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A B S T R A C T

We show that standard beta pricing models quantify an asset's systematic risk as a weighted
combination of a number of different timescale betas. Given this, we develop a wavelet-based
framework that examines the cross-sectional pricing implications of isolating these timescale
betas. An empirical application to the Fama–French model reveals that the model's well-known
empirical success is largely due to the beta components associated with a timescale just short of a
business cycle (i.e., wavelet scale 3). This implies that any viable explanation for the success of
the Fama–French model that has been applied to the Fama–French factors should apply
particularly to the scale 3 components of the factors. We find that a risk-based explanation
conforms closely to this implication.

1. Introduction

This paper presents a framework that characterizes an asset's systematic risk in terms of the asset's exposures to a number of
different timescale (e.g., short-, intermediate-, long-run) fluctuations in a model's factors. We call measures of such exposures
timescale betas. Using two fundamental results in wavelet theory, we show that an asset's standard betas, or factor loadings, can be
written as a linear combination of the asset's timescale betas. Empirically, we isolate these betas and explore their relative
importance for the cross section of returns. Our exploration is motivated in spirit by the long-run consumption-risk literature, which
suggests the possibility that only part of the information in the standard betas is relevant for asset pricing and the relevant part is
concentrated in certain timescale betas (see, e.g., Bansal and Yaron, 2004; Bansal et al., 2005; Parker and Julliard, 2005).1 We
demonstrate our framework using the three-factor model of Fama and French (1993; hereafter, FF), among other commonly used
models. Our goal and contribution are first to formalize and extend the application of wavelets to asset pricing and also to augment
our understanding of what drives the empirical success of the FF three-factor model.

http://dx.doi.org/10.1016/j.jempfin.2017.01.004
Received 19 July 2013; Received in revised form 23 January 2017; Accepted 25 January 2017

⁎ Corresponding author.
E-mail addresses: byoung.kang@polyu.edu.hk (B.U. Kang), f.in@griffith.edu.au (F. In), tskim@business.kaist.ac.kr (T.S. Kim).

1 Bansal and Yaron (2004) and Bansal et al. (2005) document that focusing on a long-run component of consumption growth helps account for a range of asset
pricing puzzles. Similarly, Parker and Julliard (2005) report that exposure to growth rates in cumulative consumption, rather than contemporaneous consumption, is
important for the cross section of equity returns. However, the importance of a long-run component is not universal. When decomposing equity market volatility, for
example, Adrian and Rosenberg (2008) find that its short-run component is an important cross-sectional pricing factor.
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To conceptualize our use of wavelets, consider a simple case of three timescales (short (S), intermediate (I), and long (L)) and a single-
factor model, where an asset's beta is defined as β R f f≡ cov( , )/var( )i i .2 With this simplification, the paper's two essential uses of wavelets
can be summarized as follows: First, we use wavelets to decompose the factor f into its short-, intermediate-, and long-run components,
whose sum is equal to the original factor. By replacing the factor f in the beta formula with the sum of its three timescale components, it
follows that β ω β ω β ω β≡ + +i S i

S
I i

I
L i

L, where the resulting beta components, or timescale betas, capture the asset's exposure to different
timescale fluctuations in the factor. Timescale betas computed in this way have a parallel with the long-run consumption risk literature. For
example, Bansal et al. (2005) and Parker and Julliard (2005) estimate an asset's consumption beta as the covariance of the asset's
contemporaneous return or cash flow growth with smoothed consumption growth—with the smoothing done by taking moving averages or
moving sums of consumption growth. As will be discussed below in Section 2, these commonly used alternatives, however, can only
approximate the long-run component but not the short- or intermediate-run component of the factor. More importantly, the long-run
component approximated by these approaches contains a great deal of other, unintended timescale components.

Second, we also use wavelets to similarly decompose variance and covariance into the sum of their short-, intermediate-, and
long-run components, such that the resulting (co)variance components capture the contribution to the original (co)variance due
exclusively to the corresponding timescales. In this use of wavelets, we replace the variance and covariance terms in the beta formula
with the sum of their three timescale components, and obtain a similar threefold decomposition of the standard beta as above, where
each beta component now represents the effect of conditioning the standard beta on a different timescale. Conceptually, beta
components obtained in this way resemble τ-month betas considered, for example, in Brennan and Zhang (2013) and Kamara et al.
(2016), who use overlapping monthly observations to estimate τ-month betas as the covariance of τ-month return with τ-month
factors, for each τ ∈ {3, 6, 9, …, 60}.3 While we focus more on the first use of wavelets in the empirical section of the paper, it follows
from either of the uses that the standard beta can be written as a linear combination of three timescale-specific risk measures. Our
baseline empirical analysis is then to separate these individual beta components and use them alternately as a regressor in a series of
cross-sectional regressions of average returns. Analysis based on the first use of wavelets tells us which timescale component of the
factor is important for the cross section of average returns, whereas the second use tells us about the relative importance of different
timescales at which to measure the beta, given the cross section of average returns.4

Note that the beta components resulting from the second use of wavelets are essentially the wavelet betas of Gençay et al. (2003,
2005). With the aim of reevaluating the capital asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965) at different
horizons, these authors use daily returns and run a cross-sectional regression, E R λ λ β( ) = +i i

j
0 1 , for each timescale j S I L∈ { , , }

(note that the superscript j is on the right-hand side only). Our paper adds to theirs a clear mathematical relationship between the
wavelet betas (βi

j) and the standard beta (βi), and thus provides a sharper interpretation of what they do: Rather than testing the
CAPM at different horizons, their work should be viewed as an attempt to understand the beta components that cause the CAPM to
perform relatively well or poorly in matching the cross section of daily returns. In our view, the validity of the CAPM at different
horizons can be better evaluated by varying the return interval for both sides of the CAPM relationship (as in, e.g., Handa et al.,
1993; Brennan and Zhang, 2013) or by breaking down pricing errors by frequency (as in, e.g., Cogley, 2001). We discuss and correct
this and other interpretations by Gençay et al. (2003, 2005) in Section 2.4.

