005) 1432-1440.

[42]. D. Li, S. Bao, C. Zhu and L. Ma, “Computing the measures of DTI based
on PC and Matlab”, Chinese Journal of Medical Imaging Technology, 20 (2004)
90-94. (in Chinese)

[43]. C. Liu, R. Bammer, B. Acar and M.E. Mosely, “Characterizing non-
Gaussian diffusion by generalized diffusion tensors”, Magnetic Resonance in
Medicine, 51 (2004) 924-937.

[44]. H. Lu, J.H. Jensen, A. Ramani and J.A. Helpern, “Three-dimensional char-
acterization of non-Gaussian water diffusion in humans using diffusion kurtosis
imaging”, NMR in Biomedicine, 19 (2006) 236-247.

[45]. L. Qi, Y. Wang and E.X. Wu, “D-eigenvalues of diffusion kurtosis ten-
sors”, to appear in: Journal of Computational and Applied Mathematics.
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3. Exact Z-Eigenvalue Methods
We may solve problem (1) by a general global polynomial optimization method,
for example, the sum of squares (SOS) method.
When n = 2 or 3, some other methods can also be considered. As stated before,
these two cases are especially useful for the strong ellipticity problem in solid
mechanics. In the case that n = 2, if m is odd, the SOS method needs to solve
an SDP (semi-definite programming) problem of size m + 1, and if m = 2d is
even, the SOS method needs to solve an SDP problem of size d + 1. While the
direct Z-eigenvalue method given by Qi, Wang and Wang in [51] for this case
needs to solve a one-dimensional polynomial of degree m+1, whose coefficients
are explicitly given. This work is comparable with that of the SOS method for
this case. We will use this method as a subroutine for the method in the higher
dimensional case.
In the case that n = 3, a direct Z-eigenvalue method to solve problem (1) was
proposed by Qi, Wang and Wang in [51] for m = 3 and extended to any m in
[51]. In this method, we need to calculate a determinant of size (2m− 1) to find
a one-dimensional polynomial of degree (m2 −m + 1), and solve it. This work
is in the same order as that of the SOS method. This method is an exact method
to find a global minimizer of problem (1), while the SOS method is not an exact
method in general in this case. We will also use this method as a subroutine for
the method in the higher dimensional case.
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3.1. Eigenvalues of Tensors

The theory of eigenvalues of tensors was developed in the following papers:

[46]. L. Qi, “Eigenvalues of a real supersymmetric tensor”, Journal of Symbolic
Computation 40 (2005) 1302-1324.

[47]. L. Qi, “Rank and eigenvalues of a supersymmetric tensor, a multivariate
homogeneous polynomial and an algebraic surface defined by them”, Journal of
Symbolic Computation 41 (2006) 1309-1327.

[48]. L. Qi, “Eigenvalues and invariants of tensors”, Journal of Mathematical
Analysis and Applications 325 (2007) 1363-1377.

[49]. G. Ni, L. Qi, F. Wang and Y. Wang, “The degree of the E-characteristic
polynomial of an even order tensor”, J. Math. Anal. Appl. 329 (2007) 1218-
1229.

[50]. L-H. Lim, “Singular values and eigenvalues of tensors: A variational ap-
proach”, Proceedings of the First IEEE International Workshop on Computa-
tional Advances in Multi-Sensor Adaptive Processing (CAMSAP), December
13-15, 2005, pp. 129-132.
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3.2. Z-Eigenvalue Methods

Z-eigenvalue methods were developed in the following two papers:

[51]. L. Qi, F. Wang and Y. Wang, “Z-Eigenvalue methods for a global polyno-
mial optimization problem”, to appear in: Mathematical Programming.

[52]. L. Qi, Y. Wang and F. Wang, “A global homogeneous polynomial problem
over the unit sphere”, Department of Applied Mathematics, The Hong Kong
Polytechnic University, August 2007.

This talk is based on [52].
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3.3. Z-Eigenvalues

Let A be an mth order n-dimensional real supersymmetric tensor. Let Axm−1

be a vector in <n with its ith component as

(Axm−1)i =
n∑

i2,··· ,im=1

aii2···imxi2 · · ·xim.

