# Online Appendix for "Timescale Betas and the Cross Section of Equity Returns: Framework, Application, and Implications for Interpreting the Fama–French Factors"

This Online Appendix consists of two sections. Section 1 contains details on the bootstrap methods used in the study. Section 2 provides figures and tables referenced in the main paper, but omitted for brevity.

### 1 Details of the Bootstrap Procedure

Our bootstrap procedure is based on the stationary bootstrap of Politis and Romano (1994). The stationary bootstrap is a block bootstrap with block lengths distributed as a geometric random variable. To determine the optimal average block length, we use the algorithm of Politis and White (2004), corrected by Patton et al. (2009). Specifically, for a given set of data, we apply the Politis–White algorithm to each series, each squared series, and the product of each pair of series and select the largest of these lengths as the average block length for the given data set.<sup>1</sup> We use 5,000 bootstrap replications in all cases, unless otherwise stated.

Shanken (1992) and Jagannathan and Wang (1998) show that the standard errors of the crosssectional slopes must be adjusted to account for the estimation error in the factor loadings. Our empirical procedure adds another layer of estimation error, that is, error in the estimation of details (smooths) or wavelet (scaling) coefficients, which are used in the first-stage time-series regressions. We incorporate this additional sampling uncertainty by conducting wavelet decompositions (as well as the subsequent time-series and cross-sectional regressions) on resampled data, rather than resampling the decomposed data. In the process, our use of the stationary bootstrap also ensures that we do not impose time-series independence, so the obtained standard errors are robust to the presence of heteroskedasticity and autocorrelation.

In obtaining 95% confidence intervals for true cross-sectional  $R^2$ s, we follow Lewellen et al. (2010). Specifically, we simulate the sample distribution of the adjusted  $R^2$  for a given true  $R^2$ , and plot the 2.5th and 97.5th percentiles (y-axis) against the corresponding true  $R^2$  (x-axis). Repeating this for all values of the true  $R^2$ s ranging from 0.00 to 1.00 generates a graph similar to Figure 5 in Lewellen et al. (2010). We can then find a confidence interval for the true  $R^2$ , given a sample adjusted  $R^2$ , by slicing the graph along the y-axis (fixing y and then scanning across). To simulate the sample distribution of the adjusted  $R^2$ , for a given true  $R^2$ , we set the true factor loadings equal to the historical estimates while changing the vector of true expected returns to give the desired true  $R^2$  (see footnote 6 in Lewellen et al. (2010) for details). The graph is based on 10,000 bootstrap simulations for each assumed true  $R^2$  (1,000 sets of random expected returns, each with 10 bootstrap resamplings).

 $<sup>^{1}</sup>$ For example, for the set of the FF three factors and the 25 size and book-to-market sorted portfolios, the average block length is selected to be 29.21.

The null distributions (and hence the *p*-values) for the WSSPE statistics are obtained with a bootstrap procedure similar to the one that produces the standard errors of the cross-sectional slopes. The only difference is that the test-asset returns are adjusted to be consistent with the pricing model before the data are resampled, which can be done by subtracting the pricing error for each test asset from the excess return series of the corresponding test asset (i.e.,  $R_{i,t} - \hat{\alpha}_i$ for each *i* and *t*). The empirical distributions for the *F*-statistics used in Table 4 are obtained in a similar way by adjusting the test-asset returns to be consistent with the corresponding null hypothesis before the random samples are generated; the null of  $\lambda_1 = 0$ , for example, can be imposed by subtracting  $\hat{\lambda}'_1 \hat{\beta}_{i,\bullet}$  (obtained from estimating (14)) from the excess return series of the corresponding test asset (i.e.,  $R_{i,t} - \hat{\lambda}'_1 \hat{\beta}_{i,\bullet}$  for each *i* and *t*).

Finally, to obtain the 5% critical values in Figures 6 and 7, we resample the FF factors and state variables separately, rather than resample the vector of the FF factors and state variables. By doing so, we ensure that the null hypothesis of zero correlation is satisfied, while not changing the univariate distribution of any variable. In addition, by resampling the FF factors (rather than their details or smooths) and state variables (rather than their changes or residuals), we also incorporate the impact of estimation error on the null distributions of the partial correlations.

## References

See references list in the main paper.

- Patton, A., Politis, D.N., White, H., 2009. Correction to "Automatic block-length selection for the dependent boostrap" by D. Politis and H. White. Econometric Reveiws 28, 372–375.
- Politis, D.N., White, H., 2004. Automatic block-length selection for the dependent bootstrap. Econometric Reviews 23, 53–70.

Shanken, J., 1992. On the estimation of beta-pricing models. Review of Financial Studies 5, 1–33.