We demonstrate in detail the empirical implementation of our framework by using the FF three-factor model as an illustrative example.
The three factors are the market factor (Rm), the book-to-market factor (HML), and the size factor (SMB). We use monthly data over the
period July 1963 to June 2008, which allows us to entertain up to seven different timescales. The seven timescales are such that the shortest
three (scales 1, 2, and 3) correspond to the short run, the next three (scales 4, 5, and 6) to business cycles, and the last (scale 7) to the long
run, according to definitions in the business-cycle literature (e.g., Burns and Mitchell, 1946; Baxter and King, 1999). While FF (1993, 1995,
1996) show that the betas, or factor loadings, on the model's three factors (i.e., a three-factor analog of β ω β ω β≡ + ⋯ +i i i1

1
7

7) explain many
patterns in average stock returns, we show that much of this explanatory power comes from short-run or, specifically, scale 3 components of
the betas (i.e., a three-factor analog of βi

3). Using a standard set of 25 portfolios sorted by size and book-to-market ratio as test assets, we
find that the scale 3 betas capture the cross-sectional variation in average returns better than any other timescale betas or overall betas (i.e.,
the FF model). Additional analyses show that neither portfolio characteristics nor the remaining components of the betas add significant
explanatory power beyond that of the scale 3 betas. The relative superiority of the scale 3 betas persists in explaining out-of-sample returns
and is not overly affected by the choice of wavelet filter, changes in sample period, the inclusion of other portfolios with little factor structure
(Lewellen et al., 2010), or the handling of boundary conditions.

The scale 3 components of the monthly FF factors capture the fluctuations in the factors that complete a cycle in 8 to 16 months
(i.e., the fluctuations with periodicity of 8–16 months). To put this into perspective, the quarterly (annual) FF factors capture the
fluctuations in the factors with periodicity greater than 6 (24) months.5 Roughly and conceptually, therefore, the scale 3 components
can be understood as capturing the fluctuations in quarterly factors that are not contained in annual factors (i.e., the fluctuations

2 Economists have long acknowledged the need for more than only two or three timescales to analyze the dynamics of economic time series (Ramsey and Lampart,
1998a, b). Section 2 presents a general framework with a finer division of timescale and multiple factors.
3 Despite this conceptual similarity, τ-month betas can only approximate long-run betas but not the other timescale betas. As will be clearer below in Section 2,

betas estimated using overlapping 48-month return series are essentially long-run betas, but we cannot isolate short- or intermediate-run betas in this manner: For
example, betas estimated using 1-month returns are not short-run betas, but a weighted average of short-, intermediate-, and long-run betas. An advantage of using
wavelets is that we can cleanly separate out not only long-run betas but also shorter timescale betas so that we can examine their pricing implications in isolation. We
discuss this and other advantages of wavelets in Section 2.
4 More subtly, our analysis based on the second use of wavelets does not change the pricing kernel of the original factor model and only subset frequencies at which

to measure the betas. In contrast, the first use does change the pricing kernel by replacing the original factor with its timescale component.
5 This is because the shortest detectable cycle in a time series is one that lasts for two periods (Baxter and King, 1999).
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with periodicity of 6–24 months). Simply using quarterly factors will dilute the information content of the scale 3 component by
aggregating it with other, longer timescale components, while simply using annual factors will lose the information content of the
scale 3 component completely.6

What drives the relative superiority of the scale 3 betas? Consistent with FF (1993), Hahn and Lee (2006) and Petkova, (2006)
argue that the FF model works well because the FF factors proxy for risk factors within Merton's (1973) intertemporal CAPM
(ICAPM). Specifically, they show that HML proxies for innovations in term spread and SMB proxies for innovations in default
spread. We find that this risk-based explanation for the empirical success of the FF model is also in line with the relative superiority
of FFd3, given the fact that HMLd3 (SMBd3) proxies for innovations in term (default) spread better than any other timescale
component of HML (SMB) does. Specifically, by decomposing Hahn and Lee's (2006) regressions of HML (SMB) on innovations in
term (default) spread, we find that a substantial fraction of the estimated regression coefficient of HML (SMB) on the term (default)
factor is due to the effect of the scale 3 component of HML (SMB). Moreover, focusing on the scale 3 components of the FF factors
strengthens the FF factors’ correlations with the associated state variable innovations, while correlations between the FF factors and
the state variable innovations that are otherwise significant become insignificant when we remove the scale 3 components from the
FF factors. Overall, these results provide a risk-based explanation for what we find above: Focusing on the scale 3 components of the
FF factors sharpens the factors’ information content about systematic risk, and hence the model's explanatory power for the cross
section of returns.

Recall that FF (1989) observe that the term spread closely tracks business cycles, while the default spread tracks long-run
business episodes that span several measured business cycles. Because the scale 3 is shorter than a business cycle, our finding that
the scale 3 components of the FF factors covary significantly with the term and default factors may appear at odds with FF's (1989)
observation. Note, however, that we do not relate the scale 3 components of the FF factors to the state variable candidates, but rather
to their innovations (estimated by changes or residuals). As shown in Baxter, 1994 (and also in Online Appendix Figure A1 of this
paper), taking simple changes or residuals from an autoregressive model acts like a filter that removes nearly all of the long-run and
many of the business-cycle components, while magnifying the short-run fluctuations in the data. As the ICAPM suggests, priced
factors are not state variables per se, but instead are the short-run fluctuations in the state variables captured by their innovations.7

What we document here is the strong resonance between such fluctuations in the term and default spreads and the scale 3
components of the FF factors.

2. Beta decompositions via wavelets

This section generalizes and formalizes the beta decompositions described earlier, and develops a framework for examining the
pricing implications of isolating different timescale betas. To set the stage, consider a linear K-factor pricing model, where the betas,
or factor loadings, of asset i are defined as slope coefficients from the time-series regression

βR α ε E ε if f= + ′ + , ( | ) = 0, ∀ ,i t i i t i t i t t, , , (1)

where Ri t, is the excess return on asset i at time t, βi is a K × 1 vector of betas for asset i, and ft is a K × 1 vector of factors at time t.
The beta vector, βi, can be equivalently defined as

β Rf f≡ Var( ) Cov( , ),i t t i t
−1

, (2)

where fVar( )t is the variance–covariance matrix of ft, and RfCov( , )t i t, is a K × 1 vector containing the covariances of the factors with
Ri t, . Section 2.1 discusses beta decomposition based on factor decomposition, or formally the multiresolution analysis (MRA) of
factors; Section 2.2 discusses beta decomposition based on covariance (and variance) decomposition.