Obviously, the critical points of (1) satisfy the following equations for some
λ ∈ <: {

Axm−1 = λx,

xTx = 1.
(4)

A real number λ satisfying (4) with a real vector x is called a Z-eigenvalue
of A, and the real vector x is called a Z-eigenvector of A associated with the
Z-eigenvalue λ. In this sense, problem (1) is equivalent to finding the smallest
Z-eigenvalue λmin and the corresponding Z-eigenvector.
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3.4. A Direct Z-Eigenvalue Method for n = 2

Denote
αj = ai1···im,

where i1 = · · · = im−j = 1, im−j+1 = · · · = im = 2 and 0 ≤ j ≤ m. The
following theorem was given in [44].

Theorem 3.1 Suppose that n = 2.
If α1 = a11···12 = 0, then λ = α0 = a11···1 is a Z-eigenvalue of A, with a Z-
eigenvector x = (1, 0)T . If furthermore m is odd, then λ = −a11···1 is also a
Z-eigenvalue of A, with a Z-eigenvector x = (−1, 0)T .
The other Z-eigenvalues and corresponding Z-eigenvectors of A can be found
by finding real roots of the following one dimensional polynomial equation of t:

m−1∑
j=0

(
m− 1

j

) [
αjt

m−j − αj+1t
m−j+1] = 0, (5)

and substituting such real values of t to

x1 = ± t√
1 + t2

, x2 = ± 1√
1 + t2

,

and

λ =
m∑

j=0

(
m

j

)
αjx

m−j
1 xj

2.
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Equation (5) has at most m + 1 real roots. After finding all the Z-eigenvalues of
A, and the Z-eigenvectors associated with them, we may easily solve (1).
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3.5. A Direct Z-Eigenvalue Method for n = 3

For n = 3, a direct Z-eigenvalue method was proposed to solve (1) for m = 3 in
[51] and extended to any m in [52]. In this method, we calculate a determinant
of size 2m − 1 to find a one-dimensional polynomial of degree m2 − m + 1,
and solve it. This work is in the same order as that of the SOS method. Since
this method is an exact method, it is usable if we wish to assure finding a global
minimizer of (1) in this case. In [52], we use this method as a subroutine for an
algorithm solving the problem with a larger dimension.

Let αj be the same as defined before. For 0 ≤ i, j ≤ m− 1, denote(
m− 1

i, j

)
=

(m− 1)!

i!j!(m− 1− i− j)!
,

βj = a3i1···im−1
, for i1 = · · · = im−1−j = 1, im−j = · · · = im−1 = 2, and denote

ak11 · · · 1︸ ︷︷ ︸
i

2 · · · 2︸ ︷︷ ︸
j

3 · · · 3︸ ︷︷ ︸
(m−1−i−j)

by γk,i,j for k = 1, 2, 3.
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Theorem 3.2 Suppose that n = 3. Then the following statements hold.
(a). If a11···12 = a11···13 = 0, then λ = a11···1 is a Z-eigenvalue of A with a
Z-eigenvector x = (1, 0, 0)T . If furthermore m is odd, then λ = −a11···1 is also
a Z-eigenvalue of A, with a Z-eigenvector x = (−1, 0, 0)T .
(b). For any real root t of the following equations:

∑m−1
j=0

(
m−1

j

) [
αjt

m−j−1 − αj+1t
m−j

]
= 0,∑m−1

j=0

(
m−1

j

)
βjtm−j−1 = 0,

(6)

x = ± 1√
t2 + 1

(t, 1, 0)T (7)

is a Z-eigenvector of A with the Z-eigenvalue λ = Axm.
(c). The other Z-eigenvalues and corresponding Z-eigenvectors of A can be
found by finding real solutions of the following polynomial equations in u and
v: b3

m−1(v)um +
∑m−1

i=1

[
b3
i−1(v)− b1

i (v)
]
ui − b1

0(v) = 0,∑m−1
i=0

[
b3
i (v)v − b2

i (v)
]
ui = 0,

(8)
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where

bk
i (v) =

m−1−i∑
j=0

(
m− 1

i, j

)
γk,i,jv

j, k = 1, 2, 3, i = 0, 1, · · · , m− 1,

and substituting such real values of (u, v)T to

x = ± 1√
u2 + v2 + 1

(u, v, 1)T (9)

and λ = Axm.