### 2 Additional Figures and Tables

Figure A1: Gain Functions for First Difference and AR(1) Filters

Figure A2: Fitted versus Realized Returns

Table A1: ANOVA/ANCOVA-Based Cross-Sectional Regressions

Table A2: Additional MRA-Based Analyses

Table A3: Using Petkova's (2006) Innovations Factors

Table A4: MRA-Based Cross-Sectional Regressions: CCAPM



This figure shows the gain functions for the first difference and AR(1) filters. In the right panel, the solid line, dashed line, and dotted line refer to the cases where the AR coefficient is 0.95, 0.85, and 0.75, respectively.



Figure A2 Fitted versus Realized Returns

This figure shows the pricing errors for each of the 25 size and book-to-market sorted portfolios of Hahn and Lee's (2006) and Petkova's (2006) models. Each two-digit number represents one portfolio. The first digit refers to the size quintile (1 being the smallest and 5 the largest), while the second digit refers to the book-to-market quintile (1 being the lowest and 5 the highest). The pricing errors are from the Fama–MacBeth regressions, similar to those in Table 1. Hahn and Lee's (2006) model is a three-factor model in which the factors are the excess market return, changes in term spread, and changes in the default spread. Petkova's (2006) model is a five-factor model in which the factors are the excess market return and innovations in the dividend yield, term spread, default spread, and short-term T-bill.

| ΕF                                                            |                 | 0.62                         | [0.44, 1.00]  | 0.013 | [0.013] |
|---------------------------------------------------------------|-----------------|------------------------------|---------------|-------|---------|
|                                                               | $ullet = v_6$   | 0.58                         | [0.65, 1.00]  | 0.019 | [0.645] |
|                                                               | $\bullet = w_6$ | 0.56                         | [0.58, 1.00]  | 0.016 | [0.488] |
| $+ \lambda_s eta^{SMB}_{i,ullet}$                             | $\bullet = w_5$ | 0.55                         | [0.48, 1.00]  | 0.015 | [0.205] |
| $\lambda_m eta^m_{i,ullet} + \lambda_h eta^{HML}_{i,ullet}$ - | $\bullet = w_4$ | 0.63                         | [0.49,  1.00] | 0.013 | [0.106] |
| $E(R_{i,t}) =$                                                | $\bullet = w_3$ | 0.69                         | [0.54,  1.00] | 0.010 | [0.128] |
|                                                               | $\bullet = w_2$ | 0.60                         | [0.43,  1.00] | 0.013 | [0.027] |
|                                                               | $ullet = w_1$   | 0.55                         | [0.40,  1.00] | 0.015 | [0.012] |
|                                                               |                 | $\operatorname{Adj}$ . $R^2$ |               | WSSPE |         |

|          | Regressions                       |
|----------|-----------------------------------|
| Table A1 | NOVA/ANCOVA-Based Cross-Sectional |
|          | <                                 |

to seven variants of the FF model; the last column corresponds to the original FF model. The first two rows report the 95% confidence intervals for the true  $R^2$ s This table compares the ability of models to explain the excess returns on 25 portfolios sorted by size and book-to-market ratio. The first seven columns correspond (in brackets), given the sample adjusted  $R^2$ s reported above them. The last two rows report the weighted sum of squared pricing errors (WSSPE) employed by Campbell and Vuolteenaho (2004) and the corresponding *p*-values (in brackets) for the null hypothesis that the pricing errors are jointly zero. The pricing errors in each model are computed under the restriction that the cross-sectional slope associated with a factor is equal to the factor's time-series average.

