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We thank the editor, Professor Hongtu Zhu, for organizing the discussion and the distin-

guished discussants for their insightful comments and stimulating questionson our work,

“LAMBDA: Large Model Based Data Agent” (Sun et al., 2025a). In this rejoinder, we

synthesize the main themes raised, clarify key design choices, and outline concrete plans

to address the comments and suggestions. Specifically, we consider domain-knowledge

integration, benchmark for data agents, reasoning and planning, collaborating agents,

human–AI collaboration and supporting infrastructure. Where applicable, we report

preliminary progress and highlight open challenges that will shape our ongoing research

agenda.

1 Strengthening Domain Knowledge Integration

Knowledge integration is a core component of LAMBDA and a key driver of its capabilities.

We have demonstrated its empirical effectiveness through examples. Following suggestions

from Dr. Sammi Tang, Dr. Xuewei Wang, Professor Fan Zhou, and Professor Bang Liu,

we plan several enhancements. First, we will refine the integration pipeline, including

∗Corresponding authors.
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the choice of embedding model, the similarity metric, and the thresholding strategy, as

these directly affect retrieval accuracy and downstream analysis. Second, we will address

a current limitation: retrieval relies solely on user-provided natural language instructions

and is not conditioned on the dataset itself. Third, we will develop a dynamic, continuously

updated knowledge base to further improve LAMBDA’s performance over time.

1.1 Retrieval Improvement via Contrastive Fine-Tuning

Inspired by contrastive learning and dual-encoder (two-tower) architectures, we explore

two methods to improve the embedding model’s retrieval accuracy: symmetric fine-

tuning, which fine-tunes the encoder to process both queries and knowledge entries, and

asymmetric alignment, which aligns the embedding model’s representation space with that

of a downstream task-oriented large language model (LLM).

Problem Formulation. Let Q = {q1, . . . , qN} be a set of queries and D = {d1, . . . , dN}

be the corresponding ground-truth relevant document. {(qi, di)}Ni=1 denotes a collection of

positive knowledge pairs, and all other irrelevant combinations are considered negative

pairs. We aim to learn a shared latent semantic space where positive knowledge pairs are

closer than negative ones. The semantic similarity between a query qi and a knowledge

entry di is quantified by the cosine similarity score of their embeddings eqi , edi ∈ Rm:

s(qi, di) =
e⊤qiedi

∥eqi∥∥edi∥
. To optimize the parameters, we minimize the InfoNCE (Information

Noise Contrastive Estimation) loss with in-batch negatives. For a batch of size B, the

objective is defined as: L = − 1
B

∑B
i=1 log

exp(s(qi,di)/τ)∑B
j=1 exp(s(qi,dj)/τ)

, where τ is a temperature

hyperparameter. We utilize symmetric fine-tuning and asymmetric alignment to generate

these embeddings.
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Method 1: Symmetric Encoder Fine-Tuning. In this approach, we utilize a single

encoder model fθ(·) (e.g., all-MiniLM-L6-v2), parameterized by θ, to generate dense

vector representations for both input types. The embeddings are computed as: eqi = fθ(qi)

and edi = fθ(di). This method fine-tunes the shared parameters θ to directly minimize L,

pulling positive pairs closer while pushing away in-batch negatives.

Method 2: Asymmetric Alignment. In the second approach, we employ an asym-

metric architecture to transfer the reasoning capabilities of an LLM into the retrieval task.

We utilize two distinct encoders: a fixed query encoder gϕ(·) (using Qwen3-4B-Instruct)

and a trainable knowledge encoder hψ(·) (using all-MiniLM-L6-v2). To address the

dimension mismatch between the LLM output (k) and the embedding model (m), we

introduce a learnable linear projection matrix W ∈ Rm×k. The embeddings are computed

as: eqi = Wgϕ(qi) and edi = hψ(di). Here, gϕ(qi) represents the aggregated hidden state

from the LLM. During training, we freeze ϕ and update only the projection matrix W

and the encoder parameters ψ to minimize L.

Experimental Results. After training for 100 epochs, during which the model loss

had already stabilized, we evaluated the models on the test set using the Hit Rate metric.

