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We thank the editor, Professor Hongtu Zhu, for organizing the discussion and the distin-
guished discussants for their insightful comments and stimulating questionson our work,
“LAMBDA: Large Model Based Data Agent” (Sun et al., [2025a)). In this rejoinder, we
synthesize the main themes raised, clarify key design choices, and outline concrete plans
to address the comments and suggestions. Specifically, we consider domain-knowledge
integration, benchmark for data agents, reasoning and planning, collaborating agents,
human—AI collaboration and supporting infrastructure. Where applicable, we report
preliminary progress and highlight open challenges that will shape our ongoing research

agenda.

1 Strengthening Domain Knowledge Integration

Knowledge integration is a core component of LAMBDA and a key driver of its capabilities.
We have demonstrated its empirical effectiveness through examples. Following suggestions
from Dr. Sammi Tang, Dr. Xuewei Wang, Professor Fan Zhou, and Professor Bang Liu,

we plan several enhancements. First, we will refine the integration pipeline, including
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the choice of embedding model, the similarity metric, and the thresholding strategy, as
these directly affect retrieval accuracy and downstream analysis. Second, we will address
a current limitation: retrieval relies solely on user-provided natural language instructions
and is not conditioned on the dataset itself. Third, we will develop a dynamic, continuously

updated knowledge base to further improve LAMBDA’s performance over time.

1.1 Retrieval Improvement via Contrastive Fine-Tuning

Inspired by contrastive learning and dual-encoder (two-tower) architectures, we explore
two methods to improve the embedding model’s retrieval accuracy: symmetric fine-
tuning, which fine-tunes the encoder to process both queries and knowledge entries, and
asymmetric alignment, which aligns the embedding model’s representation space with that

of a downstream task-oriented large language model (LLM).

Problem Formulation. Let Q = {q1,...,qn} be a set of queries and D = {dy,...,dyn}
be the corresponding ground-truth relevant document. {(g;,d;)}Y, denotes a collection of
positive knowledge pairs, and all other irrelevant combinations are considered negative
pairs. We aim to learn a shared latent semantic space where positive knowledge pairs are
closer than negative ones. The semantic similarity between a query ¢; and a knowledge
entry d; is quantified by the cosine similarity score of their embeddings e,,eq; € R™:
s(qi, d;) = @% To optimize the parameters, we minimize the InfoNCE (Information

Noise Contrastive Estimation) loss with in-batch negatives. For a batch of size B, the

exp(s(qi,di)/T)
B exp(s(qid;)/7)’

objective is defined as: £ = —lZil log >

5 where 7 is a temperature

hyperparameter. We utilize symmetric fine-tuning and asymmetric alignment to generate

these embeddings.



Method 1: Symmetric Encoder Fine-Tuning. In this approach, we utilize a single
encoder model fp(-) (e.g., all-MiniLM-L6-v2), parameterized by 6, to generate dense
vector representations for both input types. The embeddings are computed as: e,, = fy(q;)
and ey, = fp(d;). This method fine-tunes the shared parameters 6 to directly minimize L,

pulling positive pairs closer while pushing away in-batch negatives.

Method 2: Asymmetric Alignment. In the second approach, we employ an asym-
metric architecture to transfer the reasoning capabilities of an LLM into the retrieval task.
We utilize two distinct encoders: a fixed query encoder g4(-) (using Qwen3-4B-Instruct)
and a trainable knowledge encoder hy(-) (using all-MiniLM-L6-v2). To address the
dimension mismatch between the LLM output (k) and the embedding model (m), we
introduce a learnable linear projection matrix W € R™**_ The embeddings are computed
as: e, = Wgy(q;) and ey, = hy(d;). Here, g4(q;) represents the aggregated hidden state
from the LLM. During training, we freeze ¢ and update only the projection matrix W

and the encoder parameters ¢ to minimize L.