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                | $E(B_{i,t}) = \lambda_m \beta_{i,t}^m + \lambda_k \beta_{i,t}^{HML} + \lambda_c \beta_{i,t}^{SMB}$ |                 |                 |                  |                 |                 | - D-D            |                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------|-----------------|-----------------|------------------|-----------------|-----------------|------------------|----------------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                | $\bullet = d_1$                                                                                    | $\bullet = d_2$ | $\bullet = d_3$ | $\bullet = d_4$  | $\bullet = d_5$ | $\bullet = d_6$ | $\bullet = s_6$  | F'F'           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Panel A: D                     | (4) Filter in                                                                                      | the Zeroth-St   | tage Wavelet    | Decompositio     | ons             |                 |                  |                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\lambda_m$                    | 0.298                                                                                              | 0.247           | 0.225           | 0.177            | 0.210           | 0.253           | 0.337            | 0.411          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\lambda_h$                    | 0.384                                                                                              | 0.245           | 0.246           | 0.198            | 0.247           | 0.211           | 0.143            | 0.474          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\lambda_s$                    | 0.171                                                                                              | 0.130           | 0.122           | 0.095            | 0.111           | 0.090           | 0.129            | 0.219          |
| $ \begin{split} & \textbf{WSSPE} & 0.015 & 0.014 & 0.011 & 0.013 & 0.013 & 0.015 & 0.018 & 0.013 \\ \mbox{Panel B: C(6) Filter in the Zeroth-Stage Wavelet Decompositions} \\ & \lambda_m & 0.299 & 0.249 & 0.229 & 0.180 & 0.213 & 0.258 & 0.341 & 0.411 \\ & \lambda_h & 0.385 & 0.248 & 0.250 & 0.201 & 0.251 & 0.013 & 0.014 \\ & \lambda_i & 0.172 & 0.132 & 0.123 & 0.097 & 0.114 & 0.092 & 0.132 & 0.219 \\ & Adj. R^2 & 0.587 & 0.629 & 0.713 & 0.664 & 0.616 & 0.631 & 0.645 \\ & WSSPE & 0.015 & 0.014 & 0.011 & 0.013 & 0.013 & 0.015 & 0.018 \\ & O.372 & 0.302 & 0.286 & 0.273 & 0.241 & 0.259 & 0.137 & 0.417 \\ & \lambda_h & 0.372 & 0.303 & 0.267 & 0.189 & 0.219 & 0.172 & 0.036 & 0.206 \\ & Adj. R^2 & 0.505 & 0.546 & 0.700 & 0.590 & 0.493 & 0.562 & 0.472 & 0.582 \\ & WSSPE & 0.018 & 0.016 & 0.010 & 0.014 & 0.017 & 0.016 & 0.002 & 0.015 \\ & Panel D: Extending Windows in the First-Stage Time-Series Regressions \\ & \lambda_m & 0.369 & 0.288 & 0.322 & 0.295 & 0.289 & 0.208 & 0.444 & 0.440 \\ & \lambda_h & 0.394 & 0.298 & 0.322 & 0.295 & 0.289 & 0.208 & 0.444 & 0.440 \\ & \lambda_h & 0.394 & 0.298 & 0.322 & 0.259 & 0.241 & 0.177 & 0.109 & 0.457 \\ & A_j, R^2 & 0.435 & 0.508 & 0.632 & 0.552 & 0.349 & 0.587 & 0.287 & 0.502 \\ & WSSPE & 0.020 & 0.017 & 0.013 & 0.018 & 0.023 & 0.015 & 0.028 & 0.018 \\ & A_{ji}, R^2 & 0.435 & 0.508 & 0.632 & 0.552 & 0.349 & 0.587 & 0.287 & 0.502 \\ & WSSPE & 0.200 & 0.017 & 0.013 & 0.018 & 0.023 & 0.015 & 0.028 & 0.018 \\ & A_{ji}, R^2 & 0.435 & 0.508 & 0.632 & 0.552 & 0.349 & 0.587 & 0.287 & 0.502 \\ & WSSPE & 0.020 & 0.017 & 0.013 & 0.018 & 0.023 & 0.015 & 0.028 & 0.018 \\ & A_{m} & 0.376 & 0.322 & 0.284 & 0.279 & 0.312 & 0.366 & 0.445 & 0.460 \\ & \lambda_h & 0.276 & 0.213 & 0.194 & 0.169 & 0.219 & 0.136 & 0.133 & 0.320 \\ & \lambda_a & 0.179 & 0.147 & 0.139 & 0.135 & 0.131 & 0.128 & 0.214 & 0.214 \\ & \lambda_dj, R^2 & 0.531 & 0.285 & 0.319 & 0.234 & 0.366 & 0.441 & 0.352 & 0.605 \\ & WSSPE & 0.010 & 0.009 & 0.005 & 0.007 & 0.010 & 0.015 & 0.017 & 0.008 \\ & Panel F: July 1963 to December 1991 \\ & \lambda_m & 0.331 & 0.285 & 0.319 & 0.234 & 0.366 & 0.441 & 0.352 & 0.417 \\ & \lambda_h & 0.348 & 0.346 & 0.23$ | $\operatorname{Adj}$ . $R^2$   | 0.587                                                                                              | 0.630           | 0.712           | 0.664            | 0.634           | 0.618           | 0.632            | 0.645          |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WSSPE                          | 0.015                                                                                              | 0.014           | 0.011           | 0.013            | 0.013           | 0.015           | 0.018            | 0.013          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Panel B: C                     | (6) Filter in                                                                                      | the Zeroth-St   | age Wavelet     | Decompositio     | ons             |                 |                  |                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\lambda_m$                    | 0.299                                                                                              | 0.249           | 0.229           | 0.180            | 0.213           | 0.258           | 0.341            | 0.411          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\lambda_h$                    | 0.385                                                                                              | 0.248           | 0.250           | 0.201            | 0.251           | 0.213           | 0.143            | 0.474          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\lambda_s$                    | 0.172                                                                                              | 0.132           | 0.123           | 0.097            | 0.114           | 0.092           | 0.132            | 0.219          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\operatorname{Adi}_{R} R^{2}$ | 0.587                                                                                              | 0.629           | 0.713           | 0.664            | 0.634           | 0.616           | 0.631            | 0.645          |