The Hit Rate (HR) at rank k is defined as: HitRate@k = 1
N

∑N
i=1 1{rank(yi) ≤ k}, where

N is the number of queries, yi denotes the ground-truth knowledge for query i, and 1(·)

is the indicator function. The performance of the original all-MiniLM-L6-v2 model is

used as the baseline. The experimental results are summarized in Table 1.

We observe that the fine-tuned all-MiniLM-L6-v2 model achieves a substantial im-

provement over the baseline, especially on HR@1, with a gain of 3.72%. Moreover, the

model aligned with Qwen3-4B-Instruct demonstrates greater improvements after fine-

tuning: a 26.2% gain over the baseline and a 23% improvement compared with directly
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Table 1: Hit rate of different approaches. Here, all-MiniLM-L6-v2 denotes the embedding
model from the original paper, FT all-MiniLM-L6-v2 is the symmetrically fine-tuned
version, and Qwen3-4B Alignment represents the asymmetric fine-tuning approach.

Hit Rate @ K all-MiniLM-L6-v2 FT all-MiniLM-L6-v2 Qwen3-4B Alignment
HR@1 45.28% 49.00% 72.00%
HR@2 57.13% 58.50% 81.50%
HR@3 61.45% 63.50% 83.00%
HR@4 65.66% 65.00% 84.00%
HR@5 67.77% 67.50% 84.50%
HR@6 69.58% 68.50% 86.00%
HR@7 70.98% 70.00% 87.00%
HR@8 71.49% 72.00% 87.50%
HR@9 72.49% 73.00% 88.50%
HR@10 73.09% 73.50% 89.50%

fine-tuning the embedding model alone.

It is worth noting that in our contrastive learning setup, only the top-1 knowledge

entry is treated as a positive sample, while all others are negatives. This encourages the

model to focus primarily on rank-1 relevance, resulting in a larger gain for HR@1 and

comparatively smaller improvements for higher ranks.

Overall, these experiments show that continued fine-tuning on a knowledge base

can effectively enhance retrieval accuracy in future applications. In the future, we may

further enhance retrieval accuracy and strengthen human involvement by proactively

recommending the top-K candidate knowledge items after retrieval, allowing users to

select the most appropriate ones.

1.2 Alternative Similarity Metrics

Recent work suggests that cosine similarity is not universally optimal for assessing

alignment quality, particularly when embedding magnitudes carry semantic information

or when training-time normalization introduces artifacts (Steck et al., 2024). To examine

this empirically, we evaluate our retrieval system under multiple similarity measures on

the datasets used above. We consider vector-space metrics (cosine similarity, Euclidean

distance) and set-based lexical metrics (Jaccard similarity, overlap coefficient). For the set-
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based metrics, we compute scores at both the word level and over character-level 3-grams.

Consistent with our prior experiments, we use all-MiniLM-L6-v2 as the embedding model

for vector-space metrics.

A brief definition of the core set-based metrics for two sets SA and SB (derived from

query and knowledge text) is provided below:

Jaccard Similarity measures the intersection over union of two sets, that is, J(SA, SB) =

|SA∩SB |
|SA∪SB | . Overlap Coefficient measures the size of the intersection relative to the size of

the smaller set, effectively handling length imbalance: Overlap(SA, SB) =
|SA∩SB |

min(|SA|,|SB |) .

We employ Hit Rate (HR@K) and Mean Reciprocal Rank (MRR@10) to evaluate

retrieval accuracy. The comparative results are illustrated in Figure 2. As shown in

Figure 2, the two vector-based metrics yield comparable performance and substantially

outperform lexical matching. All two vector metrics (ℓ2, and Cosine) achieve a Hit

Rate@10 exceeding 70%, whereas the best lexical metric (Jaccard on character 3-grams)

reaches only roughly 51%, with word-level metrics failing to surpass 20%. This confirms

that the semantic gap between user instructions and code descriptions requires dense

representation rather than keyword overlap.
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Figure 1: Hit Rate and MRR@10 across different similarity metrics. Vector-based methods
(left group) significantly outperform lexical methods (right group).
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As pointed out by the MRR experiment, the results mirror the Hit Rate findings;

the vector-based metrics perform similarly and consistently outperform lexical matching.

ℓ2 Euclidean distance achieves the highest retrieval performance with an MRR@10 of

56.39%, followed closely by Cosine Similarity (55.91%). The marginal performance gap

(< 0.5%) indicates that for the all-MiniLM-L6-v2 model, the retrieval quality is stable

across these standard vector metrics. Consequently, while switching to ℓ2 distance may

offer a slight improvement, the primary driver of performance remains the quality of the

embedding space itself rather than the specific distance function employed.