Experimental Results. After training for 100 epochs, during which the model loss
had already stabilized, we evaluated the models on the test set using the Hit Rate metric.
The Hit Rate (HR) at rank k is defined as: HitRate@k = Zf\il 1{rank(y;) < k}, where
N is the number of queries, y; denotes the ground-truth knowledge for query i, and 1(-)
is the indicator function. The performance of the original al1-MiniLM-L6-v2 model is
used as the baseline. The experimental results are summarized in Table [T

We observe that the fine-tuned all-MiniLM-L6-v2 model achieves a substantial im-
provement over the baseline, especially on HRQ1, with a gain of 3.72%. Moreover, the
model aligned with Qwen3-4B-Instruct demonstrates greater improvements after fine-

tuning: a 26.2% gain over the baseline and a 23% improvement compared with directly



Table 1: Hit rate of different approaches. Here, all-MiniLM-L6-v2 denotes the embedding
model from the original paper, FT all-MiniLM-L6-v2 is the symmetrically fine-tuned
version, and Qwen3-4B Alignment represents the asymmetric fine-tuning approach.

Hit Rate @ K [ all-MiniLM-L6-v2 | FT all-MiniLM-L6-v2 | Qwen3-4B Alignment
HR@1 45.28% 49.00% 72.00%
HR@2 57.13% 58.50% 81.50%
HR@3 61.45% 63.50% 83.00%
HR@4 65.66% 65.00% 84.00%
HR@5 67.77% 67.50% 84.50%
HR@6 69.58% 68.50% 86.00%
HR@7 70.98% 70.00% 87.00%
HR@8 71.49% 72.00% 87.50%
HR@9 72.49% 73.00% 88.50%
HR@10 73.09% 73.50% 89.50%

fine-tuning the embedding model alone.

It is worth noting that in our contrastive learning setup, only the top-1 knowledge
entry is treated as a positive sample, while all others are negatives. This encourages the
model to focus primarily on rank-1 relevance, resulting in a larger gain for HR@Q1 and
comparatively smaller improvements for higher ranks.

Overall, these experiments show that continued fine-tuning on a knowledge base
can effectively enhance retrieval accuracy in future applications. In the future, we may
further enhance retrieval accuracy and strengthen human involvement by proactively
recommending the top-K candidate knowledge items after retrieval, allowing users to

select the most appropriate ones.

1.2 Alternative Similarity Metrics

Recent work suggests that cosine similarity is not universally optimal for assessing
alignment quality, particularly when embedding magnitudes carry semantic information
or when training-time normalization introduces artifacts (Steck et al., 2024)). To examine
this empirically, we evaluate our retrieval system under multiple similarity measures on
the datasets used above. We consider vector-space metrics (cosine similarity, Euclidean

distance) and set-based lexical metrics (Jaccard similarity, overlap coefficient). For the set-



based metrics, we compute scores at both the word level and over character-level 3-grams.
Consistent with our prior experiments, we use al1-MiniLM-L6-v2 as the embedding model
for vector-space metrics.

A brief definition of the core set-based metrics for two sets S4 and Sp (derived from
query and knowledge text) is provided below:

Jaccard Similarity measures the intersection over union of two sets, that is, J(S4, Sg) =

%. Overlap Coefficient measures the size of the intersection relative to the size of
the smaller set, effectively handling length imbalance: Overlap(Sa, Sp) = %

We employ Hit Rate (HRQK) and Mean Reciprocal Rank (MRR@10) to evaluate
retrieval accuracy. The comparative results are illustrated in Figure As shown in
Figure [2| the two vector-based metrics yield comparable performance and substantially
outperform lexical matching. All two vector metrics (¢, and Cosine) achieve a Hit
Rate@10 exceeding 70%, whereas the best lexical metric (Jaccard on character 3-grams)
reaches only roughly 51%, with word-level metrics failing to surpass 20%. This confirms
that the semantic gap between user instructions and code descriptions requires dense

representation rather than keyword overlap.
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Figure 1: Hit Rate and MRR@10 across different similarity metrics. Vector-based methods
(left group) significantly outperform lexical methods (right group).



As pointed out by the MRR experiment, the results mirror the Hit Rate findings;
the vector-based metrics perform similarly and consistently outperform lexical matching.
{5 Euclidean distance achieves the highest retrieval performance with an MRR@10 of
56.39%, followed closely by Cosine Similarity (55.91%). The marginal performance gap
(< 0.5%) indicates that for the all-MiniLM-L6-v2 model, the retrieval quality is stable
across these standard vector metrics. Consequently, while switching to ¢, distance may
offer a slight improvement, the primary driver of performance remains the quality of the

embedding space itself rather than the specific distance function employed.