One technical note here: Recall that our empirical work involves measuring the covariation of the original time series (e.g., asset
returns, state variable innovations) with the decomposed series of the FF factors; hence, it is important that the timing of events in
the original time series be perfectly aligned with that in the decomposed series. For this reason, among others, we use the maximal
overlap discrete wavelet transform (MODWT), rather than the discrete wavelet transform (DWT), in conducting our empirical
analysis (other papers that use the MODWT include Kim and In (2005) and In and Kim (2006)).8 Accordingly, the following
exposition of our framework is based on the MODWT.

2.1. Beta decomposition via MRA

Wavelets allow us to decompose a time series into the sum of several component series, each capturing variations at a different

6 Similarly, using two- or threefold decompositions such as the Hodrick and Prescott (1997) and Baxter and King (1999) filters will dilute the information content
of the scale 3 component by aggregating it with its adjacent components into a single noise component. For further details on wavelets and other filtering methods, see
Gençay et al. (2002).
7 The ICAPM predicts that only innovations earn a risk premium in asset returns (see, e.g., Campbell 1996). Indeed, Petkova (2006) reports that when the levels of

the state variables, rather than their innovations, are used as factors, the resulting model does not perform as well (see footnote 17 of her paper).
8 There are two main classes of wavelets: The continuous wavelet transform (CWT) and the DWT. While the CWT is designed to work with signals defined over the

entire real axis, the DWT deals with signals defined over a discrete set of integers, say, t T= 1, …, , and hence is directly applicable to time series. The MODWT, a
popular variant of the DWT, eliminates certain alignment artifacts in the DWT, while foregoing orthogonality. Unlike the DWT, the MODWT is also associated with
zero phase filters, hence making it easy to line up features in an MRA with the original time series (see Section 5.0 in Percival and Walden, 2000] for these and other
properties that distinguish the MODWT from the DWT).
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timescale. Conceptually, this additive decomposition, or MRA, begins by decomposing a time series xt into two parts: a moving
average (of a particular kind) of the time series and the deviation of the time series from its moving average (i.e., x s d= +t t t1, 1, ). In
wavelet jargon, the outcomes of this first decomposition are called level 1 smooth and detail, respectively. The MRA can further
proceed by subjecting the level 1 smooth to a moving average of the same kind and decomposing it into two parts: the moving
average of the level 1 smooth and the deviation of the level 1 smooth from its moving average (i.e., s s d= +t t t1, 2, 2, or

x s d= + ∑t t j j t2, =1
2

, ). The outcomes of this second decomposition are called level 2 smooth and detail, respectively. By repeating
this procedure J times, a time series can be decomposed into a smooth and J details, each associated with a different timescale (i.e.,
x s d= + ∑t J t j

J
j t, =1 , ). At higher levels of J, the smooth in effect averages the original series over a longer timescale and becomes

smoother in appearance. Because level j detail captures a smooth's fluctuations (relative to a baseline) at level j − 1 (i.e.,
s s d= +j t j t j t−1, , , ), detail is associated with the same timescale and is about as smooth (or rough) in appearance as the one-level-down
smooth is.9 Gençay et al. (2003, p. 113) succinctly summarize this recursive procedure by stating: “When decomposing [a time
series] using the wavelet transform, we are actually separating layers of information associated with different timescales that
increase with the level of the transform.”

Applying MRA (of level J) to each element, we can write the vector of factors ft as

∑f f f= + ,t
j

J

t
d

t
s

=1

j J

(3)

where f t
dj and f t

sJ are vectors containing level j details and level J smooths for the corresponding elements in ft, respectively. For a

given decomposition level J, the elements in f t
dj and f t

sJ represent the jth shortest and the longest timescale components of the
corresponding elements in ft, respectively. Theoretically, level J can be any arbitrary integer; in practice, it is upper bounded
depending on the length of the data available.10 In an example in Section 3, we consider not only sample size but also economic
interpretations to attach to the J + 1 timescales when picking J.

It is useful to note from the outset that the notion of timescale can be related to certain bands of frequencies (Percival and
Walden, 2000, p. 96–97). Specifically, the equivalent filter that yields the level j smooth is approximately a low-pass filter with a
pass-band given by [ 0, 1/2 ]j+1 , and the equivalent filter that yields the level j detail is approximately a band-pass filter with a pass-
band given by [1/2 , 1/2 ]j j+1 ; Figs. 1 and2 illustrate this point by plotting the gain functions for the equivalent filters associated with
smooths and details at different levels (see solid curves).11 Therefore, the longest timescale for a given J relates to frequencies
between zero and 1/2J+1 cycles per period; the jth shortest timescale relates to frequencies between 1/2 j+1 and 1/2 j cycles per period.
In terms of periodicity (i.e., the inverse of frequency), the longest timescale relates to periodicities greater than 2J+1 periods; and the
jth shortest timescale relates to periodicities between 2j and 2 j+1 periods.

For comparison, Fig. 3 plots the gain functions for simple moving averages; plots for moving sums look the same except for the
scale shown on the y-axis. In the long-run consumption risk literature, Bansal et al. (2005) and Parker and Julliard (2005) use
essentially simple moving averages and moving sums, respectively. As shown in Fig. 3, these filters reduce the high-frequency
components of the data, but are far from completely removing them. See, for example, the amount of remaining high-frequency
components when the window size is set equal to 8, as in Bansal et al. (2005), or 11, as in Parker and Julliard (2005). Smooths, in
contrast, cleanly remove these unintended components.