We regard the polynomial equation system (8) as equations of u. It has complex
solutions if and only if its resultant attains zero. Note that its resultant is a one-
dimensional polynomial equation of v which can be obtained by computing the
determinant of a (2m− 1) square matrix defined by coefficients in system (8).
Hence, we may find all the real roots of this one-dimensional polynomial, and
substitute them to (8) to find all the real solutions of u. Since these solutions
correspond to E-eigenvalues of A (E-eigenpairs are complex solutions of (4)),
by [49], the degree of this one-dimensional polynomial is not greater than (m2−
m + 1) when m is even. We believe that this conclusion is also true when m is
odd.
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4. Biquadrate Tensors
In [52], we also propose a direct Z-eigenvalue method to solve (1) in the case of
biquadrate tensors. A biquadrate tensor is a special fourth order n-dimensional
supersymmetric tensor. Its dimension n can be arbitrary such that it can be used
as a testing example for the method proposed in [52] for higher dimensions.
Suppose that A is a fourth order n-dimensional supersymmetric tensor. We
call A a biquadrate tensor if its elements satisfy the following conditions: for
i1 ≤ i2 ≤ i3 ≤ i4,

ai1i2i3i4 = 0, if i1 6= i2 or i3 6= i4.

For the sake of simplicity, we denote

cij =

{
aiiii, for i = 1, 2, · · · , n,

3aiijj, for i 6= j, i, j = 1, 2, · · · , n.

Certainly, they are the only possible nonzero elements of A.
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Suppose that A is a real biquadrate tensor. Then problem (1) reduces to the
following quadratic problem:

min
n∑

i,j=1
cijyiyj

s.t.y1 + · · ·+ yn = 1, yi ≥ 0, i = 1, 2, · · · , n.

In the nonconvex case, this problem is not trivial.
The following theorem presents a method for computing all the Z-eigenvalues
of a real biquadratic tensor A.

Theorem 4.1 Suppose that A is a real biquadratic tensor. Then all the Z-
eigenvectors x = (x1, · · · , xn)

> of A can be found by solving the following
system of linear systems{∑

j∈S cijyj = λ, i ∈ S, yj = 0, j 6∈ S, yj ≥ 0, j ∈ S∑
i∈S yi = 1,

(10)

where S ⊂ {1, 2, · · · , n} and |S| ≥ 1. Using λ = Ax4, we find the correspond-
ing Z-eigenvalues. Solving (10) for each subset S of {1, 2, · · · , n} with |S| ≥ 2,
we find all the other Z-eigenvalues of A.
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5. Pseudo-Canonical Form Methods
For the case that n ≥ 16 and m ≥ 3, it is beyond the practical limit of the
SOS method. Hence, for such a case, in [52], we propose an r-th order pseudo-
canonical form method which uses lower-dimensional methods as subroutines.
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5.1. Orthogonal Similarity

Let A be an mth order n-dimensional supersymmetric tensor, P = (pij) be an
n×n real matrix. Define B = PmA as another mth order n-dimensional tensor
with entries

bi1i2···im =
n∑

j1,j2,··· ,jm=1

pi1j1
pi2j2

· · · pimjm
aj1j2···jm

.

If P is an orthogonal matrix, then we say that A and B are orthogonally similar.
This is a reminiscence of the orthogonal transformation for symmetric matrices.
By [46], we have the following theorem.

Theorem 5.1 Suppose that A is an mth order n-dimensional supersymmetric
tensor, B = PmA, P is an n × n orthogonal matrix. Then A and B have the
same Z-eigenvalues. If λ is a Z-eigenvalue of A with a Z-eigenvector x, then λ
is a Z-eigenvalue of B with a Z-eigenvector y = Px.
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5.2. Pseudo-Canonical Forms

Suppose that λ is a Z-eigenvalue of A with a Z-eigenvector x. Let P be an
orthogonal matrix with xT as its first row. Let B = PmA. Then we see that
y = Px = e(1). By (4), we see that

b11···1 = λ, b11···1i = 0, for i = 2, · · · , n.