1.3 Threshold, Mode and Quality Control

Dr. Sammi Tang and Dr. Xuewei Wang also mentioned that relying on a fixed threshold
(default 6 = 0.2) is a heuristic that may not generalize across all domain-specific tasks. We
agree that a fixed threshold risks either retrieving irrelevant code snippets (introducing
noise) or missing critical context when the semantic overlap is subtle. To address this, the
future versions of LAMBDA will move toward adaptive retrieval mechanisms. Recent
advancements in Retrieval-Augmented Generation (RAG) suggest that models can be
trained or prompted to dynamically assess the necessity and quality of retrieval (Jiang
et al. 2023). Instead of a static hard cutoff, we plan to implement a confidence-based
retrieval system, where the agent evaluates the uncertainty of its internal knowledge
before querying the knowledge base, effectively creating a dynamic threshold tailored
to the complexity of the user’s instruction. Furthermore, we aim to explore calibration
techniques to normalize similarity scores across different embedding models, ensuring that
0 represents a consistent semantic distance regardless of the underlying encoder.

In addition, user-supplied code descriptions vary significantly in clarity and quality. To

involve quality control mechanisms in the knowledge base, we will introduce an automated



Quality Controls Agent. This agent would utilize an LLM to standardize and rewrite
user-contributed knowledge entries before they are indexed.

Finally, regarding the difference between the Full and Core integration modes, we
agree that the relationship between task complexity and integration level deserves closer
examination. The Full mode provides more complete support but also leads to higher
latency and greater token usage. We are considering a new architecture that includes a
Routing Agent for the future version of LAMBDA. This agent would analyze the user’s
intent and decide how much knowledge integration is needed. It could choose the Core
mode for routine dataframe operations and switch to the Full mode for more complex,
domain-specific modeling tasks. Such dynamic selection would help balance computational

efficiency and analytical capability.

1.4 Data-Awareness Retrieval

In agent systems, generation-focused RAG typically relies solely on semantic similarity
between user queries and code descriptions. In the data science contexts, this creates a
blind spot: the system overlooks the dataset’s intrinsic statistical properties. As a result,
purely text-based retrieval may surface solutions that are semantically relevant (e.g.,
“perform regression”) but statistically inappropriate for the specific data (e.g., ignoring
high dimensionality, sparsity, or heteroscedasticity).

Motivated by the insights from Professor Fan Zhou and Professor Bang Liu, we
propose a Data-Aware Retrieval framework that synthesizes user intent with statistical
characteristics of the dataset. Rather than treating the dataset as a passive input, we
make it an active component in the retrieval process. Specifically, retrieval is conditioned
on a Data Profile—a vector that encodes key meta-features of the dataset, such as

dimensionality, skewness, sparsity, and correlation structure.



In this framework, retrieval operates jointly on both the data context and the semantic
context. The final retrieval score is computed as a weighted sum: Score = « - Sgata + 0 -
Ssemantic, Where Sqat. measures the similarity between the target dataset’s profile and the
metadata associated with candidate code snippets, and Sgemantic measures the alignment
with user instructions. By fine-tuning the weights («, §) and the underlying embeddings,
the system retrieves knowledge that is not only semantically appropriate but also data-
consistent, potentially addressing key limitations of traditional RAG in empirical data

analysis.

2 Benchmark for Data Agents

Data science problems are inherently open-ended, making it difficult to define a single
ground-truth solution and, in turn, to build reliable evaluation benchmarks. Professor
David Donoho emphasized that academia must move beyond tool-building to establish
standards for scientific rigor, reproducibility, and evaluation. Dr. Sammi Tang and Dr.
Xuewei Wang similarly underscored the need for benchmarks to guide more rigorous
and principled progress. Recent efforts have introduced benchmarks for data agents, but
limitations remain: some include only a small set of tasks (Huang et al., 2024)), while
others span a narrow set of domains (Hu et all 2024), constraining applicability and
generality.