Given the factor decomposition in (3), the standard betas in (2) can now be represented as follows:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑ ∑β ω β ω βR Rf f f≡ Var( ) Cov( , ) + Cov( , ) = + ,i t

j

J

t
d

i t t
s

i t
j

J

d i d s i s
−1

=1
, ,

=1
, ,

j J
j j J J

(4)

where β Rf f≡ Var( ) Cov( , )i d t
d

t
d

i t,
−1

,j
j j and β Rf f≡ Var( ) Cov( , )i s t

s
t
s

i t,
−1

,J
J J are K × 1 vectors containing the factor loadings on f t

dj and f t
sJ ,

respectively; and ω f f≡ Var( ) Var( )d t t
d−1

j
j and ω f f≡ Var( ) Var( )s t t

s−1
J

J denote the weighting matrices on βi d, j
and βi s, J

, respectively.

Analogous to (1), these beta vectors can be equivalently defined as

β βR α ε R α εf f= + ′ + and = + ′ + .i t i i d t
d

i t i t i i s t
s

i t, , , , , ,j
j

J
J

(5)

Clearly from (4), the betas, or factor loadings, of an asset can be broken into several parts attributable to different timescale
fluctuations in the factors, and the overall betas are simply a weighted linear combination of these timescale betas.

As an aside, note that since the MRA in (3) holds for each individual factor (and

9 More technically, smooths (details) are obtained by filtering scaling (wavelet) coefficients, which in turn are obtained by filtering the original time series with a
scaling (wavelet) filter. The moving average described here refers to a composite filter that yields smooths directly from the original series. Such a composite filter
yielding smooths (details) is characterized by zero phase and its gain function is equal to the squared gain function for the scaling (wavelet) filter (see, e.g., Section 5.3
in Percival and Walden, 2000 for details).
10 A rule of thumb requires the condition J < log ( + 1)T

L2 − 1
, where T is the number of time-series observations, and L is the width of the wavelet filter. Although

there are other, less restrictive alternatives, such as J T< log ( )2 or even J T< log (1.5 )2 , we are concerned that decomposed series at too high a level would contain too
many observations deleteriously affected by the assumption of circularity (Percival and Walden, 2000, p. 197–199). In this light, we use the first, more conservative
rule in selecting the upper limit, yet it still permits up to seven different timescales for our empirical exploration in Section 3.
11 The gain (squared gain) at a given frequency indicates the extent to which a filter raises or lowers the standard deviation (variance) of the filtered series relative

to that of the original series. Gain and squared gain functions are thus often used to study the consequences of filtering (see, e.g., Baxter and King, 1999).

B.U. Kang et al. Journal of Empirical Finance 42 (2017) 15–39

18



Fig. 1. Gain functions for equivalent filters associated with smooths. This figure shows the gain functions for the ideal low-pass filters (thin vertical lines) and their
approximations by the equivalent filters associated with smooths (solid curves). The latter are produced using the LA(8) filter.
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Fig. 2. Gain functions for equivalent filters associated with details. This figure shows the gain functions for the ideal band-pass filters (thin vertical lines) and their
approximations by the equivalent filters associated with details (solid curves). The latter are produced using the LA(8) filter.
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Fig. 3. Gain functions for simple moving averages. This figure shows the gain functions for simple moving averages with different window sizes.
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x d d d s s d d d= + + ⋯ + + = + + ⋯ + + = ⋯t t t J t J t J t J t t t1, 2, , , , , 2, 1, ), it is mathematically possible to rewrite (3), and hence (4) and (5),

in a total of J[( + 1)!]K−1 different ways.12 However, none of these J[( + 1)!]K−1 decompositions, except for the one presented here,
account for the effect of other factors when estimating timescale betas in time-series regressions (e.g., (5)), because factors at
different timescales are nearly orthogonal (or perfectly so in the case of the DWT; see footnote 8) even between factors. Therefore,
without including all factors at the same timescale, the estimated beta on a given factor at a given timescale would be confounded by
the betas on other, omitted factors at that timescale (i.e., cross-factor confounding would accompany timescale decomposition).

2.2. Beta decomposition via ANOVA/ANCOVA

In addition to MRA, wavelets also permit a similar additive decomposition for (co)variance, i.e., into the sum of J wavelet (co)
variances and one scaling (co)variance, each representing the contribution to the original (co)variance due to a different timescale.
As a shorthand, we refer to these decompositions as analysis of variance (ANOVA) and analysis of covariance (ANCOVA),
respectively. Applying the former to diagonal elements and the latter to off-diagonal elements, we can write fVar( )t as

∑f f fVar( ) = Var( ) + Var( ),t
j

J

t
w

t
v

=1

j J

(6)

where f t
wj is a vector whose variance–covariance matrix fVar( )t

wj contains level j wavelet variances on its diagonal and level j wavelet
covariances elsewhere, and f t

vJ is a vector whose variance–covariance matrix fVar( )t
vJ contains level J scaling variances on its diagonal

and level J scaling covariances elsewhere. In wavelet jargon, the elements in f t
wj and f t

vJ are called, respectively, level j wavelet
coefficients and level J scaling coefficients for the corresponding elements in ft.

13 Applying ANCOVA for each element, we can also
write RfCov( , )t i t, as

∑R R Rf f fCov( , ) = Cov( , ) + Cov( , ),t i t
j

J

t
w

i t
w

t
v

i t
v

,
=1

, ,
j j J J

(7)

where Ri t
w
,

j and Ri t
v
,
J are level j wavelet coefficient and level J scaling coefficient for Ri t, , respectively. For a given decomposition level J,

fVar( )t
wj and RfCov( , )t

w
i t
w
,

j j represent the contribution to fVar( )t and RfCov( , )t i t, , respectively, due to the jth shortest timescale; fVar( )t
wJ

and RfCov( , )t
w

i t
w
,

J J represent the contribution to fVar( )t and RfCov( , )t i t, , respectively, due to the longest timescale.
Although wavelet (scaling) coefficient and detail (smooth) at a given level are associated with the same timescale, and thus the

same band of frequencies,14 the ways in which they are put to use are quite different. Specifically, while wavelet and scaling
coefficients can be used to form an ANOVA or ANCOVA, details and smooths cannot be used to form such analyses (e.g.,

f f fVar( ) ≠ ∑ Var( ) + Var( )t j
J

t
d

t
s

=1
j J ). Conversely, while details and smooths can be used to form an MRA, wavelet and scaling

coefficients cannot be used to form such an analysis (e.g., f f f≠ ∑ +t j
J

t
w

t
v

=1
j J) (Percival and Walden, 2000, p. 180–182).