An mth order n-dimensional supersymmetric tensor B is said to be a pseudo-
canonical form of another mth order n-dimensional supersymmetric tensor A if
A and B are orthogonally similar and

bii···ij = 0

for all 1 ≤ i < j ≤ n. In this case, we say that B is a pseudo-canonical form.
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5.3. rth Order Pseudo-Canonical Forms

Suppose that r is an integer satisfying 2 ≤ r ≤ 15 and r < n. Let
1 ≤ j1 < j2 < · · · jr ≤ n. We use B(j1, j2, · · · , jr) to denote the
mth order r-dimensional supersymmetric tensor whose entries are bi1i2,···im for
i1, i2, · · · , im = j1, j2, · · · , jr. We also use [B(j1, j2, · · · , jr)]min to denote the
smallest Z-eigenvalue of B(j1, j2, · · · , jr).
An mth order n-dimensional supersymmetric tensor B is called an r-th order
pseudo-canonical form of another mth order n-dimensional supersymmetric
tensor A if it is a pseudo-canonical form of A and

b111···1 = min
1≤j1<j2<···<jr≤n

[B(j1, j2, · · · , jr)]min.

If we find an rth order pseudo-canonical form B = PmA, then b111···1 and the
first row vector of P are approximations to the smallest Z-eigenvalue of A and
its corresponding Z-eigenvector. In our designed algorithm below, we will try to
find such an rth order pseudo-canonical form of tensor A by using the orthog-
onal transformation technique combined with lower-dimensional methods and
some optimization method.
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5.4. An rth Order Pseudo-Canonical Form Method

Throughout the algorithm, we need to compute global minimizers of lower-
dimensional minimization problems, and use the obtained solutions as initial
points to find local minimizers of problem (1). To find global minimizers of
lower-dimensional minimization problems, we use the exact Z-eigenvalue meth-
ods for n = 2, 3 and the SOS method for 4 ≤ n ≤ 15. Then with the obtained
solutions as initial points we use the projected gradient method to find local
minimizers of problem (1) as the projection from <n to the unit ball can easily
be obtained. For simplicity, we denote the first method by Algorithm M1 and
the second method, i.e., the projected gradient method, by Algorithm M2.
The basic ideas of our algorithm are as follows.
In Step 1, we first fix the values of n − r variables as zeros and use Algorithm
M1 to solve a reduced version of problem (1) with dimension r, and then take
the obtained solution as the initial point and use Algorithm M2 to find a local
minimizer of problem (1), say x(0). Construct an orthogonal matrix Q based on
vector x(0) and let P = Q, where the orthogonal matrix P denotes the orthogo-
nal transformation made to tensorA during the iterations. In the iterative step, it
contains two procedures which mainly concern the following transformed prob-
lem
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minBxm

s.t.xTx = 1,
(11)

where B = PmA. First, we fix the values of variables x1 and last (n − r − 1)
variables as zeros in problem (11) and use Algorithm M1 to solve it. Second,
based on the obtained point, we use Algorithm M2 to find a local minimizer
of the original problem (1) and a new problem obtained by adding constraint
x1 = 0 to problem (1), respectively. The two local minimizers are respectively
denoted by x(1) and y(1). If f(x(1)) < f(x(0)), then replace x(0) by x(1) and go
to Step 1. Otherwise, use (e(1))T and (y(1))T as the first two rows to construct
another orthogonal matrix Q and let P = QP . Repeat this process, until it
cannot be executed.

http://math.suda.edu.cn


The Problem

Applications of This . . .

Exact Z-Eigenvalue . . .

Biquadrate Tensors

Pseudo-Canonical . . .

Numerical Results

Home Page

Title Page

JJ II

J I

Page 37 of 46

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

6. Numerical Results
The computation was done on a personal computer (Pentium IV, 2.8GHz) by
running Matlab 7.0. To test the performance of the methods, we use three classes
of examples where the objective functions assume the following forms:

TP1 f(x) =
n∑

i,j,k=1

aijkxixjxk,

TP2 f(x) =
n∑

i,j,k,l=1

aijklxixjxkxl,

TP3 f(x) =
n∑

i,j=1

cijx
2
ix

2
j .