| Panel C: Rolling Windows in the First-Stage Time-Series Regressions $\lambda_m$ 0.356   0.302   0.286   0.273   0.241   0.259   0.137   0.417 $\lambda_h$ 0.372   0.303   0.267   0.189   0.219   0.137   0.112   0.462 $\lambda_s$ 0.185   0.159   0.126   0.129   0.072   0.036   0.206 $\lambda_a$ 0.185   0.550   0.446   0.700   0.590   0.493   0.562   0.472   0.582     WSSPE   0.018   0.016   0.010   0.014   0.017   0.016   0.020   0.015     Panel D: Extending Windows in the First-Stage Time-Series Regressions $\lambda_m$ 0.369   0.288   0.322   0.295   0.241   0.177   0.109   0.445 $\lambda_n$ 0.369   0.288   0.632   0.552   0.349   0.587   0.287   0.502     VSSPE   0.020   0.017   0.013   0.018   0.023   0.015   0.028   0.018     Panel E: Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WSSPE                          | 0.015                                                                                              | 0.014           | 0.011           | 0.013            | 0.013           | 0.015           | 0.018            | 0.013          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Panel C· B                     | olling Windo                                                                                       | ows in the Fir  | st-Stage Time   | e-Series Regr    | essions         |                 |                  |                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | λ                              | 0.356                                                                                              | 0 302           | 0 286           | 0.273            | 0 241           | 0.259           | 0.137            | 0.417          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\lambda_{1}$                  | 0.372                                                                                              | 0.302           | 0.200           | 0.189            | 0.211           | 0.235<br>0.137  | 0.112            | 0.462          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\lambda_n$                    | 0.185                                                                                              | 0.555           | 0.126           | 0.100            | 0.129           | 0.072           | 0.036            | 0.102          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Adi $B^2$                      | 0.505                                                                                              | 0.105           | 0.120           | 0.120            | 0.123           | 0.562           | $0.000 \\ 0.472$ | 0.200<br>0.582 |
| Panel D: Extending Windows in the First-Stage Time-Series Regressions $\lambda_m$ 0.369 0.288 0.322 0.295 0.289 0.208 0.444 0.440 $\lambda_h$ 0.394 0.298 0.293 0.259 0.241 0.177 0.109 0.457 $\lambda_s$ 0.157 0.136 0.124 0.116 0.069 0.071 0.127 0.169   Adj. $R^2$ 0.435 0.508 0.632 0.552 0.349 0.587 0.287 0.502   WSSPE 0.020 0.017 0.013 0.018 0.023 0.015 0.028 0.018   Panel E: Rebalancing <i>HML, SMB</i> , and Test Portfolios Every Five Years $\lambda_m$ 0.376 0.322 0.284 0.279 0.312 0.366 0.445 0.460 $\lambda_h$ 0.276 0.213 0.194 0.169 0.219 0.136 0.133 0.320 $\lambda_s$ 0.179 0.147 0.139 0.135 0.131 0.128 0.214 0.214   Adj. $R^2$ 0.523 0.562 0.683 0.618 0.536 0.441 0.352 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WSSPE                          | 0.018                                                                                              | 0.016           | 0.010           | 0.014            | 0.017           | 0.016           | 0.020            | 0.002          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Denel D. E                     |                                                                                                    |                 | Einst Otsus T   | View a Carrian D |                 | 0.000           | 0.020            |                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Panel D: E                     | a a co                                                                                             | ndows in the    | rirst-stage 1   | ime-Series R     | egressions      | 0.909           | 0.444            | 0.440          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\lambda_m$                    | 0.309                                                                                              | 0.200           | 0.322           | 0.295            | 0.269           | 0.208           | 0.444            | 0.440<br>0.457 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\lambda_h$                    | 0.394<br>0.157                                                                                     | 0.296           | 0.293           | 0.239            | 0.241           | 0.177           | 0.109            | 0.457          |
| Adj. R 0.435 0.308 0.632 0.552 0.349 0.387 0.267 0.302   WSSPE 0.020 0.017 0.013 0.018 0.023 0.015 0.028 0.018   Panel E: Rebalancing HML, SMB, and Test Portfolios Every Five Years $\lambda_m$ 0.376 0.322 0.284 0.279 0.312 0.366 0.445 0.460 $\lambda_m$ 0.376 0.223 0.262 0.284 0.279 0.312 0.366 0.445 0.460 $\lambda_h$ 0.276 0.213 0.194 0.169 0.219 0.136 0.133 0.320 $\lambda_s$ 0.179 0.147 0.139 0.135 0.131 0.128 0.214 0.214   Adj. $R^2$ 0.523 0.562 0.683 0.618 0.536 0.441 0.352 0.605   WSSPE 0.010 0.009 0.005 0.007 0.010 0.015 0.017 0.008   Panel F: July 1963 to December 1991 $\lambda_m$ 0.331 0.285 0.319 0.234 0.368 0.181 0.425 0.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\lambda_s$                    | 0.157                                                                                              | 0.130           | 0.124           | 0.110            | 0.069           | 0.071           | 0.127            | 0.109          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AUJ. A<br>WEEDE                | 0.455                                                                                              | 0.508           | 0.052           | 0.002            | 0.349           | 0.007           | 0.207            | 0.002          |
| Panel E: Rebalancing HML, SMB, and Test Portfolios Every Five Years $\lambda_m$ 0.3760.3220.2840.2790.3120.3660.4450.460 $\lambda_h$ 0.2760.2130.1940.1690.2190.1360.1330.320 $\lambda_s$ 0.1790.1470.1390.1350.1310.1280.2140.214Adj. $R^2$ 0.5230.5620.6830.6180.5360.4410.3520.605WSSPE0.0100.0090.0050.0070.0100.0150.0170.008Panel F: July 1963 to December 1991 $\lambda_m$ 0.3310.2850.3190.2340.3680.1810.4250.417 $\lambda_h$ 0.3870.2990.2990.2710.1590.2480.2410.451 $\lambda_s$ 0.2040.1820.1500.1220.1670.1680.2680.223Adj. $R^2$ 0.6190.6720.7430.6400.6460.6400.4370.671WSSPE0.0140.0130.0090.0140.0120.0130.0240.012Panel G: January 1992 to June 2008 $\lambda_m$ 0.3480.3460.2350.2940.1600.5550.4040.417 $\lambda_h$ 0.4000.2750.3140.2310.4360.1750.3670.520 $\lambda_k$ 0.1930.1530.1440.1680.1330.018-0.0150.218 $\lambda_k$ 0.1930.1530.1440.1680.325 <t< td=""><td>WSSPE</td><td>0.020</td><td>0.017</td><td>0.015</td><td>0.018</td><td>0.025</td><td>0.015</td><td>0.028</td><td>0.018</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WSSPE                          | 0.020                                                                                              | 0.017           | 0.015           | 0.018            | 0.025           | 0.015           | 0.028            | 0.018          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Panel E: R                     | ebalancing H                                                                                       | IML, SMB, ai    | nd Test Portfe  | olios Every F    | ive Years       |                 |                  |                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\lambda_m$                    | 0.376                                                                                              | 0.322           | 0.284           | 0.279            | 0.312           | 0.366           | 0.445            | 0.460          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\lambda_h$                    | 0.276                                                                                              | 0.213           | 0.194           | 0.169            | 0.219           | 0.136           | 0.133            | 0.320          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\lambda_s$                    | 0.179                                                                                              | 0.147           | 0.139           | 0.135            | 0.131           | 0.128           | 0.214            | 0.214          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\operatorname{Adj.} R^2$      | 0.523                                                                                              | 0.562           | 0.683           | 0.618            | 0.536           | 0.441           | 0.352            | 0.605          |
| Panel F: July 1963 to December 1991 $\lambda_m$ 0.3310.2850.3190.2340.3680.1810.4250.417 $\lambda_h$ 0.3870.2990.2990.2710.1590.2480.2410.451 $\lambda_s$ 0.2040.1820.1500.1220.1670.1680.2680.223Adj. $R^2$ 0.6190.6720.7430.6400.6460.6400.4370.671WSSPE0.0140.0130.0090.0140.0120.0130.0240.012Panel G: January 1992 to June 2008 $\lambda_m$ 0.3480.3460.2350.2940.1600.5550.4040.417 $\lambda_h$ 0.4000.2750.3140.2310.4360.1750.3670.520 $\lambda_s$ 0.1930.1530.1440.1680.1330.018-0.0150.218Adj. $R^2$ 0.2260.2690.4620.4360.3250.1790.1390.397WSSPE0.0460.0440.0310.0300.0360.0580.0750.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WSSPE                          | 0.010                                                                                              | 0.009           | 0.005           | 0.007            | 0.010           | 0.015           | 0.017            | 0.008          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Panel F: Ju                    | ıly 1963 to E                                                                                      | December 199    | 1               |                  |                 |                 |                  |                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\lambda_m$                    | 0.331                                                                                              | 0.285           | 0.319           | 0.234            | 0.368           | 0.181           | 0.425            | 0.417          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\lambda_h$                    | 0.387                                                                                              | 0.299           | 0.299           | 0.271            | 0.159           | 0.248           | 0.241            | 0.451          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\lambda_s$                    | 0.204                                                                                              | 0.182           | 0.150           | 0.122            | 0.167           | 0.168           | 0.268            | 0.223          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\operatorname{Adj}$ . $R^2$   | 0.619                                                                                              | 0.672           | 0.743           | 0.640            | 0.646           | 0.640           | 0.437            | 0.671          |
| Panel G: January 1992 to June 2008 $\lambda_m$ 0.3480.3460.2350.2940.1600.5550.4040.417 $\lambda_h$ 0.4000.2750.3140.2310.4360.1750.3670.520 $\lambda_s$ 0.1930.1530.1440.1680.1330.018-0.0150.218Adj. $R^2$ 0.2260.2690.4620.4360.3250.1790.1390.397WSSPE0.0460.0440.0310.0300.0360.0580.0750.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WSSPE                          | 0.014                                                                                              | 0.013           | 0.009           | 0.014            | 0.012           | 0.013           | 0.024            | 0.012          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Panel G: J                     | anuary 1992                                                                                        | to June 2008    |                 |                  |                 |                 |                  |                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\lambda_m$                    | 0.348                                                                                              | 0.346           | 0.235           | 0.294            | 0.160           | 0.555           | 0.404            | 0.417          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\lambda_h$                    | 0.400                                                                                              | 0.275           | 0.314           | 0.231            | 0.436           | 0.175           | 0.367            | 0.520          |
| Adj. $R^2$ 0.2260.2690.4620.4360.3250.1790.1390.397WSSPE0.0460.0440.0310.0300.0360.0580.0750.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\lambda_{s}$                  | 0.193                                                                                              | 0.153           | 0.144           | 0.168            | 0.133           | 0.018           | -0.015           | 0.218          |
| WSSPE 0.046 0.044 0.031 0.030 0.036 0.058 0.075 0.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\operatorname{Adi}_{} R^2$    | 0.226                                                                                              | 0.269           | 0.462           | 0.436            | 0.325           | 0.179           | 0.139            | 0.397          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WSSPE                          | 0.046                                                                                              | 0.044           | 0.031           | 0.030            | 0.036           | 0.058           | 0.075            | 0.035          |

