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Outline of the talk:

1. Review of exact penalty functions.

2. Optimality condition: inequality constraint case.
3. Optimality condition: equality constraint case.

4. Conclusions



1. Review of exact penalty functions

(NP) min f(z) st. ze€ Xo={zeR":¢(z) <0,iel={L--- ,m},
hj(w):()7]€J:{177Q}}a

wheref andg;(i € I) andh,(j € J) are continuously differentiable,

(P,)  min Fy(z) := f(z) +p <Z g (@)P+) \hj(fv)lp> :

reER?
i€l JjE€J

wherep > 0 is the penalty parametey; (x) = max{g;(z),0} and0 < p < 1.

F,(z) is an exact penalty function, if any local optimal solution of (NP) is one
of the penalty probleniP,).

For0 < p; < py, if F,,(z) is an exact penalty function, sois, (x).

The study of exact penalty functions was originated by the work of Eremin
(1966) and Zangwill (1967).



Fy(z) = f(z) + p (Z gr(@P + ) Mﬂ?)lp) :

i€l jeJ
F,(z) is an exact penalty function if and only if

i ing 20 = B0)

w0t ulp

> —00,

where/3(u) is the optimal value of the perturbed problem

min f(z) st. x € X, ={xr eR": gi(x) <wy, i €1,
(&) = thnsge € T}

See
Clarke (1983), Burke (1991a), .... fpr= 1,

Rubinov and Yang (2003), far < p < 1.



Whenp = 0, use the conventiot = 0.

Fz) = flx)+p (Z (97 ()" + !hj(fﬂ)\0>

1€l J€J
= f(x), if x € X,

e If fislsc, thenf'(x) is an exact penalty function.

lim inf ﬁ(u‘)’u—|’05(0) > —00 <— 1imjg1fﬁ(u) > 3(0) < BislIsc at0.

o If fandg;(: € I)arelsc,h;(j € J) are continuousy = {z € R" :
gi(x) <w, i €1, hj(z) =uny, j € J}isuscat andX,is compact, then
B is Isc atu = 0, See Rubinov, Huang and Yang (2002).



The result on the existence of lower order exact penalty functions is as follows

Assume thatX is a compact subanalytic sef, is Lipschitz andg;(j =
1,--- ,m are continuous subanalytic. (NP) is feasible. Then there gxist)
and a positive integeN* such that, ifx* solves (NP), therx* is an optimal
solution of the problem

1
E3

i f(z) + ¢ (Zgﬂx) +y \hxx)r) >

iel jeJ

See Warga (1992), Dedieu (1992) and Luo, Pang and Ralph (1996).



The existence of exact penalty functions can also be viewed as a consequer
of so-called error bounds and metric regularity. See Borwein (1986), Burke

(1991b), Bonnans and Shapiro (2000), Dontchev and Lewis (2005), Pan
(1997), ....

Let f be Lipschitz continuous o/ := X,;N.X andi(x) be aresidual function
of the setW (thatis,)(z) > 0,Vax € W andy(x) = 0ifand only ifx € X))
such that

dist(z, W) < cip(z), Vo € X.

If (NP) has an optimal solution, then there exists a scalar 0 such that for all
P =P

argmin{ f(x)|z € W} = argmin{ f(z) + py(z)|x € X}.



The exact penalty functiol’(x) allows one to derive first-order and second-
order necessary optimality conditions by employing first-order or second-orde
calculus rules, see:

Fletcher (1987), Burke (1991b), Bonnans and Shapiro (2000) ....

Question Does lower order exact penalty functidi,(z) (0 < p < 1)
guarantee the existence of a Lagrange multiplier?

Counter Example.
min z s.t.x? < 0.

x* = 0 is a local minimum andF's(x) is exact, but there exists no Lagrange
multiplier.

Under additional assumptions ? Yes !



2. Optimality condition: inequality constraint
caseJ = )

Let 2* be a local minimum of (NP) andl,(z) (0 < p < 1) be an exact penalty
function. So,z* is a local minimum of the function

Fyw) = @) +p ) 4(x)

whereg;(z) = [max{g;(x),0}”. Hence the Dini upper directional derivative
of I, atz™:
D,F,(z";u) >0, Yue€R",

So
Vi) u+pY Digila"u) >0, YueR"
€1

wherel = {1,2,--- ,m}.



Forz € R", let
I(z)={iel]glzx)=0}

If g;(z*) < 0, thenD, g;(x*;u) = 0.

If g;(x*) =0,Vgi(x*) u > 0, thenD, g;,(z*; u) = +o0.
If g;(z*) =0,Vg(z*)"u <0, thenD, g;(z*; u) = 0.
Thus the following first-order necessary condition of)(P

Vi) u+p Digila"u) >0, YueR"
el
becomes

V) u+p Z D.gi(z*u) >0, Vu:Vg(z") u<O0.

gi(x*)=0,Vg;(x*) Tu=0



Farkas Lemma says that exactly one of the following two systems has a solutio

System1 Au <0, ¢c'u >0, forsomeu,
System?2 A'pu=c, u>0, for somepu.