1.3 Threshold, Mode and Quality Control

Dr. Sammi Tang and Dr. Xuewei Wang also mentioned that relying on a fixed threshold

(default θ = 0.2) is a heuristic that may not generalize across all domain-specific tasks. We

agree that a fixed threshold risks either retrieving irrelevant code snippets (introducing

noise) or missing critical context when the semantic overlap is subtle. To address this, the

future versions of LAMBDA will move toward adaptive retrieval mechanisms. Recent

advancements in Retrieval-Augmented Generation (RAG) suggest that models can be

trained or prompted to dynamically assess the necessity and quality of retrieval (Jiang

et al., 2023). Instead of a static hard cutoff, we plan to implement a confidence-based

retrieval system, where the agent evaluates the uncertainty of its internal knowledge

before querying the knowledge base, effectively creating a dynamic threshold tailored

to the complexity of the user’s instruction. Furthermore, we aim to explore calibration

techniques to normalize similarity scores across different embedding models, ensuring that

θ represents a consistent semantic distance regardless of the underlying encoder.

In addition, user-supplied code descriptions vary significantly in clarity and quality. To

involve quality control mechanisms in the knowledge base, we will introduce an automated
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Quality Controls Agent. This agent would utilize an LLM to standardize and rewrite

user-contributed knowledge entries before they are indexed.

Finally, regarding the difference between the Full and Core integration modes, we

agree that the relationship between task complexity and integration level deserves closer

examination. The Full mode provides more complete support but also leads to higher

latency and greater token usage. We are considering a new architecture that includes a

Routing Agent for the future version of LAMBDA. This agent would analyze the user’s

intent and decide how much knowledge integration is needed. It could choose the Core

mode for routine dataframe operations and switch to the Full mode for more complex,

domain-specific modeling tasks. Such dynamic selection would help balance computational

efficiency and analytical capability.

1.4 Data-Awareness Retrieval

In agent systems, generation-focused RAG typically relies solely on semantic similarity

between user queries and code descriptions. In the data science contexts, this creates a

blind spot: the system overlooks the dataset’s intrinsic statistical properties. As a result,

purely text-based retrieval may surface solutions that are semantically relevant (e.g.,

“perform regression”) but statistically inappropriate for the specific data (e.g., ignoring

high dimensionality, sparsity, or heteroscedasticity).

Motivated by the insights from Professor Fan Zhou and Professor Bang Liu, we

propose a Data-Aware Retrieval framework that synthesizes user intent with statistical

characteristics of the dataset. Rather than treating the dataset as a passive input, we

make it an active component in the retrieval process. Specifically, retrieval is conditioned

on a Data Profile—a vector that encodes key meta-features of the dataset, such as

dimensionality, skewness, sparsity, and correlation structure.
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In this framework, retrieval operates jointly on both the data context and the semantic

context. The final retrieval score is computed as a weighted sum: Score = α · Sdata + β ·

Ssemantic, where Sdata measures the similarity between the target dataset’s profile and the

metadata associated with candidate code snippets, and Ssemantic measures the alignment

with user instructions. By fine-tuning the weights (α, β) and the underlying embeddings,

the system retrieves knowledge that is not only semantically appropriate but also data-

consistent, potentially addressing key limitations of traditional RAG in empirical data

analysis.

2 Benchmark for Data Agents

Data science problems are inherently open-ended, making it difficult to define a single

ground-truth solution and, in turn, to build reliable evaluation benchmarks. Professor

David Donoho emphasized that academia must move beyond tool-building to establish

standards for scientific rigor, reproducibility, and evaluation. Dr. Sammi Tang and Dr.

Xuewei Wang similarly underscored the need for benchmarks to guide more rigorous

and principled progress. Recent efforts have introduced benchmarks for data agents, but

limitations remain: some include only a small set of tasks (Huang et al., 2024), while

others span a narrow set of domains (Hu et al., 2024), constraining applicability and

generality.