# Table A2Additional MRA-Based Analyses

(continued on next page)

|                                                                                      | $E(R_{i,t}) = \lambda_m \beta_{i,\bullet}^m + \lambda_h \beta_{i,\bullet}^{HML} + \lambda_s \beta_{i,\bullet}^{SMB}$ |                 |                 |                 |                 |                 | БĿ              |       |  |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------|--|
|                                                                                      | $\bullet = d_1$                                                                                                      | $\bullet = d_2$ | $\bullet = d_3$ | $\bullet = d_4$ | $\bullet = d_5$ | $\bullet = d_6$ | $\bullet = s_6$ | I'I'  |  |
| Panel H: Augmenting the Test Assets with Industry, CAPM Beta, and Cluster Portfolios |                                                                                                                      |                 |                 |                 |                 |                 |                 |       |  |
| $\lambda_m$                                                                          | 0.384                                                                                                                | 0.324           | 0.305           | 0.272           | 0.322           | 0.346           | 0.394           | 0.462 |  |
| $\lambda_h$                                                                          | 0.287                                                                                                                | 0.256           | 0.285           | 0.145           | 0.165           | 0.129           | 0.044           | 0.370 |  |
| $\lambda_s$                                                                          | 0.168                                                                                                                | 0.135           | 0.134           | 0.126           | 0.143           | 0.137           | 0.203           | 0.190 |  |
| $\operatorname{Adj.} R^2$                                                            | 0.270                                                                                                                | 0.301           | 0.366           | 0.238           | 0.191           | -0.467          | -0.400          | 0.325 |  |
| WSSPE                                                                                | 0.045                                                                                                                | 0.047           | 0.043           | 0.046           | 0.054           | 0.104           | 0.099           | 0.044 |  |
| Panel I: Excluding Observations Heavily Affected by Circularity                      |                                                                                                                      |                 |                 |                 |                 |                 |                 |       |  |
| $\lambda_m$                                                                          | 0.336                                                                                                                | 0.287           | 0.317           | 0.228           | 0.365           | 0.175           | 0.389           | 0.417 |  |
| $\lambda_h$                                                                          | 0.387                                                                                                                | 0.299           | 0.313           | 0.261           | 0.200           | 0.300           | 0.139           | 0.451 |  |
| $\lambda_s$                                                                          | 0.202                                                                                                                | 0.186           | 0.155           | 0.108           | 0.163           | 0.160           | 0.156           | 0.223 |  |
| $\operatorname{Adj.} R^2$                                                            | 0.614                                                                                                                | 0.670           | 0.746           | 0.621           | 0.612           | 0.663           | 0.475           | 0.671 |  |
| WSSPE                                                                                | 0.014                                                                                                                | 0.013           | 0.010           | 0.015           | 0.013           | 0.012           | 0.022           | 0.012 |  |

Table A2 (continued)Additional MRA-Based Analyses

Panels A and B contain results when the Daubechies *extremal phase* filter of width L = 4 (denoted by D(4)) and *coiflet* filter of width L = 6 (denoted by C(6)) are used, respectively. Panels C and D contain results when the factor loadings are estimated over 120-month rolling windows and extending windows, respectively. Panel E contains results when *HML*, *SMB*, and the 25 size and book-to-market portfolios are rebalanced every five years. Panels F and G contain results when we examine separately the periods before and after January 1992, respectively. Panel H contains results when we augment the test assets with industry, CAPM beta, and the cluster portfolios of Ahn et al. (2009). Ten industry portfolios are from Kenneth French's Web site. Ten cluster portfolios are from Robert Dittmar's Web site. Panel I contains results when we use data from January 1947 to conduct the MRA and discard the first and last 198 observations in the resulting series. The first seven columns correspond to seven variants of the FF model; the last column corresponds to the original FF model. The first three rows in each panel report slope estimates; the last two rows report adjusted  $R^2$ s and weighted sum of squared pricing errors (WSSPE) employed by Campbell and Vuolteenaho (2004).