If we can show
Vgi(z*)'u <0,Vi € I[(z*) = -V f(z*) u <0,

then it means that System 1 has no solution. Thus System 2 has a solution. .
there existg:,* > 0 such that

Z 1V gi(z) = =V f(z").
iel(x

Therefore

)+ Z pi Vgi(x

i€l(x



The first-order necessary condition of Y #s:

Vi) u+p > Digilatu) >0, Vu:Vg(z") u<O0.

9i(x*)=0,V gi(z*) Tu=0
To guarantee
"Vai(z*) 'u <0,Vi € I(z*) = —Vf(z*) 'u<0,
we need the following constraint qualification

> Digiatu) <0, Vu:Vglz") u<0,

gi(z*)=0,Vg;(x*) Tu=0

whereg;(z) = [max{g;(z), 0}]".

Question: Under what conditions, this constraint qualification is verified?



Three cases are considered:
Case 1p = .5;
Case 20 < p < .5;

Case 3.5 <p < 1.



Caselp=.5



Theorem 2.1Letz* be alocal minimum of (NP) anH;(z) be an exact penalty
function. Assume that

gi(z*) = 0, Vgi(x*)'u < 0= ¢°°(z*;u) <0,

whereg°°(z*; u) is the Clarke generalized second-order directional derivative.
Thend p* > 0 such that

V(") +p'Vg(z®) =0, pg(z’)=0.

Example.
min 22 s.t.z* < 0.

x* = 0 is a local minimum F';(z) is exact and
u'V2g;(z*)u = 0.

There exists a Lagrange multiplier.



Why condition
gi(z") = 0, Vgi(z") 'u <0 = g°(2";u) <0,

IS needed?



For g;(x*) = 0, Vg;(x*)'u = 0, we have

D[ =

i(x* +tu),0 : (), 0
D, gi(z*;u) = limsup (max{g;(z" + tu) })t (max{g;(z*),0})
t—0t

(max{%uTVQQi(x* + Stu)u, O}) ’

= lim sup 0< B <1)

t—0+ t
1
2

1
= limsup (max{ﬁuTV@i(x* + [tu)u, O})

t—0t
1 3
_ <max{§uTV29i(x*)u,O}) .
If we assume
gi(x") = 0,Vgi(z*) v <0 = u'Vg(z")u <0,
then

Z D.gi(z%u) <0, VYu:Vg(z") u<O0.

9i(x*)=0,Vg;(x*) Tu=0



Case 20 < p < .5.

Theorem 2.2Let(0 < p < .5, in addition to theF),(z) being an exact penalty
function condition, assume

gi(z*) = 0, Vgi(z")"u < 0= g°(z*;u) < 0.
Thend p* > 0 such that
V") +u'Vg(x*)=0, upglz*)=0.



Case 3.5 < p < 1.

Theorem 2.3Let.5 < p < 1, F,(z) be an exact penalty function condition
andg;(i € I) beC*'.

Thend p* > 0 such that
V(") +p'Vg(z®) =0, pg(z’)=0.

The assumption that(: € ) areC*! is crucial:
min z s.t. z*/3 < 0.

F3,4 s an exact penalty function, but a Lagrange multiplier doesn't exist. Note
thatg(z) = 2*/3 is not 'L,



2.1. Comparisons with known constraint qualifications
Guignard CQ is said to hold af € X, if

T (X, x%) = A(z"),

where
Alz)={u € R" | Vgi(z*) 'u <0,Vi € I(z")},

IS the set of feasible directions for the linearized constraint set,

T(Xo,x*) ={u:u= klim Mo, — %), A > 0,2, € Xo, 2 — 27}
—+00

is the contingent cone of séf, at x* andT**( X, z*) is the bipolar cone of
T(X(), Qf*)



Guignard CQ doesn’t hold, but Theorem 2.1 holds.

min z° s.t. 2% < 0.

x* = 0 is the local minimumJF's(x) is exact and:" V2g(z*)u = 0. Theorem
2.1 is applicable.

However, T'( Xy, ) = T*(Xy,2*) = {0} and A(z*) = R. Hence,
T ( Xy, z*) # A(z*) U {0}. The Guignard CQ is not satisfied.

Theorem 2.1 doesn’t hold, but Guignard CQ holds.

min zs.t.z?—z <0.

u' V2g(x* = 0)u = 2u® > 0. Theorem 2.1 is not applicable.

The Guignard CQ, implied by (LICQ), holds at = 0.



3. Optimality condition: equality constraint
casel = ()

Theorem 3.1Let F,(x) be an exact penalty function condition. Assume tHat
is a local minimum of N P). If one of the following two conditions is satisfied:

(i) p = .5 and assume further that

j€ J,Vhi(z*) 'u=0= h°(z*;u) = 0;
(i) .5 < p<landh,(j € J)areC",
then there exists a Lagrange multipli&t such that

V£(z*) + A*'Vh(z®) = 0.



4. Conclusions

e Lower order exact penalty functions are useful in the establishment of opti
mality conditions.
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