To this end, we have recently tried to build a reliable, comprehensive benchmark for

data agents. Our preliminary efforts involve constructing the benchmark data derived

from a corpus of statistical learning textbooks and supplemented by highly-voted, complex

datasets from platforms such as Kaggle. Based on these resources, we are constructing

the most comprehensive benchmark for data agents, designed to systematically test

agents across diverse data modalities, domains, analytical pipelines, and programming
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Figure 2: Overview of the benchmark instances.

languages. Each benchmark item includes structured metadata, such as data type, domain,

task formulation, reasoning steps, and expected answer or metrics to support rigorous

and reproducible assessment. Currently, we have collected more than 2,000 datasets

encompassing over 10,000 tasks across diverse domains. Figure 2 shows an overview of

the benchmark instances we have curated to date, including their distribution across data

modalities, and problem domains. The finalized benchmark can be found in DSAEval

Sun et al. (2026).

Evaluating data agents requires broad coverage across domains, data types, and

analytical methodologies. Because different disciplines rely on specialized analytic strate-

gies, expanding benchmarks with domain-specific datasets is essential for assessing the

generality and robustness of systems like LAMBDA. In addition, as Professor David

Donoho noted, competitive platforms such as Chatbot Arena can capture real users’

preferences and feedback. We believe such benchmarks are important for advancing rigor

and reproducibility in the field.

3 Reasoning and Planning

Reasoning can enhance LLM’s ability in downstream tasks by test-time scaling (Muen-

nighoff et al., 2025). In the current version of LAMBDA, we intentionally prioritize
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human-in-the-loop, so the system’s response generation does not explicitly incorporate

these techniques yet. As emphasized by Professor Xihong Lin, Professor Fan Zhou and

Professor Bang Liu in the discussion, reasoning ability could substantially strengthen

LAMBDA’s capabilities. We are currently exploring approaches to incorporate reasoning

modules into a fully end-to-end operational mode.

3.1 Incorporating a Reasoning Module Directly

An intuitive approach is to elicit explicit reasoning through prompt engineering or to

introduce a dedicated reasoning agent. Recent advanced techniques such as Chain-of-

Thought (CoT) (Wei et al., 2022), Tree of Thoughts (ToT) (Yao et al., 2023), and Graph

of Thoughts (GoT) (Besta et al., 2024) can support complex tasks by enabling structured

thinking, reflection, and exploration of multiple solution paths—particularly well-suited

to open-ended data science workflows (Sun et al., 2025b). As Professor Xihong Lin

noted, an analysis-planning agent could further enhance the system by refining research

goals, mapping them to appropriate analytic procedures, and proposing a coherent,

standards-aligned analysis pipeline.

Following this suggestion, we plan to extend the current two-agent system to a multi-

agent framework that includes a planning agent and an analyst agent. The planning agent

will parse the user’s question, assess available data and environmental resources, perform

high-level reasoning, and allocate subtasks to specialized sub-agents. These sub-agents,

such as the analyst, will use the environment’s tools to execute their subtasks step by

step and return feedback to the planning agent, which will iteratively update the plan

until the overall task is completed.
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3.2 Reinforcement Learning for Statistical Reasoning

Reinforcement Learning (RL) has been widely used in reasoning LLM (Xu et al., 2025).

Professor Fan Zhou and Professor Bang Liu propose framing data analysis as a rein-

forcement learning environment to enhance reasoning capabilities. LAMBDA’s modular

architecture provides a natural foundation for this, where agent actions and environment

states can be clearly defined.

Recent advances, such as DeepAnalyze (Zhang et al., 2025), have demonstrated the

efficacy of Reinforcement Learning in training agentic LLMs for autonomous data science.

Motivated by this, we will adopt a statistics-oriented RL strategy to inject statistical

reasoning into LAMBDA. The proposed framework comprises the following components:

• Process-Oriented Action Space: Standard LLMs often rush into code generation

without adequate planning. To encourage fully automatic statistical analysis, the

agent’s action space must explicitly utilize control tokens to delineate reasoning

steps. Inspired by DeepAnalyze, we introduce specific tokens such as <Analyze>

for planning and self-verification, <Code> for generating executable codes, and

<Execute> for executing the code in the sandbox. This structure enforces the LLM,

ensuring that code generation is preceded by statistical deliberation.