Let us now define K × 1 vectors βi w, j
and βi v, J

as

β βR Rf f f f≡ Var( ) Cov( , ) and ≡ Var( ) Cov( , ),i w t
w

t
w

i t
w

i v t
v

t
v

i t
v

,
−1

, ,
−1

,j
j j j

J
J J J

(8)

respectively. As in (1), these vectors can be equivalently defined as slope coefficients

β βR α ε R α εf f= + ′ + and = + ′ + .i t
w

i i w t
w

i t i t
v

i i v t
v

i t, , , , , ,
j

j
j J

J
J

(9)

As the definitions suggest, βi w, j
and βi v, J

are betas when the variation in each variable has been restricted to the jth shortest and the

longest timescales, respectively. An immediate interpretation is to view them as the quantities of risk measured at the corresponding
timescales. Alternatively, one can also view them as the amounts of risk that investors operating at the corresponding timescale bear
by holding asset i. Following Gençay et al. (2003, 2005), who coined the term wavelet beta for a single-factor version of βi w, j

, we call

12 For example, (3), which states
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can be rewritten as
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and so on. We thank the referee for bringing to our attention this possibility.
13 As indicated, wavelet (scaling) covariance at a given level is simply the covariance between the wavelet (scaling) coefficients at that level; and wavelet (scaling)

variance at a given level is simply the variance of the wavelet (scaling) coefficients at that level.
14 The gain function associated with detail (smooth) at a given level is equal to the squared gain function associated with the wavelet (scaling) coefficient at that

level (see footnote 9). Thus, the ideal brick wall filters that they approximate are associated with the same band of frequencies.
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the vector βi w, j
the vector of level j wavelet betas, and similarly the vector βi v, J

the vector of level J scaling betas.

Given the decompositions in (6) and (7) and the definitions in (8), the standard betas in (2) can be represented as follows:
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, ,

j j J J
j j J J

(10)

where ω f f≡ Var( ) Var( )w t t
w−1

j
j , ω f f≡ Var( ) Var( )v t t

v−1
J

J , and ω ω I∑ + =j
J

w v=1 j J
.15 Clearly from (10), the betas, or factor loadings, of an

asset can be broken into several parts, each conditioned on a different timescale, and the overall betas are simply a weighted average
of these conditional betas.

Some useful analogy can be drawn between wavelet/scaling betas and betas estimated using a longer return interval (as in, e.g.,
Roll, 1981; Hawawini, 1983; Brennan and Zhang, 2013; Gilbert et al., 2014; Kamara et al., 2016). For example, using overlapping
monthly observations, Brennan and Zhang (2013) and Kamara et al. (2016) estimate τ-month betas by regressing τ-month return on
τ-month factors, for each τ ∈ {3, 6, 9, …, 60}. Like (9), these regressions use a different subset of frequencies contained in monthly
data; unlike (9), however, these subsets are not mutually exclusive and all contain the zero frequency (i.e., infinite periodicity). To
understand this, recall that a monthly time series contains components with periodicities greater than 2 months; a quarterly time
series contains a subset consisting of components with periodicities greater than 2 quarters (6 months); and a half-yearly time series
contains an even smaller subset, consisting of those with periodicities greater than one year (12 months). Continuing this, one can
see that betas estimated using 4-year returns are essentially long-run betas, under Baxter and King's (1999) definition of business
cycle (i.e., periodicities of 18–96 months; see Section 3.1 for further discussion). Importantly, however, we cannot isolate short-run
or business-cycle betas in this manner. For example, betas estimated using 9-month returns are not business-cycle betas, but a
weighted average of business-cycle and long-run betas. Similarly, betas estimated using monthly returns are not short-run betas, but
a weighted average of short-run, business-cycle, and long-run betas (see (10)). An advantage of (9) over the abovementioned
regressions using overlapping τ-month series is that the former cleanly separates not only long-run betas but also shorter-run betas
so that we can examine their pricing implications in isolation.

Wavelet/scaling betas have at least two additional advantages over betas estimated using nonoverlapping τ-period data (as in,
e.g., Roll, 1981; Hawawini, 1983; Gilbert et al., 2014). First, wavelet/scaling betas do not lose any data point, whereas
nonoverlapping τ-period betas suffer from decreasing number of data points as the time interval increases, resulting in loss of
information. Second, wavelet/scaling betas are not sensitive to the sampling rule employed to construct a particular time series,
whereas nonoverlapping annual betas, for example, may vary nontrivially depending on which quarter of the year is used in
computing annual series (e.g., Q1-Q1 versus Q4-Q4; see Jagannathan and Wang, 2007).

2.3. Framework

Under the expected return–beta representation, the K-factor pricing model is given by

λ βE R( ) = ′ ,i t i, (11)

where λ is a K × 1 vector of risk premiums. The model imposes that the cross-sectional variation in average returns arises from the
cross-sectional variation in the betas. Identities (4) and (10) suggest that the cross-sectional variation in βi derives from the cross-
sectional variation in its components. By combining these, we ask how much of the cross-sectional variation in average returns can
be attributed to the cross-sectional variation in each component of βi. Specifically, we propose to examine a cross-sectional
regression

λ βE R d d s( ) = ′ for each • ∈ { , …, , },i t i J J, ,• 1 (12)

where λ is used (with an abuse of notation) to denote a K × 1 vector of free constants. In addition, we also examine a cross-sectional
regression

λ βE R w w v( ) = ′ for each • ∈ { , …, , },i t i J J, ,• 1 (13)

where λ again denotes a K × 1 vector of constants (without necessarily abusing notation; see Section 3.2 for further discussion). If
the priced information in βi is concentrated in βi,• for a particular •, the corresponding regression will produce lower pricing errors
(or higher cross-sectional R2) than the original model (11) as well as the remaining J regressions.