To this end, we have recently tried to build a reliable, comprehensive benchmark for
data agents. Our preliminary efforts involve constructing the benchmark data derived
from a corpus of statistical learning textbooks and supplemented by highly-voted, complex
datasets from platforms such as Kaggle. Based on these resources, we are constructing
the most comprehensive benchmark for data agents, designed to systematically test

agents across diverse data modalities, domains, analytical pipelines, and programming
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Figure 2: Overview of the benchmark instances.

languages. Each benchmark item includes structured metadata, such as data type, domain,
task formulation, reasoning steps, and expected answer or metrics to support rigorous
and reproducible assessment. Currently, we have collected more than 2,000 datasets
encompassing over 10,000 tasks across diverse domains. Figure [2| shows an overview of
the benchmark instances we have curated to date, including their distribution across data
modalities, and problem domains. The finalized benchmark can be found in DSAEval
Sun et al.| (2026]).

Evaluating data agents requires broad coverage across domains, data types, and
analytical methodologies. Because different disciplines rely on specialized analytic strate-
gies, expanding benchmarks with domain-specific datasets is essential for assessing the
generality and robustness of systems like LAMBDA. In addition, as Professor David
Donoho noted, competitive platforms such as Chatbot Arena can capture real users’
preferences and feedback. We believe such benchmarks are important for advancing rigor

and reproducibility in the field.

3 Reasoning and Planning

Reasoning can enhance LLM’s ability in downstream tasks by test-time scaling (Muen-+

nighoff et all| 2025). In the current version of LAMBDA, we intentionally prioritize



human-in-the-loop, so the system’s response generation does not explicitly incorporate
these techniques yet. As emphasized by Professor Xihong Lin, Professor Fan Zhou and
Professor Bang Liu in the discussion, reasoning ability could substantially strengthen
LAMBDA'’s capabilities. We are currently exploring approaches to incorporate reasoning

modules into a fully end-to-end operational mode.

3.1 Incorporating a Reasoning Module Directly

An intuitive approach is to elicit explicit reasoning through prompt engineering or to
introduce a dedicated reasoning agent. Recent advanced techniques such as Chain-of-
Thought (CoT) (Wei et al, 2022)), Tree of Thoughts (ToT) (Yao et al., [2023), and Graph
of Thoughts (GoT) (Besta et al., [2024)) can support complex tasks by enabling structured
thinking, reflection, and exploration of multiple solution paths—particularly well-suited
to open-ended data science workflows (Sun et al., |2025b). As Professor Xihong Lin
noted, an analysis-planning agent could further enhance the system by refining research
goals, mapping them to appropriate analytic procedures, and proposing a coherent,
standards-aligned analysis pipeline.

Following this suggestion, we plan to extend the current two-agent system to a multi-
agent framework that includes a planning agent and an analyst agent. The planning agent
will parse the user’s question, assess available data and environmental resources, perform
high-level reasoning, and allocate subtasks to specialized sub-agents. These sub-agents,
such as the analyst, will use the environment’s tools to execute their subtasks step by
step and return feedback to the planning agent, which will iteratively update the plan

until the overall task is completed.
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3.2 Reinforcement Learning for Statistical Reasoning

Reinforcement Learning (RL) has been widely used in reasoning LLM (Xu et al.| 2025).
Professor Fan Zhou and Professor Bang Liu propose framing data analysis as a rein-
forcement learning environment to enhance reasoning capabilities. LAMBDA’s modular
architecture provides a natural foundation for this, where agent actions and environment
states can be clearly defined.

Recent advances, such as DeepAnalyze (Zhang et al., [2025), have demonstrated the
efficacy of Reinforcement Learning in training agentic LLMs for autonomous data science.
Motivated by this, we will adopt a statistics-oriented RL strategy to inject statistical

reasoning into LAMBDA. The proposed framework comprises the following components:

e Process-Oriented Action Space: Standard LLMs often rush into code generation
without adequate planning. To encourage fully automatic statistical analysis, the
agent’s action space must explicitly utilize control tokens to delineate reasoning
steps. Inspired by DeepAnalyze, we introduce specific tokens such as <Analyze>
for planning and self-verification, <Code> for generating executable codes, and
<Execute> for executing the code in the sandbox. This structure enforces the LLM,

ensuring that code generation is preceded by statistical deliberation.

e Hybrid Reward Modeling: In statistical analysis, code that executes without
error is not necessarily statistically sound. Therefore, reliance on binary execution
feedback is insufficient. We advocate for a hybrid reward model that combines
rule-based feedback (checking execution success and formatting) with an “LLM-as-
a-judge” mechanism. This judge evaluates the output based on qualitative metrics
such as soundness, interpretability, and richness. Optimizing against these
metrics incentivizes the agent to prioritize deep analytical insights over superficial

execution.
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The benchmark dataset we are constructing and other high-quality data synthesized
via distillation from advanced proprietary models or adapted from open-source repositories
(e.g., DataScience-Instruct-500K) are critical for the success. By implementing this
RL framework, we aim to transform LAMBDA from a static code generator into an

autonomous researcher capable of adaptive and rigorous statistical reasoning.

