A NEW CLASS OF PROXIMAL ALGORITHMS FOR THE NONLINEAR COMPLEMENTARITY PROBLEM P. R. Oliveira¹ and G. J. P. da Silva² PESC/COPPE - Federal University of Rio de Janeiro ¹poliveir@cos.ufrj.br ²geci@cos.ufrj.br Abstract

We consider the nonlinear complementarity problem,

NCP(F): to obtain x 2 Rⁿ; x 0; F(x) 0;
$$x^{T}F(x) = 0$$
;

where $F : R^n ! R^n$ is a C¹ function. Facchinei and Kanzow, and, Yamashita, Imai and Fukushima, both in 1999, proposed algorithms that suppose that F is a P₀ function. F is a P₀ function, if it veri⁻es that, for all x; y 2 Rⁿ; with x **6** y; there exists some index i = i (x; y) such that the following facts are simultaneously true: $x_i \in y_i$, and $(x_{i | i | y_i}) (F_i (x) | F_i (y)) = 0$: Now, we propose, for P₀ functions, a sequence of proximal regularizations, de⁻ned through F^k (x) := F (x) + c_k X^{k'_i r'} x_i x^k'; where $x^k > 0$ and $c_k 2 R_{++}$ are known, $X^{k'_i r} = \text{diag} x_1^{k'_i r}$; :::; $i x_n^{k'_i r'}$, and r = 1. As a consequence of that formulation, we are able to show that F^k; strongerly than F, is a P function, that is, it veri⁻es the inequality max f(x_{i | i} y_i) (F_i (x) i F_i (y)); i = 1; :::; ng > 0; for, all x; y 2 Rⁿ; x 6 y: This fact permits us to show the important result that NCPⁱ F^k has a unique solution, for each k. Now, we can describe the algorithm. First de⁻ne, successively, using the Fischer-Burmeister function, ' (a; b) := $a^2 + b^2i_i a_i b$; and $\mathbb{O}^k (x) := \prod_{i=1}^n i x_i; F_i^k (x)^2 = 2$.

Initialization: choose $c_0 > 0$; $\pm_0 2$ (0; 1) and $x^0 2 R_{++}^n$. Set k = 0: Step 1: choose x > 0, such that ${}^{\otimes k} x^{k+1} \pm_k^2$:

Step 2: choose $c_{k+1} \ge (0; c_k)$ and $\pm_{k+1} \ge (0; \pm_k)$: Update k, return to Step 1.

The main result is: Let's suppose that F is a P₀ function and the solution set of NCP(F) is nonempty and bounded. Also suppose that the following hypothesis about the sequence fc_kg_e are veri⁻ed: $c_k X^{k+1} i x^{k+1} i x^k ! 0$; if x^k is bounded, or, $c_k X^{k+1} i x^k ! 0$; if x^k is bounded, or, and any accumulation point of fx_kg is a solution of NCP(F):

Some improvements on the theoretical results, and extensions are under consideration.