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We consider a class of nonlinear semi-infinite programming problem

min F(x) subject to max f(z,y) <0
T y

that can be written in the form

min F(z)

x?y

subject to V, f(z,y) =0,
flz,y) <0,

where x € R", y ¢ R, F: R" - R, f: R" x R™ — R, and we assume the functions involved
are smooth enough. Let us now consider the equality-constrained minimization problem

min F(x) —plns

x?yﬁs

subject to V, f(z,y) =0,
flz,y)+5=0

with a logarithmic barrier in its objective, where s > 0 is a slack and p > 0 is a penalty, and
define a Lagrangian function by

L(z,y,s,%,\) = F(z) — plns + "V f(z,9) + A(f(z,y) + s),

where ¢ and A are multipliers for the two equality constraints. For simplicity, the vector
(z,y,8,9%,\) € R"?"+2 is denoted by X. A necessary optimality condition for the penal-
ized problem is then given by the Lagrange multiplier rule VL(X) = 0, and, when p goes to
zero, the solution sequence gives the central path leading to a solution to the original problem.

We will present in this talk a path following algorithm based on successive solution of systems
of ordinary differential equations in the form

X = —M(X)VL(X)

for each p, where M(X) is a matrix valued function and X denotes the derivative of X with
respect to an independent variable. Convergence analysis will be given through some numerical
experiments.
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