In the following, we use the 3rd, the 6th and the 9th order pseudo-canonical form
methods to find global minimums and minimizers of (1). In our computation,
we use the direct Z-eigenvalue method (r = 3) and the SOS method (r = 6, 9),
as Algorithm M1, to find global minimizers of lower-dimensional minimization
subproblems, and we adopt the projected gradient method, as algorithm M2, to
find a local minimizer of (1).
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6.1. Numerical Results for m = 3

TP1 f(x) =
n∑

i,j,k=1

aijkxixjxk.

We take aijk = −i + j3

3 −
1
k for 1 ≤ i ≤ j ≤ k ≤ n. The other aijk are

generated by the supersymmetry. By using the 3rd, the 6th and the 9th order
pseudo-canonical form methods respectively, we have the following numerical
results.
For n = 10, we obtain the global minimum of (1), f ∗ = −3.3597 × 103, and a
global minimizer of (1),

x∗ = −(0.1936, 0.1921, 0.1939, 0.2022, 0.2213,

0.2552, 0.3076, 0.3791, 0.4619, 0.5305)T .

This solution coincides with the solution obtained by the SOS method.
For n = 20, we get an approximate optimal value of (1), f̄ = −7.0374 × 104,
and an approximate global minimizer,

x̄ = −(0.1345, 0.1343, 0.1343, 0.1346, 0.1356, 0.1374,

0.1405, 0.1452, 0.1520, 0.1611, 0.1731, 0.1883, 0.2069,

0.2291, 0.2547, 0.2830, 0.3127, 0.3417, 0.3665, 0.3820)T .
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For n = 30, we get the following approximate minimizer,

x̄ = −(0.1093, 0.1092, 0.1092, 0.1092, 0.1094, 0.1097,

0.1102, 0.1111, 0.1123, 0.1140, 0.1162, 0.1191,

0.1228, 0.1273, 0.1328, 0.1393, 0.1469, 0.1558,

0.1660, 0.1775, 0.1902, 0.2042, 0.2193, 0.2352,

0.2515, 0.2678, 0.2832, 0.2968, 0.3074, 0.3135)T

with the function value f̄ = −4.2383× 105.
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6.2. Numerical Results for m = 4

TP2 f(x) =
n∑

i,j,k,l=1

aijklxixjxkxl.

For this class of examples, we take aijkl = i3 − j2 + 3ijk − l4 for 1 ≤ i ≤ j ≤
k ≤ l ≤ n. The other aijkl are generated by the supersymmetry.
For n = 10, our computed global minimum of (1) is f ∗ = −6.2595× 105 and a
global minimizer is

x∗ = (0.2947, 0.2913, 0.2878, 0.2843, 0.2815,

0.2812, 0.2869, 0.3058, 0.3521, 0.4545)T .

This solution also coincides with the solution obtained by the SOS method.
For n = 20, our computed optimal value of (1) is f̄ = −3.7833 × 107 and a
minimizer of (1) is

x̄ = (0.2031, 0.2026, 0.2020, 0.2014, 0.2008, 0.2002,

0.1997, 0.1991, 0.1988, 0.1987, 0.1990, 0.2002, 0.2024,

0.2065, 0.2132, 0.2236, 0.2395, 0.2633, 0.2985, 0.3505)T .
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For n = 30, our computed optimal value of (1) is f̄ = −4.2116 × 108 and a
minimizer of (1) is

x̄ = (0.1644, 0.1642, 0.1640, 0.1638, 0.1636, 0.1634,

0.1632, 0.1630, 0.1628, 0.1626, 0.1624, 0.1622,

0.1621, 0.1621, 0.1623, 0.1625, 0.1631, 0.1639,

0.1653, 0.1671, 0.1698, 0.1735, 0.1784, 0.1849,

0.1935, 0.2048, 0.2195, 0.2385, 0.2632, 0.2954)T .
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6.3. Numerical Results for for Biquadrate Tensors

TP3 f(x) =
n∑

i,j=1

cijx
2
ix

2
j .