4 Expanding Roles for Collaboration

While LAMBDA'’s current dual-agent architecture (Programmer and Inspector) serves
as a robust baseline, several discussants rightly point out that complex, real-world data
science projects require a richer assembly of specialized roles. Professor Xiao-Li Meng,
Professor Fan Zhou, Professor Bang Liu, Dr. Sammi Tang and Dr. Xuewei Wang advocate
for expanding specialized roles such as a Data Engineer for preprocessing, Model Builder
for modeling, Visualizer/Reporter/Result Agent to produce figures and interpret results,
etc. However, we approach this expansion with caution.

Although agent frameworks like AutoGen (Wu et al., 2024) and MetaGPT (Hong et al.,
2023) demonstrate the power of specialized multi-agent systems, recent work, LIMI (Less
Is More for Agency) show that agentic capability does not improve simply by increasing
the amount of supervision data. We believe this hypothesis similarly applies to the
number of agents; mastering agency requires understanding its essence, not scaling the
role of agents Xiao et al. (2025). We contend that data science differs fundamentally from
general software engineering or scientific discovery, where modularity often allows agents
to operate independently. Data analysis is inherently state-dependent and sequential:
each step relies on the exact variable definitions, transformations, and memory state
established previously. For example, a visualization at time ¢ 4+ 1 depends entirely on the

preprocessing choices made at time .
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As noted in recent studies on multi-agent collaboration, domains requiring high context
sharing and tight dependencies are often unsuited for large, fragmented agent teams.
Introducing too many specialized agents (e.g., separating “Data Cleaning” from “Feature
Engineering” into different personas) exacerbates the risk of “Context Confusion”. In such
scenarios, the overhead of serializing state and communicating context between agents
can outweigh the benefits of specialization, leading to hallucinations where a downstream
agent references a variable that an upstream agent modified or deleted.

Therefore, rather than an expansive village of agents, we propose a streamlined Atomic
Team with skilled atomic agents that may be sufficient to handle the majority of data

science workflows while maintaining tight context coherence.

e The Planner: Responsible for the high-level roadmap and reasoning (as discussed

in Section . This agent holds the global view of the user’s scientific intent.

e The Data Scientist: A unified execution role responsible for end-to-end coding.
By keeping coding within a single “expert” persona, we ensure that variable state
and logic remain consistent across steps, avoiding the fragmentation issues of passing

code between a “Data Processor” and a “Modeler.”

e The Inspector: The critical quality control layer that reviews code and outputs
for both syntactic correctness and semantic validity, as emphasized by Dr. Sammi

Tang, Dr. Xuewei Wang and Professor Xiao-Li Meng.

e The Reporter: Dedicated to the final synthesis, organizing files, and translating

technical results into the narrative format required for human consumption.

This multi-agent framework is streamlined, avoids unnecessary agent roles, and facili-

tates clear and well-structured management of context.

13



5 Deepening Human-AI Collaboration

LAMBDA employs a human-in-the-loop mechanism to involve users in the decision-making
process, allowing them to guide or adjust the agent’s actions as needed. Dr. Sammi Tang
and Dr. Xuewei Wang regard this as a valuable feature for enhancing transparency and
control. In addition, Professor Fan Zhou and Professor Bang Liu, Mr. Mert Yuksekgonul,
and Professor James Zou suggest that the current form can be more interactive. They
advocate moving from a supervisor-worker dynamic to a genuine collaborative partnership,
in which the agent actively supports and augments human intelligence rather than simply

executing tasks.