It is important to note that βi,• can be cross-sectionally correlated with other timescale components of βi, meaning that finding
significant lambdas in (12) or (13) may simply be due to other, omitted beta components. In this light, we also propose additional
specifications with all the remaining J beta components on the right-hand side—either individually, as in

λ β λ β λ βE R( ) = ′ + ⋯ + ′ + ′i t i d J i d J i s, 1 , , +1 ,J J1
, or combined, as in

λ β λ βE R( ) = ′ + ′ ,i t i i, 1 ,• 2 ,•
⊥

(14)

where βi,•
⊥ denotes a weighted combination of the remaining J beta components other than βi,•, which can be written as

15 It follows from (6) that the weighting matrices sum to the identity matrix. However, this is not the case for the weighting matrices in (4) because we cannot in
general create a valid ANOVA or ANCOVA using the MODWT details and smooths.
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β Rf f f f≡ Var( − ) Cov( − , )i t t t t i t,•
⊥ • −1 •

, for d d s• ∈ { , …, , }J J1 or β R Rf f f f≡ [Var( ) − Var( )] [Cov( , ) − Cov( , )]i t t t i t t i t,•
⊥ • −1

,
•

,
• for

w w v• ∈ { , …, , }J J1 .16 Under these specifications, the significance of the λ terms, which can determined by t-tests if K=1 or F-tests
if K > 1, will suggest the timescale location of the priced information. Of course, depending on the number of regressors (i.e.,
J K( + 1) × ) and test assets, the former specification (based on J( + 1)-fold decomposition) may not always be feasible.17

Our framework provides a new diagnostic tool for econometricians. Rather than simply accepting or rejecting the empirical fit of
a particular model, researchers can constructively examine the timescale betas that cause the model to perform relatively well or
poorly: The MRA-based analysis will tell us which timescale components of the factors contain valuable (or little) information
regarding the cross section of returns, whereas the ANOVA/ANCOVA-based analysis will tell us about the information content of
different timescales at which to measure the betas. As discussed, the ANOVA/ANCOVA-based analysis is analogous to estimating τ-
period betas, without changing the pricing kernel of the original model. In contrast, MRA-based analysis does change the pricing
kernel by replacing the original factors with their details or smooths. In this regard, our framework (in particular the MRA-based
one) may also serve as an initiative toward formulating a new pricing model. As will be demonstrated below, focusing on a timescale
component of betas, rather than the overall betas, can improve pricing performance substantially.18

2.4. Discussion

In parallel studies, Gençay et al. (2003, 2005) examine what is essentially a single-factor version of (13) in the context of the
CAPM. Using daily returns, these authors measure wavelet betas (but not scaling betas) at six different timescales and show that the
(freely estimated) lambda on wavelet beta increases as the timescale at which the beta is measured increases. Based on this, Gençay
et al. (2005, p. 68) conclude that “predictions of the CAPM are more relevant at medium- to long-run horizons as compared to short
time horizons.” Here, we seek to iron out a couple of points.

First, the authors use terms such as “short-” and “long-run” to denote different timescales. Precisely speaking, however, even the
longest timescale they consider is much shorter than a business cycle and hence is short run: Given that they use daily data, the level
6 wavelet coefficient is associated with periodicities between 64 and 128 days (i.e., roughly 3–6 months). Second, and more
importantly, in each of the six cross-sectional regressions examined, the authors use average daily returns as the dependence
variable; that is, they condition the independent variable on a different timescale, but not the dependent variable. This does not
constitute testing the CAPM at different horizons. The predictions of the CAPM at different horizons can be better evaluated by
conditioning both sides of the CAPM relationship as in Handa et al. (1993) and Brennan and Zhang (2013) or by breaking down
pricing errors by frequency as in Cogley (2001). In light of our discussion above, their work can be viewed rather as a constructive
attempt to understand the beta components that cause the CAPM to perform relatively well or poorly in matching the cross section of
daily returns.

3. Empirical implementation

This section demonstrates an empirical implementation of our framework using FF's (1993) three-factor model. As an illustrative
example, this model is a straightforward choice given its ubiquity in empirical finance.19 Under FF's specification, the vector of
factors ft is given by R HML SMBf = ( , , )′t m t t t, , and the vector of factor loadings βi is given by β β β β= ( , , )′i i

m
i
HML

i
SML , where the

elements are the slopes in the time-series regression corresponding to (1). The FF model is then written under the expected return–
beta representation as

E R λ β λ β λ β( ) = + + .i t m i
m

h i
HML

s i
SMB

, (15)

We organize Sections 3.1 and 3.2 around (12) and (13), respectively. Other specifications such as (14) will be entertained in
Section 3.3. For brevity, we base our discussion of the results mainly on those obtained from the MRA-based approach. Unless
otherwise stated, we use monthly data from July 1963 to June 2008 and 25 size and book-to-market sorted portfolios as test
assets.20 Results based on subperiods or when the test assets are augmented with other portfolios, as suggested by Lewellen et al
(2010), are summarized in Section 3.3. As a technical note, we employ the least asymmetric wavelet filter of width L=8 (denoted by
LA(8)) throughout the paper, but our findings below are not specific to the particular wavelet filter used.

16 This specification is based on a twofold decomposition of the betas, given by β ω β ω β≡ +i i i• ,• •
⊥

,•
⊥, where ω f f f≡ Var( ) Var( − )t t t•

⊥ −1 • for d d s• ∈ { , …, , }J J1 or
ω f f f≡ Var( ) [Var( ) − Var( )]t t t•

⊥ −1 • for w w v• ∈ { , …, , }J J1 . Again, ω ω I+ =• •
⊥ only for w w v• ∈ { , …, , }J J1 .