For this class of examples, we take cij = cji = 1
2(i + 1/j) for 1 ≤ i < j ≤ n

and cii = i + 1/i for i = 1, 2, · · · , n. For n = 10, we used the SOS method to
find a global minimizer of (1), but failed. For this instance, the SOS method can
only provide an optimal value f ∗ = 1.2805.
When we use the direct method described in Section 4, we obtain the global
minimum of (1), f ∗ = 1.2805, and a global minimizer of (1),

x∗ = (0.67485, 0.48743, 0.34748, 0.25851, 0.20030,

0.16108, 0.13448, 0.11695, 0.10639, 0.10139)T .

For this case, by using the 9th order pseudo-canonical form method, we obtain
an approximate optimal value of (1) with relative error 1.06 × 10−11, and an
approximate global minimizer of (1),

x̄ = (0.67485, − 0.48743, − 0.34748, − 0.25851, − 0.20030,

− 0.16108, 0.13448, − 0.11695, 0.10638, 0.10140)T .
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For this case, by using the 3rd and the 6th order pseudo-canonical form meth-
ods, we obtain an approximate global minimum of (1), f̄ = 1.2812 and an
approximately global minimizer of (1),

x̄ = (−0.67504, − 0.48780, − 0.34818, − 0.25980, 0.20254,

− 0.16478, 0.14030, − 0.12558, 0.11843, 0)T .
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For n = 20, by using the direct method, we obtain the global minimizer of (1),
f ∗ = 1.2792, and a global minimizer of (1),

x∗ = (0.67458, 0.48691, 0.34650, 0.25672, 0.19714, 0.15577,

0.12593, 0.10375, 0.086875, 0.073798, 0.063538, 0.055429, 0.049017,

0.043986, 0.040117, 0.037258, 0.035296, 0.034145, 0.033730, 0.033979)T .

When we use the 6th and the 9th order pseudo-canonical form methods, we
obtain an approximate global minimum of (1), with relative error 6.53× 10−11,
and an approximate minimizer of (1),

x̄ = (−0.67458, − 0.48691, 0.34650, − 0.25672, 0.19714, 0.15577,

0.12593, −0.10375, 0.086875, 0.073797, 0.063538, −0.055430, −0.049018,

−0.043991, −0.040107, 0.037271, −0.035309, 0.034157, −0.033695, −0.033980)T .

When we use the 3rd order pseudo-canonical form method, we get an approxi-
mate global minimum of (1), f̄ = 1.2800, and an approximate global minimizer

x̄ = (0.67474, 0.48722, 0.34708, 0.25779, − 0.19903, 0.15896, − 0.13111,

− 0.11182, 0.099001, 0.091296, 0.087792, 0, 0, 0, 0, 0, 0, 0, 0, 0)T .
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For n = 30, when we use the 3rd order pseudo-canonical form method, our
computed optimal value of (1) is f̄ = 1.2800 and a minimizer of (1) is

x̄ = (0.67474, 0.48722, 0.34708, 0.25779, − 0.19903, 0.15896,

− 0.13111, − 0.11182, 0.099001, 0.091296, 0.087792, 0, · · · , 0)T .

For this case, when we use the 6th order pseudo-canonical form method, our
computed optimal value of (1) is f̄ = 1.2792 and a minimizer of (1) is

x̄ = (0.67458, 0.48691, − 0.34650, 0.25672, − 0.19714,

− 0.15577, − 0.12593, 0.10375, − 0.086875, 0.073797, − 0.063538,

0.055430, 0.049018, 0.043991, 0.040107, − 0.037271, 0.035309,

0.034157, 0.033695, 0.033980, 0, 0, · · · , 0)T .
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For this case, when we use the 9th order pseudo-canonical form method, our
computed optimal value of (1) is f̄ = 1.2792 and a minimizer of (1) is

x̄ = (0.67458, − 0.48690, − 0.34648, − 0.25669, − 0.19710,

0.15569, − 0.12580, 0.10355, 0.086555, 0.073315, − 0.062823,

− 0.054393, 0.047521, − 0.041927, 0.037286, 0.033448, − 0.030272,

0.027570, 0.025514, − 0.023794, − 0.022460, 0.021464, 0.020837,

− 0.020471, − 0.020426, 0.020659, 0.021060, 0, 0, 0)T .

For this case, the direct method described could not give a global optimal mini-
mizer of (1) because of its expensive computations.

The numerical results show that the rth order pseudo-canonical form method is
a practical method to solve problem (1) in the case that n ≥ 16.
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