• Hybrid Reward Modeling: In statistical analysis, code that executes without

error is not necessarily statistically sound. Therefore, reliance on binary execution

feedback is insufficient. We advocate for a hybrid reward model that combines

rule-based feedback (checking execution success and formatting) with an “LLM-as-

a-judge” mechanism. This judge evaluates the output based on qualitative metrics

such as soundness, interpretability, and richness. Optimizing against these

metrics incentivizes the agent to prioritize deep analytical insights over superficial

execution.
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The benchmark dataset we are constructing and other high-quality data synthesized

via distillation from advanced proprietary models or adapted from open-source repositories

(e.g., DataScience-Instruct-500K) are critical for the success. By implementing this

RL framework, we aim to transform LAMBDA from a static code generator into an

autonomous researcher capable of adaptive and rigorous statistical reasoning.

4 Expanding Roles for Collaboration

While LAMBDA’s current dual-agent architecture (Programmer and Inspector) serves

as a robust baseline, several discussants rightly point out that complex, real-world data

science projects require a richer assembly of specialized roles. Professor Xiao-Li Meng,

Professor Fan Zhou, Professor Bang Liu, Dr. Sammi Tang and Dr. Xuewei Wang advocate

for expanding specialized roles such as a Data Engineer for preprocessing, Model Builder

for modeling, Visualizer/Reporter/Result Agent to produce figures and interpret results,

etc. However, we approach this expansion with caution.

Although agent frameworks like AutoGen (Wu et al., 2024) and MetaGPT (Hong et al.,

2023) demonstrate the power of specialized multi-agent systems, recent work, LIMI (Less

Is More for Agency) show that agentic capability does not improve simply by increasing

the amount of supervision data. We believe this hypothesis similarly applies to the

number of agents; mastering agency requires understanding its essence, not scaling the

role of agents Xiao et al. (2025). We contend that data science differs fundamentally from

general software engineering or scientific discovery, where modularity often allows agents

to operate independently. Data analysis is inherently state-dependent and sequential:

each step relies on the exact variable definitions, transformations, and memory state

established previously. For example, a visualization at time t+ 1 depends entirely on the

preprocessing choices made at time t.
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As noted in recent studies on multi-agent collaboration, domains requiring high context

sharing and tight dependencies are often unsuited for large, fragmented agent teams.

Introducing too many specialized agents (e.g., separating “Data Cleaning” from “Feature

Engineering” into different personas) exacerbates the risk of “Context Confusion”. In such

scenarios, the overhead of serializing state and communicating context between agents

can outweigh the benefits of specialization, leading to hallucinations where a downstream

agent references a variable that an upstream agent modified or deleted.

Therefore, rather than an expansive village of agents, we propose a streamlined Atomic

Team with skilled atomic agents that may be sufficient to handle the majority of data

science workflows while maintaining tight context coherence.

• The Planner: Responsible for the high-level roadmap and reasoning (as discussed

in Section 3.1). This agent holds the global view of the user’s scientific intent.

• The Data Scientist: A unified execution role responsible for end-to-end coding.

By keeping coding within a single “expert” persona, we ensure that variable state

and logic remain consistent across steps, avoiding the fragmentation issues of passing

code between a “Data Processor” and a “Modeler.”

• The Inspector: The critical quality control layer that reviews code and outputs

for both syntactic correctness and semantic validity, as emphasized by Dr. Sammi

Tang, Dr. Xuewei Wang and Professor Xiao-Li Meng.

• The Reporter: Dedicated to the final synthesis, organizing files, and translating

technical results into the narrative format required for human consumption.

This multi-agent framework is streamlined, avoids unnecessary agent roles, and facili-

tates clear and well-structured management of context.
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5 Deepening Human-AI Collaboration

LAMBDA employs a human-in-the-loop mechanism to involve users in the decision-making

process, allowing them to guide or adjust the agent’s actions as needed. Dr. Sammi Tang

and Dr. Xuewei Wang regard this as a valuable feature for enhancing transparency and

control. In addition, Professor Fan Zhou and Professor Bang Liu, Mr. Mert Yuksekgonul,

and Professor James Zou suggest that the current form can be more interactive. They

advocate moving from a supervisor-worker dynamic to a genuine collaborative partnership,

in which the agent actively supports and augments human intelligence rather than simply

executing tasks.

5.1 Active Interaction and Intent Awareness

Current LLMs are optimized to be passive responders rather than active collaborators.