| Dep. Var.     | Independent Variables |                        |               |               |           |          |                           |
|---------------|-----------------------|------------------------|---------------|---------------|-----------|----------|---------------------------|
|               | Const.                | $R_m$                  | $u^{div}$     | $u^{term}$    | $u^{def}$ | $u^{rf}$ | $\operatorname{Adj.} R^2$ |
| Panel A: Deco | mposing the l         | Regression of .        | HML on the In | ndependent Va | ariables  |          |                           |
| HML           | 0.61                  | -0.27                  | -0.06         | 0.06          | 0.02      | -0.00    | 0.18                      |
|               | (5.64)                | (-4.48)                | (-1.72)       | (1.22)        | (0.78)    | (-0.13)  |                           |
| $HML^{d_1}$   | 0.08                  | -0.12                  | -0.03         | 0.02          | 0.04      | -0.01    | 0.10                      |
|               | (2.95)                | (-3.84)                | (-1.09)       | (0.77)        | (2.11)    | (-0.17)  |                           |
| $HML^{d_2}$   | 0.04                  | -0.07                  | -0.01         | -0.01         | 0.01      | -0.01    | 0.06                      |
|               | (2.75)                | (-4.36)                | (-0.79)       | (-0.56)       | (0.35)    | (-0.81)  |                           |
| $HML^{d_3}$   | 0.03                  | -0.04                  | -0.01         | 0.04          | -0.01     | 0.00     | 0.05                      |
|               | (2.78)                | (-3.78)                | (-0.81)       | (3.16)        | (-0.86)   | (0.28)   |                           |
| $HML^{d_4}$   | 0.02                  | -0.02                  | -0.01         | 0.01          | -0.00     | 0.00     | 0.02                      |
|               | (2.80)                | (-2.81)                | (-0.89)       | (0.71)        | (-0.52)   | (0.67)   |                           |
| $HML^{d_5}$   | 0.02                  | -0.02                  | -0.02         | 0.00          | -0.01     | 0.01     | 0.02                      |
|               | (5.43)                | (-2.46)                | (-2.46)       | (0.43)        | (-1.36)   | (1.25)   |                           |
| $HML^{d_6}$   | -0.00                 | -0.00                  | 0.00          | 0.01          | -0.00     | 0.00     | 0.00                      |
|               | (-0.00)               | (-1.13)                | (0.50)        | (1.50)        | (-0.46)   | (0.21)   |                           |
| $HML^{s_6}$   | 0.42                  | -0.00                  | 0.01          | -0.00         | 0.00      | -0.00    | 0.01                      |
|               | (3.72)                | (-0.88)                | (1.49)        | (-0.25)       | (0.13)    | (-0.37)  |                           |
| Panel B: Deco | mposing the I         | Regression of <i>k</i> | SMB on the I  | ndependent Va | ariables  |          |                           |
| SMB           | 0.09                  | 0.22                   | 0.06          | 0.02          | -0.07     | -0.04    | 0.10                      |
|               | (0.58)                | (5.30)                 | (1.41)        | (0.63)        | (-2.16)   | (-1.30)  |                           |
| $SMB^{d_1}$   | -0.01                 | 0.04                   | -0.01         | -0.04         | -0.00     | -0.04    | 0.01                      |
|               | (-0.71)               | (1.83)                 | (-0.41)       | (-1.74)       | (-0.19)   | (-1.64)  |                           |
| $SMB^{d_2}$   | -0.06                 | 0.08                   | 0.02          | 0.03          | -0.03     | -0.00    | 0.08                      |
|               | (-4.29)               | (6.03)                 | (1.37)        | (2.04)        | (-1.78)   | (-0.03)  |                           |
| $SMB^{d_3}$   | -0.04                 | 0.06                   | 0.01          | 0.01          | -0.02     | 0.00     | 0.09                      |
|               | (-3.57)               | (7.32)                 | (1.15)        | (1.36)        | (-2.84)   | (0.38)   |                           |
| $SMB^{d_4}$   | -0.02                 | 0.03                   | 0.01          | 0.00          | -0.01     | 0.00     | 0.04                      |
|               | (-3.26)               | (4.64)                 | (0.66)        | (0.62)        | (-1.80)   | (0.75)   |                           |
| $SMB^{d_5}$   | -0.02                 | 0.01                   | 0.01          | -0.00         | 0.01      | -0.00    | 0.02                      |
|               | (-4.96)               | (2.16)                 | (1.98)        | (-0.01)       | (1.11)    | (-0.68)  |                           |
| $SMB^{d_6}$   | -0.00                 | -0.00                  | 0.01          | 0.01          | 0.00      | -0.00    | -0.00                     |
|               | (-1.22)               | (-0.58)                | (1.04)        | (1.19)        | (0.26)    | (-0.43)  |                           |
| $SMB^{s_6}$   | 0.23                  | -0.00                  | 0.01          | -0.00         | -0.00     | -0.01    | -0.00                     |
|               | (1.49)                | (-0.31)                | (0.91)        | (-0.29)       | (-0.53)   | (-0.88)  |                           |

