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Outline of the talk:

1. Review of exact penalty functions.

2. Optimality condition: inequality constraint case.

3. Optimality condition: equality constraint case.

4. Conclusions
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1. Review of exact penalty functions

(NP) min f (x) s.t. x ∈ X0 := {x ∈ Rn : gi(x) ≤ 0, i ∈ I = {1, · · · ,m},
hj(x) = 0, j ∈ J = {1, · · · , q}},

wheref andgi(i ∈ I) andhj(j ∈ J) are continuously differentiable,

(Pp) min
x∈Rn

Fp(x) := f (x) + ρ

(∑
i∈I

g+
i (x)p +

∑
j∈J

|hj(x)|p
)
,

whereρ > 0 is the penalty parameter,g+
i (x) = max{gi(x), 0} and0 ≤ p ≤ 1.

Fp(x) is an exact penalty function, if any local optimal solution of (NP) is one
of the penalty problem(Pp).

For0 < p1 < p2, if Fp2
(x) is an exact penalty function, so isFp1

(x).

The study of exact penalty functions was originated by the work of Eremin
(1966) and Zangwill (1967).
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Fp(x) = f (x) + ρ

(∑
i∈I

g+
i (x)p +

∑
j∈J

|hj(x)|p
)
.

Fp(x) is an exact penalty function if and only if

lim inf
u→0

β(u)− β(0)

‖u‖p
> −∞,

whereβ(u) is the optimal value of the perturbed problem

min f (x) s.t. x ∈ Xu := {x ∈ Rn : gi(x) ≤ ui, i ∈ I,
hj(x) = um+j, j ∈ J}.

See

Clarke (1983), Burke (1991a), .... forp = 1,

Rubinov and Yang (2003), for0 < p < 1.
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Whenp = 0, use the convention00 = 0.

F (x) = f (x) + ρ

(∑
i∈I

(g+
i (x))

0
+
∑
j∈J

|hj(x)|0
)

{
= f (x), if x ∈ X0
≥ f (x) + ρ, if x /∈ X0.

• If f is lsc, thenF (x) is an exact penalty function.

lim inf
u→0

β(u)− β(0)

‖u‖0
> −∞⇐⇒ lim inf

u→0
β(u) ≥ β(0) ⇐⇒ β is lsc at0.

• If f andgi(i ∈ I) are lsc,hj(j ∈ J) are continuous,u ⇒ {x ∈ Rn :
gi(x) ≤ ui, i ∈ I, hj(x) = um+j, j ∈ J} is usc at0 andX0 is compact, then
β is lsc atu = 0, See Rubinov, Huang and Yang (2002).
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The result on the existence of lower order exact penalty functions is as follows:

Assume thatX is a compact subanalytic set,f is Lipschitz andgj(j =
1, · · · ,m are continuous subanalytic. (NP) is feasible. Then there existρ̄ > 0
and a positive integerN ∗ such that, ifx∗ solves (NP), thenx∗ is an optimal
solution of the problem

min
x∈X

f (x) + ρ

(∑
i∈I

g+
i (x) +

∑
j∈J

|hj(x)|

) 1
N∗

, ρ > ρ̄.

See Warga (1992), Dedieu (1992) and Luo, Pang and Ralph (1996).
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The existence of exact penalty functions can also be viewed as a consequence
of so-called error bounds and metric regularity. See Borwein (1986), Burke
(1991b), Bonnans and Shapiro (2000), Dontchev and Lewis (2005), Pang
(1997), ....

Letf be Lipschitz continuous onW := X0∩X andψ(x) be a residual function
of the setW (that is,ψ(x) ≥ 0,∀x ∈ W andψ(x) = 0 if and only ifx ∈ X0)
such that

dist(x,W ) ≤ cψ(x), ∀x ∈ X.
If (NP) has an optimal solution, then there exists a scalarρ̄ > 0 such that for all
ρ ≥ ρ̄,

argmin{f (x)|x ∈ W} = argmin{f (x) + ρψ(x)|x ∈ X}.
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The exact penalty functionF1(x) allows one to derive first-order and second-
order necessary optimality conditions by employing first-order or second-order
calculus rules, see:

Fletcher (1987), Burke (1991b), Bonnans and Shapiro (2000) ....