When faced with ambiguity, they often make silent assumptions instead of seeking

clarification. CollabLLM (Wu et al., 2025) addresses this via reinforcement learning,

shifting the agent from silent guessing to active inquiry. For example, rather than

unilaterally imputing missing data, the agent would ask, “Do you prefer simple mean

imputation or a more robust KNN approach?” This promotes the nuanced, conversational

interactions essential for rigorous analysis.

5.2 AI as “Mindware”

Professor Xiao-Li Meng introduces the concept of “Mindware Agents,” tools designed not

merely to generate outputs but to enhance users’ data intelligence. This aligns with Mr.

Mert Yuksekgonul and Professor James Zou’s view of agents as educational tools that

simulate research workflows. We embrace this perspective and aim to design LAMBDA

to nudge users toward better statistical practice.
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We plan to implement Professor Xiao-Li Meng’s proposed “Data Minder” as a dedicated

Quality Control Agent that uses “Reverse Prompting.” Rather than waiting for user input,

it proactively presents a checklist of data-quality questions, for example, “What is the

provenance of this dataset?” and “Are there potential selection biases in the collection

process?” By embedding these nudges into the workflow, data quality assessment becomes

a routine, integral part of the analysis.

6 Engineering Considerations: Building Robust In-

frastructure

While the conceptual design of agents is critical, Professor David Donoho points out issues

in the system, such as off-target reports. In addition, Dr. Sammi Tang and Dr. Xuewei

Wang noted that the transition from an academic prototype to a production-ready system

requires rigorous engineering optimization.

6.1 Problem of Irrelevant Report

The observation that LAMBDA produced an irrelevant report for the Electricity Cost Pre-

diction dataset1 is informative. Professor David Donoho suggested that this may reflect an

out-of-distribution (OOD) issue, since the dataset was released after the knowledge cutoff

dates of the GPT-4/GPT-5 series. In our implementation, however, model outputs are

driven primarily by the chat history, so we cannot rule out limitations in model capability,

including possible OOD effects. In particular, we hypothesize that the irrelevance may

also stem from deficiencies in context construction (for example, retrieval and prompt

assembly).

To investigate this, we compared two approaches for structuring the reporting module’s

1https://www.kaggle.com/datasets/shalmamuji/electricity-cost-prediction-dataset
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Figure 3: Re-organizing context for report generation.

Table 2: Results of report generation under different context configurations and models.

Model Original Context New Context
Gpt4o-mini Sometimes irrelevant Correct
Gpt4.1-mini Correct Correct
Gpt5-mini Correct Correct

context: placing the generation instructions above the chat history (the original setting)

and placing the instructions below the chat history (the new setting), as illustrated in

Figure 3. We tested multiple models on this dataset under both configurations. The

results are summarized in Table 2.

The results indicate that the new context configuration improves the robustness of

report generation. Placing the generation instruction at the end of the dialogue context

appears to be a more effective strategy. However, factors such as the model’s underlying

knowledge, its instruction-following ability, and the overall length of the dialogue may also

influence performance to a lesser extent. Since LAMBDA is designed to be compatible

with most LLMs, using the latest and most capable models remains an effective way to

mitigate such issues.

6.2 Scaling Environment Supporting

At present, the core of LAMBDA is implemented using the Jupyter Python kernel. Dr.

Sammi Tang and Dr. Xuewei Wang noted that restricting LAMBDA to a Python-only
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environment limits its adoption within the broader statistical community, where R remains

a dominant language. We acknowledge this limitation and share this concern. We are

actively working on expanding the supported programming languages and software within

the environment. In future versions, we will integrate a formal sandbox, which will enable

LAMBDA to execute shell commands as well as Python, R, Julia, SQL, and perform

file-retrieval actions.

Moreover, the hybrid programming workflow suggested by Dr. Sammi Tang and Dr.

Xuewei Wang can also be naturally supported by this sandbox framework. For example,

an agent could perform data preprocessing in Python and conduct statistical modeling in

R (using specialized packages such as lme4) within the same session. Such capabilities

would significantly enhance the flexibility and applicability of LAMBDA.