17 For example, in our application in Section 3, where K=3, J=6, and the number of test assets is 25, such a specification would reduce the power of the tests too
much.
18 This by no means suggests that only one timescale should matter in general. Depending on factors, it is quite possible that the priced information may be more

widely dispersed, so more than one timescale may matter. We thank the referee for pointing this out.
19 Moreover, the FF model allows us to demonstrate the framework in a more general setting than do single-factor models such as the CAPM or the consumption

CAPM (CCAPM). Nonetheless, results obtained using the CCAPM are also provided in Online Appendix Table A4. Although beyond the scope of this paper, it might be
potentially interesting to link the CCAPM results (e.g., a large and significant lambda on βi s

c
, 4
) to the work of DewBecker and Giglio (2016), which shows that

periodicities greater than 32 quarters are priced in the cross section of stock returns, or to the work of Hansen et al. (2008), which shows that the cash flows of value
portfolios have more exposure to consumption variations at low frequencies than do the cash flows of growth portfolios. We thank the referee for suggesting these
possible links.
20 We thank Kenneth French for making the portfolio and factor data available on his website.
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3.1. Empirical implementation of (12)

The implementation of (12) begins with that of (3), which consists of an element-wise MRA for ft that can be written under the
FF's specification as
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where the superscripts dj and sJ denote level j details and level J smooths for the corresponding factors, respectively. An immediate
practical consideration is the choice of decomposition level J. In our empirical demonstration, we set J=6, that is, the maximum level
possible for the size of the data at hand (see footnote 10). Given the exploratory nature of our procedure, it is natural to examine as
many timescales as possible, but setting J=6 also facilitates mapping the resulting (seven) timescales into three notionally or
pedagogically convenient groups: The shortest three timescales correspond to the short run, the next three correspond to
intermediate run or business cycles, and the last one corresponds to the long run.

To explain this interpretation, let us recall the following. First, in terms of periodicity, level j detail for monthly data relates to
periodicities between 2j and 2 j+1 months, and level 6 smooth relates to periodicities greater than 128 months. Second, the business-
cycle literature defines the business cycle in terms of a specified range of periodicities. For example, Baxter and King (1999) associate
the business cycle with periodicities between 1.5 and 8 years (18–96 months); Burns and Mitchell (1946) define it as ranging up to
10 or 12 (not 8) years (18–120 or 18–144 months). Given that Baxter and King (1999) refer to Burns and Mitchell's (1946)
definition of business cycle in support of their choice, and that cycles exceeding 8 years in duration are no longer very rare in the
recent era (Zarnowitz and Ozyildirim, 2006), it is reasonable to regard level 4, 5, and 6 details (with periodicities of 16–32, 32–64,
and 64–128 months, respectively) as business-cycle components. As in the business-cycle literature, we can also regard the
remaining components with shorter periodicities (i.e., level 1, 2, and 3 details) as irregular or short-run components, and those with
longer periodicities (i.e., level 6 smooth) as slow-moving, long-run trend.21

Let us now take a look at the dynamics of the FF factors at these seven timescales. Fig. 4 illustrates the level J=6 MRA for the
HML factor; plots for the other factors are omitted for brevity, but available from the authors. The uppermost series is level 6 smooth,
and the six series below it are details at levels 6 to 1. As explained, these seven series sum to the original time series, plotted at the
bottom of the figure. The figure reveals the movements in the value premium that are transient in nature and limited to certain
timescales. For example, the increased volatility following the 1973 oil crisis is localized primarily in the level 1 and 2 details, and the
impact of the 1987 stock market crash is limited to the level 1 detail. In contrast, the greater changes in volatility surrounding the
burst of the technology bubble in early 2000 seem to be collocated in details at levels 1–5, while there is also a hint of increased
variability in the level 3 detail prior to the main portion of the event. It is also interesting to observe that the relatively broad spikes in
the value premium at around the start of some recessions seem to arise primarily from the level 3 detail.

We now turn to the cross-sectional pricing implications of isolating different timescale fluctuations in the factors. As outlined, we
run a series of cross-sectional regressions in (12), which can be rewritten in the current context as

E R λ β λ β λ β( ) = + + ,i t m i
m

h i
HML

s i
SMB

, ,• ,• ,• (17)

where d d s• ∈ { , …, , }1 6 6 . Note that the regressors above are estimated for each asset from the time-series regressions corresponding
to (5). For convenience, we denote (17) by either FFd1, …, FFd6, or FFs6, depending on the timescale components of the original
factors the model uses as pricing factors.

Tables 1 and2 report the results from the Fama and MacBeth's (1973) cross-sectional regressions. In each table, Panel A contains
seven subpanels, each corresponding to a different variant model, and Panel B corresponds to the original FF model to facilitate
comparisons. Reported below the Fama–MacBeth estimates and t-statistics is a second set of t-statistics based on the stationary
bootstrap of Politis and Romano (1994). In addition to allowing for time-series dependencies such as heteroskedasticity and
autocorrelation, our bootstrap procedure also incorporates error in the estimation of details or smooths, as well as of factor loadings.
The last two columns provide the cross-sectional R2 and weighted sum of squared pricing errors (WSSPE) as summary statistics for
the fit of each cross-sectional regression. The WSSPE uses a weighting matrix that gives less weight on noisy observations yet is
independent of the specific model, so that we can compare models by their WSSPEs.22 Also reported (in brackets) are the 95%
confidence intervals for the true cross-sectional R2s, reported following the suggestion of Lewellen et al. (2010),23 and the p-values
associated with the WSSPEs for the null hypothesis that the pricing errors in each model are jointly equal to zero. As are the second
set of t-statistics, the confidence intervals and p-values are robust to time-series dependence and the two-layered estimation error. A

21 Similarly, Yogo, 2008 draws on Baxter and King (1999) and regards level 1 detail for quarterly data (with periodicities of 2–4 quarters) as high-frequency noise,
level 2, 3, and 4 details (with periodicities of 4–8, 8–16, and 16–32 quarters, respectively) as business-cycle components, and level 4 smooth (with periodicities
greater than 32 quarters) as long-run trend.
22 Specifically, we follow Campbell and Vuolteenaho (2004) and define the WSSPE as α Ω α′

−1
, where α is the vector of estimated pricing errors and Ω is a diagonal

matrix with sample return variance on the main diagonal. An advantage of using Ω over a freely estimated variance–covariance matrix of test-asset returns is that the
former behaves better when inverted, especially with a large number of test assets.
23 If a confidence interval for the true R2 includes 1, this means we cannot reject the null that the corresponding model works perfectly. If a confidence interval for

the true R2 includes 0, this means we cannot reject the null that the corresponding model has no explanatory power.
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detailed description of our bootstrap procedure for the t-statistics, confidence intervals, and p-values is given in the Online
Appendix.