5.1 Active Interaction and Intent Awareness

Current LLMs are optimized to be passive responders rather than active collaborators.
When faced with ambiguity, they often make silent assumptions instead of seeking
clarification. CollabLLM (Wu et al.| |2025) addresses this via reinforcement learning,
shifting the agent from silent guessing to active inquiry. For example, rather than
unilaterally imputing missing data, the agent would ask, “Do you prefer simple mean
imputation or a more robust KNN approach?” This promotes the nuanced, conversational

interactions essential for rigorous analysis.

5.2 Al as “Mindware”

Professor Xiao-Li Meng introduces the concept of “Mindware Agents,” tools designed not
merely to generate outputs but to enhance users’ data intelligence. This aligns with Mr.
Mert Yuksekgonul and Professor James Zou’s view of agents as educational tools that
simulate research workflows. We embrace this perspective and aim to design LAMBDA

to nudge users toward better statistical practice.
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We plan to implement Professor Xiao-Li Meng’s proposed “Data Minder” as a dedicated
Quality Control Agent that uses “Reverse Prompting.” Rather than waiting for user input,
it proactively presents a checklist of data-quality questions, for example, “What is the
provenance of this dataset?” and “Are there potential selection biases in the collection
process?” By embedding these nudges into the workflow, data quality assessment becomes

a routine, integral part of the analysis.

6 Engineering Considerations: Building Robust In-

frastructure

While the conceptual design of agents is critical, Professor David Donoho points out issues
in the system, such as off-target reports. In addition, Dr. Sammi Tang and Dr. Xuewei
Wang noted that the transition from an academic prototype to a production-ready system

requires rigorous engineering optimization.

6.1 Problem of Irrelevant Report

The observation that LAMBDA produced an irrelevant report for the Electricity Cost Pre-
diction datasetﬂ is informative. Professor David Donoho suggested that this may reflect an
out-of-distribution (OOD) issue, since the dataset was released after the knowledge cutoff
dates of the GPT-4/GPT-5 series. In our implementation, however, model outputs are
driven primarily by the chat history, so we cannot rule out limitations in model capability,
including possible OOD effects. In particular, we hypothesize that the irrelevance may
also stem from deficiencies in context construction (for example, retrieval and prompt
assembly).

To investigate this, we compared two approaches for structuring the reporting module’s

thttps:/ /www.kaggle.com/datasets/shalmamuji/electricity-cost-prediction-dataset
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Original Context New Context

System System
You need to write an You need to write an
academic data analysis academic data analysis
report in Markdown...... report in Markdown......
Here is an example: Here is an example:
{Example} (1-shot) {Example} (1-shot)
User User
Generation instruction [Chat history]
[Chat history] Generation instruction

Figure 3: Re-organizing context for report generation.

Table 2: Results of report generation under different context configurations and models.

Model Original Context New Context
Gptdo-mini  Sometimes irrelevant Correct
Gpt4.1-mini  Correct Correct
Gpth-mini Correct Correct

context: placing the generation instructions above the chat history (the original setting)
and placing the instructions below the chat history (the new setting), as illustrated in
Figure [3] We tested multiple models on this dataset under both configurations. The
results are summarized in Table 2|

The results indicate that the new context configuration improves the robustness of
report generation. Placing the generation instruction at the end of the dialogue context
appears to be a more effective strategy. However, factors such as the model’s underlying
knowledge, its instruction-following ability, and the overall length of the dialogue may also
influence performance to a lesser extent. Since LAMBDA is designed to be compatible
with most LLMs, using the latest and most capable models remains an effective way to

mitigate such issues.

6.2 Scaling Environment Supporting

At present, the core of LAMBDA is implemented using the Jupyter Python kernel. Dr.

Sammi Tang and Dr. Xuewei Wang noted that restricting LAMBDA to a Python-only
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environment limits its adoption within the broader statistical community, where R remains
a dominant language. We acknowledge this limitation and share this concern. We are
actively working on expanding the supported programming languages and software within
the environment. In future versions, we will integrate a formal sandbox, which will enable
LAMBDA to execute shell commands as well as Python, R, Julia, SQL, and perform
file-retrieval actions.

Moreover, the hybrid programming workflow suggested by Dr. Sammi Tang and Dr.
Xuewei Wang can also be naturally supported by this sandbox framework. For example,
an agent could perform data preprocessing in Python and conduct statistical modeling in
R (using specialized packages such as lme4) within the same session. Such capabilities

would significantly enhance the flexibility and applicability of LAMBDA.

