

系

應用數學

PolyU-PDE Seminar

Prof. Cheng WANG

University of Massachusetts Dartmouth

Topic

A refined convergence analysis for a fourth order finite difference numerical scheme to the Cahn-Hilliard equation

Date | Time

11th December 2023 (Monday) | 11am – 12noon (HK Time)

Link:

https://polyu.zoom.us/j/92119294780?pwd=L045VVhKaUFLK2c3ZFM4OE1hWTBLdz09

Meeting ID | Passcode

921 1929 4780 | 1211

Abstract

An energy stable numerical scheme for the Cahn-Hilliard equation is analyzed in detail, with second order accuracy in time and the fourth order long-stencil finite difference approximation in space. A modified backward differentiation formula (BSF) temporal discretization is applied, and a Douglas-Dupont artificial regularization is included to ensure the energy stability. In fact, a standard application of discrete Gronwall inequality leads to a convergence constant dependent on the interface width parameter in an exponential singular form. We aim to obtain an improved estimate, with such a singular dependence only in a polynomial order. A uniform in time functional bounds of the numerical solution, including the higher order Sobolev norms, as well as the associated bounds for the first and second order temporal difference stencil, have to be carefully established. Certain recursive analysis has to be applied in the analysis for the BDF-style temporal stencil. As a result, we are able to apply a spectrum estimate for the linearized Cahn-Hilliard operator, and this technique leads to the refined error estimate.