Question: Does lower order exact penalty functionFp(x) (0 ≤ p < 1)
guarantee the existence of a Lagrange multiplier?

Counter Example.
min x s.t.x2 ≤ 0.

x∗ = 0 is a local minimum andF.5(x) is exact, but there exists no Lagrange
multiplier.

Under additional assumptions ? Yes !
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2. Optimality condition: inequality constraint
caseJ = ∅

Let x∗ be a local minimum of (NP) andFp(x) (0 ≤ p ≤ 1) be an exact penalty
function. So,x∗ is a local minimum of the function

Fp(x) := f (x) + ρ
∑
i∈I

ḡi(x),

whereḡi(x) = [max{gi(x), 0}]p. Hence the Dini upper directional derivative
of Fp atx∗:

D+Fp(x
∗;u) ≥ 0, ∀u ∈ Rn,

So
∇f (x∗)>u + ρ

∑
i∈I

D+ḡi(x
∗;u) ≥ 0, ∀u ∈ Rn,

whereI = {1, 2, · · · ,m}.
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Forx ∈ Rn, let
I(x) = {i ∈ I | gi(x) = 0}.

If gi(x
∗) < 0, thenD+ḡi(x

∗;u) = 0.

If gi(x
∗) = 0,∇gi(x

∗)>u > 0, thenD+ḡi(x
∗;u) = +∞.

If gi(x
∗) = 0,∇gi(x

∗)>u < 0, thenD+ḡi(x
∗;u) = 0.

Thus the following first-order necessary condition of (Pp)

∇f (x∗)>u + ρ
∑
i∈I

D+ḡi(x
∗;u) ≥ 0, ∀u ∈ Rn,

becomes

∇f (x∗)>u + ρ
∑

gi(x∗)=0,∇gi(x∗)>u=0

D+ḡi(x
∗;u) ≥ 0, ∀u : ∇gi(x

∗)>u ≤ 0.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Farkas Lemma says that exactly one of the following two systems has a solution:

System 1 Au ≤ 0, c>u > 0, for someu,
System 2 A>µ = c, µ ≥ 0, for someµ.

If we can show

∇gi(x
∗)>u ≤ 0,∀i ∈ I(x∗) =⇒ −∇f (x∗)>u ≤ 0,

then it means that System 1 has no solution. Thus System 2 has a solution. So
there existsµ∗ ≥ 0 such that∑

i∈I(x∗)

µ∗i∇gi(x
∗) = −∇f (x∗).

Therefore
∇f (x∗) +

∑
i∈I(x∗)

µ∗i∇gi(x
∗) = 0.
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The first-order necessary condition of (Pp) is:

∇f (x∗)>u + ρ
∑

gi(x∗)=0,∇gi(x∗)>u=0

D+ḡi(x
∗;u) ≥ 0, ∀u : ∇gi(x

∗)>u ≤ 0.

To guarantee

′′∇gi(x
∗)>u ≤ 0,∀i ∈ I(x∗) =⇒ −∇f (x∗)>u ≤ 0,′′

we need the following constraint qualification∑
gi(x∗)=0,∇gi(x∗)>u=0

D+ḡi(x
∗;u) ≤ 0, ∀u : ∇gi(x

∗)>u ≤ 0,

whereḡi(x) = [max{gi(x), 0}]p.

Question: Under what conditions, this constraint qualification is verified?
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Three cases are considered:

Case 1:p = .5;

Case 2:0 ≤ p < .5;

Case 3:.5 < p ≤ 1.
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Case 1:p = .5
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Theorem 2.1Letx∗ be a local minimum of (NP) andF.5(x) be an exact penalty
function. Assume that

gi(x
∗) = 0,∇gi(x

∗)>u ≤ 0 =⇒ g◦◦(x∗;u) ≤ 0,

whereg◦◦(x∗;u) is the Clarke generalized second-order directional derivative.
Then∃ µ∗ ≥ 0 such that

∇f (x∗) + µ∗∇g(x∗) = 0, µ∗g(x∗) = 0.

Example.
min x2 s.t.x4 ≤ 0.

x∗ = 0 is a local minimum,F.5(x) is exact and

u>∇2gi(x
∗)u = 0.