6.3 Academic Research and Industry Competition

We appreciate Professor David Donoho’s perceptive analysis of the current commercial
landscape. He rightly notes that the market for data-agent products is becoming highly
competitive and is attracting venture capital. Indeed, venture-backed rhetoric often
promises “frictionless” autonomy beyond present capabilities, intensifying competition. In
this context, Professor Donoho’s assistant, Dr. Elena Belogolovsky, compared LAMBDA
with several commercial products on the analysis of Electricity Cost Prediction dataset
and found that the Colab Data Science Agent performed best on this particular dataset
and task, with LAMBDA ranking second.

Regarding the performance gap between LAMBDA and Google Colab on the Electricity
Cost Prediction dataset, the underlying models are a key factor. Our evaluation used
GPT-40-mini as LAMBDA’s base model, while the Colab Data Science Agent relied on

the substantially more powerful Gemini 2.5 Pro. For example, GPT-40-mini scores 40.2
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on GPQA Benchmark [Rein et al. (2024)@, whereas Gemini 2.5 Pro achieves 84 on the
diamond seﬂﬂ This foundational capability gap likely explains much of the difference in
analytical performance. Moreover, we have verified that LAMBDA completes the task
successfully when equipped with comparably powerful models.

We acknowledge that academic resources are far more limited than those of venture-
capital-backed startups building data-analysis agents, and that academia faces structural
hurdles in matching industry-grade engineering and infrastructure. Even so, academic
research has distinct strengths: it can originate novel ideas, serve the public interest,
and set rigorous, transparent evaluation standards that shape the field. Moving forward,
we will release open benchmarks and process-based evaluation suites for data agents;
conduct user studies on collaboration and learning outcomes in data science education;
and propose standards for data-quality audits and reproducible reporting. Our aim is to
complement industry’s scale with academic rigor, transparency, and public goods that

benefit the entire ecosystem.

7 Future Directions and Open Challenges

While the current iteration of LAMBDA provides a strong foundation, the discussants
have identified several important issues that remain to be addressed. In addition to the
directions outlined above in response to their comments, we will address the following
issues in future work.

Professor Fan Zhou and Professor Bang Liu point out that LAMBDA currently treats
each task in isolation, failing to carry over knowledge from previous successes or failures.

To address this, designing Self-Evolving Agents is a way. Future work could incorporate

Zhttps://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
3https://blog.google/technology /google-deepmind /gemini-model-thinking-updates-march-
2025 /#enhanced-reasoning

18



a long-term memory module. This would allow the agent to curate a personal library

Y

of “successful code skills” and “debugged error patterns,” enabling compound growth in
capability and preventing the repetition of past mistakes across different sessions.

We acknowledge that agents with “Computer Use” capabilities pose significant risks,
such as accidentally deleting critical user files. However, data agents like LAMBDA
operate under a different risk profile. They generally do not require, nor should they be
granted, direct control over the host operating system. A virtualized sandbox environment
restricted to code execution is sufficient to meet analytical needs while isolating the system
from destructive actions.

Furthermore, privacy remains a critical bottleneck for commercial or API-based agents.
These systems often require data uploads or allow the LLM to inspect raw data contents
(e.g., executing data.head()) (Sun et al., |2025b)), creating inherent leakage risks. A trade-
off solution is to deploy open-source LLMs locally, but this requires powerful hardware

and incurs higher electricity costs. Thus, developing API-based solutions with privacy

preservation remains an important research direction.

8 Conclusion

In summary, the discussants highlighted LAMBDA’s promise for automating data science
and statistical analysis and offered many insightful suggestions. We have begun integrating
their feedback to strengthen domain-knowledge integration, sharpen statistical and ana-
lytical reasoning, develop more reliable benchmarks, deepen human—AT collaboration, and
enhance the robustness of our engineering infrastructure. We have conducted preliminary
studies, addressed several issues in the current system, and will continue to incorporate
these recommendations. We are optimistic that data analysis agents such as LAMBDA will

help democratize statistics and data science, enabling broader participation in data-driven
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inquiry. We sincerely thank the editor, Professor Hongtu Zhu, for convening the discussion
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