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Abstract.
In recent years there has been an increasing interest in vector varia-

tional inequality (VVI); mainly this study in ¯nite-dimensional Euclidean
spaces has been ¯rst introduced in [1]. Recently, the equivalence between
a VVI and a vector optimization problem (VOP) as well the equivalence

between VVI problem a vector complementary problem (VCP) have been
intensively analysed in [2] { [5]. Various classes of vector variational in-
equalities were studied both in ¯nite- and in in¯nite-dimensional spaces;
see e.g. [9]. There are several generalizations of VVI problems in which
the cost mapping is supposed to be set-valued (GVVI); see e.g. [6, 7]. In
this paper, we present an extension of several existence results for gener-
alized vector variational inequalities to set-valued mappings over product
sets in a topological vector space setting. It is well known that a number of
equilibrium type problems arising in Economics, Game Theory and Trans-
portation have a decomposable structure, namely, they can be formulated
as vector variational inequalities over Cartesian product sets; see e.g. [10]{
[12]. At the same time, most existence results for such problems are based
on the known ¯xed point techniques, which require either the feasible set
(otherwise, the corresponding subset associated to a coercivity condition)
be compact in the strong topology or the cost mapping possess certain con-

tinuity type properties with respect to the weak topology; see e.g. [10, 13].
Usually, to essentially weaken these assumptions one make use of the Ky
Fan Lemma [8] together with certain monotonicity type properties regard-
less the decomposable structure of VI; see e.g. [9, 14]. By employing new
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monotonicity type concepts which are adjusted for a decomposable struc-
ture of the initial problem, Konnov in [15] proved existence results for scalar
variational inequalities under weaker assumptions. The new relative mono-
tonicity concepts can be regarded as intermediate ones between the standard
monotonicity and P-mapping notions.

Being based upon this approach, we [16] strengthen existence results

which were based on the usual monotonicity type assumptions for GVVIs in
the particular case of a product set with a ¯nite number of indices. Now we
present several new results which generalize and strengthen those in [16]. In
particular, they include the case of countable and uncountable set of indices.

Key words: Vector variational inequalities, set-valued mappings, product
sets, relative monotonicity, existence results.
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