There exists a Lagrange multiplier.
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Why condition

gi(x
∗) = 0,∇gi(x

∗)>u ≤ 0 =⇒ g◦◦i (x∗;u) ≤ 0,

is needed?
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Forgi(x
∗) = 0,∇gi(x

∗)>u = 0, we have

D+ḡi(x
∗;u) = lim sup

t→0+

(max{gi(x
∗ + tu), 0})

1
2 − (max{gi(x

∗), 0})
1
2

t

= lim sup
t→0+

(
max{ t2

2u
>∇2gi(x

∗ + βtu)u, 0}
)1

2

t
(0 < β < 1)

= lim sup
t→0+

(
max{1

2
u>∇2gi(x

∗ + βtu)u, 0}
)1

2

=

(
max{1

2
u>∇2gi(x

∗)u, 0}
)1

2

.

If we assume

gi(x
∗) = 0,∇gi(x

∗)>u ≤ 0 =⇒ u>∇2g(x∗)u ≤ 0,

then ∑
gi(x∗)=0,∇gi(x∗)>u=0

D+ḡi(x
∗;u) ≤ 0, ∀u : ∇gi(x

∗)>u ≤ 0.
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Case 2:0 ≤ p < .5.

Theorem 2.2Let 0 ≤ p < .5, in addition to theFp(x) being an exact penalty
function condition, assume

gi(x
∗) = 0,∇gi(x

∗)>u ≤ 0 =⇒ g◦◦i (x∗;u) < 0.

Then∃ µ∗ ≥ 0 such that

∇f (x∗) + µ∗∇g(x∗) = 0, µ∗g(x∗) = 0.
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Case 3:.5 < p ≤ 1.

Theorem 2.3Let .5 < p ≤ 1, Fp(x) be an exact penalty function condition
andgi(i ∈ I) beC1,1.

Then∃ µ∗ ≥ 0 such that

∇f (x∗) + µ∗∇g(x∗) = 0, µ∗g(x∗) = 0.

The assumption thatgi(i ∈ I) areC1,1 is crucial:

min x s.t.x4/3 ≤ 0.

F3/4 is an exact penalty function, but a Lagrange multiplier doesn’t exist. Note
thatg(x) = x4/3 is notC1,1.
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2.1. Comparisons with known constraint qualifications

Guignard CQ is said to hold atx∗ ∈ X0 if

T ∗∗(X0, x
∗) = A(x∗),

where
A(x∗) = {u ∈ Rn | ∇gi(x

∗)>u ≤ 0,∀i ∈ I(x∗)},
is the set of feasible directions for the linearized constraint set,

T (X0, x
∗) = {u : u = lim

k→+∞
λk(xk − x∗), λk > 0, xk ∈ X0, xk → x∗}

is the contingent cone of setX0 at x∗ andT ∗∗(X0, x
∗) is the bipolar cone of

T (X0, x
∗).
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Guignard CQ doesn’t hold, but Theorem 2.1 holds.

min x3 s.t.x6 ≤ 0.

x∗ = 0 is the local minimum,F.5(x) is exact andu>∇2g(x∗)u = 0. Theorem
2.1 is applicable.

However, T (X0, x
∗) = T ∗∗(X0, x

∗) = {0} and A(x∗) = R. Hence,
T ∗∗(X0, x

∗) 6= A(x∗) ∪ {0}. The Guignard CQ is not satisfied.

Theorem 2.1 doesn’t hold, but Guignard CQ holds.

min x s.t.x2 − x ≤ 0.

u>∇2g(x∗ = 0)u = 2u2 > 0. Theorem 2.1 is not applicable.

The Guignard CQ, implied by (LICQ), holds atx∗ = 0.
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3. Optimality condition: equality constraint
caseI = ∅

Theorem 3.1LetFp(x) be an exact penalty function condition. Assume thatx∗

is a local minimum of(NP ). If one of the following two conditions is satisfied:

(i) p = .5 and assume further that

j ∈ J,∇hj(x
∗)>u = 0 =⇒ h◦◦j (x∗;u) = 0;

(ii) .5 < p ≤ 1 andhj(j ∈ J) areC1,1,

then there exists a Lagrange multiplierλ∗ such that

∇f (x∗) + λ∗∇h(x∗) = 0.
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4. Conclusions
• Lower order exact penalty functions are useful in the establishment of opti-
mality conditions.
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