6.3 Academic Research and Industry Competition

We appreciate Professor David Donoho’s perceptive analysis of the current commercial

landscape. He rightly notes that the market for data-agent products is becoming highly

competitive and is attracting venture capital. Indeed, venture-backed rhetoric often

promises “frictionless” autonomy beyond present capabilities, intensifying competition. In

this context, Professor Donoho’s assistant, Dr. Elena Belogolovsky, compared LAMBDA

with several commercial products on the analysis of Electricity Cost Prediction dataset

and found that the Colab Data Science Agent performed best on this particular dataset

and task, with LAMBDA ranking second.

Regarding the performance gap between LAMBDA and Google Colab on the Electricity

Cost Prediction dataset, the underlying models are a key factor. Our evaluation used

GPT-4o-mini as LAMBDA’s base model, while the Colab Data Science Agent relied on

the substantially more powerful Gemini 2.5 Pro. For example, GPT-4o-mini scores 40.2

17



on GPQA Benchmark Rein et al. (2024)2, whereas Gemini 2.5 Pro achieves 84 on the

diamond set3. This foundational capability gap likely explains much of the difference in

analytical performance. Moreover, we have verified that LAMBDA completes the task

successfully when equipped with comparably powerful models.

We acknowledge that academic resources are far more limited than those of venture-

capital–backed startups building data-analysis agents, and that academia faces structural

hurdles in matching industry-grade engineering and infrastructure. Even so, academic

research has distinct strengths: it can originate novel ideas, serve the public interest,

and set rigorous, transparent evaluation standards that shape the field. Moving forward,

we will release open benchmarks and process-based evaluation suites for data agents;

conduct user studies on collaboration and learning outcomes in data science education;

and propose standards for data-quality audits and reproducible reporting. Our aim is to

complement industry’s scale with academic rigor, transparency, and public goods that

benefit the entire ecosystem.

7 Future Directions and Open Challenges

While the current iteration of LAMBDA provides a strong foundation, the discussants

have identified several important issues that remain to be addressed. In addition to the

directions outlined above in response to their comments, we will address the following

issues in future work.

Professor Fan Zhou and Professor Bang Liu point out that LAMBDA currently treats

each task in isolation, failing to carry over knowledge from previous successes or failures.

To address this, designing Self-Evolving Agents is a way. Future work could incorporate

2https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
3https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-

2025/#enhanced-reasoning
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a long-term memory module. This would allow the agent to curate a personal library

of “successful code skills” and “debugged error patterns,” enabling compound growth in

capability and preventing the repetition of past mistakes across different sessions.

We acknowledge that agents with “Computer Use” capabilities pose significant risks,

such as accidentally deleting critical user files. However, data agents like LAMBDA

operate under a different risk profile. They generally do not require, nor should they be

granted, direct control over the host operating system. A virtualized sandbox environment

restricted to code execution is sufficient to meet analytical needs while isolating the system

from destructive actions.

Furthermore, privacy remains a critical bottleneck for commercial or API-based agents.

These systems often require data uploads or allow the LLM to inspect raw data contents

(e.g., executing data.head()) (Sun et al., 2025b), creating inherent leakage risks. A trade-

off solution is to deploy open-source LLMs locally, but this requires powerful hardware

and incurs higher electricity costs. Thus, developing API-based solutions with privacy

preservation remains an important research direction.

8 Conclusion

In summary, the discussants highlighted LAMBDA’s promise for automating data science

and statistical analysis and offered many insightful suggestions. We have begun integrating

their feedback to strengthen domain-knowledge integration, sharpen statistical and ana-

lytical reasoning, develop more reliable benchmarks, deepen human–AI collaboration, and

enhance the robustness of our engineering infrastructure. We have conducted preliminary

studies, addressed several issues in the current system, and will continue to incorporate

these recommendations. We are optimistic that data analysis agents such as LAMBDA will

help democratize statistics and data science, enabling broader participation in data-driven
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inquiry. We sincerely thank the editor, Professor Hongtu Zhu, for convening the discussion

and all the distinguished discussants for their constructive feedback.

Data Availability Statement

the author(s) of the manuscript have legitimate access to and permission to use the

data used in this rejoinder, which are publicly available at https://www.kaggle.com/

datasets/shalmamuji/electricity-cost-prediction-dataset, https://openai.com/

index/gpt-4o-mini-advancing-cost-efficient-intelligence, and https://blog.

google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/

#enhanced-reasoning. The source code of LAMBDA is available at the GitHub deposit

https://github.com/AMA-CMFAI/LAMBDA.
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