Table A3Using Petkova's (2006) Innovations Factors

Panel A decomposes the time-series regressions of HML on the term factor and the default factor, controlling for market excess returns and other state variable risk proxies considered in Petkova (2006). Panel B decomposes the time-series regressions of SMB on the same set of independent variables. The numbers reported are the coefficient estimates of the regressions with the associated t-statistics in parentheses. The t-statistics are obtained from a bootstrap procedure designed to account for time-series dependence, as well as estimation error in the dependent variables and independent variables. The last column reports adjusted  $R^2$ s. The independent variables include residuals in dividend yield, term spread, default spread, and short-term rate, estimated from a vector autoregressive (VAR) model. The dividend yield is defined as the dividend yield of the CRSP value-weighted portfolio (computed as the sum of dividends over the last 12 months, divided by the level of the index). The short-term rate is defined as the 1-month T-bill rate, obtained from the Ibbotson Associates.

| Panel A: $E(R_{i,t}) = \lambda_c \beta_{i,\bullet}^c$ |             |                                       |         |  |  |  |  |
|-------------------------------------------------------|-------------|---------------------------------------|---------|--|--|--|--|
|                                                       | $\lambda_c$ | $\operatorname{Adj.} R^2$             | WSSPE   |  |  |  |  |
|                                                       |             | $\bullet = d_1$                       |         |  |  |  |  |
| Estimate                                              | 0.42        | -3.63                                 | 0.576   |  |  |  |  |
| <i>t</i> -value                                       | 2.54        |                                       | [0.099] |  |  |  |  |
| Bootstrap- $t$                                        | 1.57        |                                       |         |  |  |  |  |
|                                                       |             | $\bullet = d_2$                       |         |  |  |  |  |
| Estimate                                              | 0.15        | -0.06                                 | 0.088   |  |  |  |  |
| <i>t</i> -value                                       | 2.90        |                                       | [0.260] |  |  |  |  |
| Bootstrap- $t$                                        | 1.27        |                                       |         |  |  |  |  |
|                                                       |             | $\bullet = d_3$                       |         |  |  |  |  |
| Estimate                                              | 0.22        | -0.12                                 | 0.117   |  |  |  |  |
| <i>t</i> -value                                       | 2.93        |                                       | [0.419] |  |  |  |  |
| Bootstrap- $t$                                        | 1.32        |                                       |         |  |  |  |  |
|                                                       |             | $ullet = d_4$                         |         |  |  |  |  |
| Estimate                                              | 0.34        | -0.14                                 | 0.133   |  |  |  |  |
| <i>t</i> -value                                       | 2.98        |                                       | [0.635] |  |  |  |  |
| Bootstrap- $t$                                        | 1.53        |                                       |         |  |  |  |  |
|                                                       |             | $\bullet = s_4$                       |         |  |  |  |  |
| Estimate                                              | 0.92        | -1.21                                 | 0.225   |  |  |  |  |
| <i>t</i> -value                                       | 3.19        |                                       | [0.853] |  |  |  |  |
| Bootstrap- $t$                                        | 2.33        |                                       |         |  |  |  |  |
|                                                       | Panel       | B: $E(R_{i,t}) = \lambda_c \beta_i^c$ |         |  |  |  |  |
|                                                       | $\lambda_c$ | $\operatorname{Adj.} R^2$             | WSSPE   |  |  |  |  |
| Estimate                                              | 0.49        | -0.31                                 | 0.113   |  |  |  |  |
| <i>t</i> -value                                       | 2.88        |                                       | [0.211] |  |  |  |  |
| Bootstrap- $t$                                        | 2.02        |                                       |         |  |  |  |  |

Table A4 MRA-Based Cross-Sectional Regressions: CCAPM

This table reports the cross-sectional regression results using the excess returns on 25 portfolios sorted by size and book-to-market ratio. Panel A contains results for five variants of the CCAPM; Panel B contains results for the original CCAPM. The slope estimates are expressed as percentage per quarter. The first set of t-statistics stands for the Fama–MacBeth estimate. The second set, indicated by Bootstrap-t, is obtained from a bootstrap procedure designed to account for time-series dependence, as well as estimation error in details, smooths, and factor loadings. The second column reports the adjusted cross-sectional  $R^2$ s. The last column reports the weighted sum of squared pricing errors (WSSPE) employed by Campbell and Vuolteenaho (2004) and the corresponding p-values (in brackets) for the null hypothesis that the pricing errors are jointly zero.