From Panel A of Table 1, we see considerable differences across the seven variant models in their ability to explain the cross
section of the 25 portfolio returns (see the R2s and WSSPEs). We find, however, that both the highest R2 and lowest WSSPE come
from the same model, the FFd3 model. Note that the FFd3 model also compares favorably with the original FF model, reported in
Panel B. The FF model, which quantifies factor loadings as a weighted combination of those used in (17) via (4), indeed produces
only “average looking” performance that falls within the range of model fits indicated in Panel A. The results suggest that focusing on
the level 3 details for the FF factors sharpens their explanatory power, to the extent that the pricing errors of the FF model are
reduced to insignificance (see the upper bound of the confidence interval for the true R2 and the p-value associated with the WSSPE).
Given the width of the confidence interval for the FFd3 model compared to that for the original FF model, failure to reject the null
hypothesis that the FFd3 model works perfectly does not seem to be driven much by sampling errors, unlike the case of the FFd4,
FFd5, FFd6, and FFs6 models.

Table 2 provides similar implications. From Panel A, we see that the intercept of the FFd3 model is much smaller than that of the other
variant models and is also statistically insignificant after accounting for sampling error (see the bootstrapped t-statistic). Only the FFs6 model
produces a comparable insignificant intercept, but its cross-sectional fit falls far short of the FFd3 model's; all other variant models have a
larger, statistically significant intercept, even after taking sampling error into account. Panel B shows that the original FF model also leaves a

Fig. 4. Dynamics of value premium at seven timescales. MODWTMRA of level J=6 for theHML factor (in percentage) using the LA(8) filter. The dotted vertical lines
indicate the start of NBER recession periods.
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relatively large and statistically significant intercept. The results suggest that focusing on the level 3 details, again, yields improvement, to the
extent that the intercept of the FFmodel is reduced (bymore than one half) to insignificance without sacrificing at all the cross-sectional fit.24

In Fig. 5, we use fitted versus actual returns plots to illustrate the models’ pricing errors for each of the 25 size and book-to-
market portfolios. The plot for the original FF model (Panel H of Fig. 5) shows that although the points are generally scattered quite
closely around the 45-degree line, several portfolios stand out as problematic for the FF model. The improvement of the FFd3 model
over the original FF model seems to derive mainly from some of these portfolios: the growth portfolios within the largest size quintile
(41 and 51) and the growth and value portfolios within the smallest size quintile (11 and 15). As shown in Panel C of Fig. 5, the FFd3

Table 1
MRA-based cross-sectional regressions.

Panel A: E R λ β λ β λ β( ) = + +i t m i
m

h i
HML

s i
SMB

, ,• ,• ,•

λm λh λs RAdj. 2 WSSPE

d• = 1
Estimate 0.33 0.41 0.19 0.58 0.016
t-value 2.02 3.74 1.51 [0.12, 0.93] [0.007]
Bootstrap-t 2.23 3.60 1.27

d• = 2
Estimate 0.30 0.30 0.17 0.63 0.014
t-value 2.43 3.77 1.83 [0.19, 0.95] [0.010]
Bootstrap-t 2.79 3.61 1.52

d• = 3
Estimate 0.30 0.31 0.16 0.72 0.010
t-value 2.53 3.96 1.87 [0.35, 1.00] [0.053]
Bootstrap-t 3.09 3.95 1.50

d• = 4
Estimate 0.23 0.25 0.13 0.65 0.013
t-value 2.03 3.31 1.62 [0.24, 1.00] [0.057]
Bootstrap-t 2.23 3.10 1.30

d• = 5
Estimate 0.27 0.31 0.15 0.63 0.013
t-value 2.03 3.71 1.83 [0.20, 1.00] [0.143]
Bootstrap-t 2.33 3.56 1.54

d• = 6
Estimate 0.34 0.25 0.14 0.58 0.017
t-value 2.43 4.44 1.78 [0.15, 1.00] [0.310]
Bootstrap-t 2.69 2.64 1.23

s• = 6
Estimate 0.40 0.14 0.17 0.60 0.020
t-value 2.41 2.02 1.60 [0.22, 1.00] [0.501]
Bootstrap-t 2.45 1.09 1.11

Panel B: E R λ β λ β λ β( ) = + +i t m i
m

h i
HML

s i
SMB

,

λm λh λs RAdj. 2 WSSPE

Estimate 0.41 0.47 0.22 0.65 0.013
t-value 2.16 3.74 1.56 [0.20, 0.95] [0.005]
Bootstrap-t 2.52 3.68 1.29

This table reports the cross-sectional regression results using the excess returns on 25 portfolios sorted by size and book-to-market ratio. Panel A contains results for
seven variants of the FF model; Panel B contains results for the original FF model. The slope estimates are expressed as percentage per month. The first set of t-
statistics stands for the Fama–MacBeth estimate. The second set, indicated by Bootstrap-t, is obtained from a bootstrap procedure designed to account for time-series
dependence, as well as estimation error in details, smooths, and factor loadings. The fourth column reports the 95% confidence intervals for the true R2s (in brackets),
given the sample adjusted R2s reported above them. The last column reports the weighted sum of squared pricing errors (WSSPE) employed by Campbell and
Vuolteenaho (2004) and the corresponding p-values (in brackets) for the null hypothesis that the pricing errors are jointly zero.

24 Lewellen et al. (2010) emphasize that theoretical restrictions, such as zero cross-sectional intercept, should be taken seriously, whether imposed ex ante (as in
Table 1) or tested ex post (as in Table 2). They argue that asset pricing tests can be misleading if one cares only about a model's high cross-sectional R2 and small
pricing errors. Indeed, apparently strong fit of the FFd6 model in Table 2, for example, is achieved by violating the theoretical restriction of zero cross-sectional
intercept.
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model brings these corner portfolios closer to the 45-degree line, graphically illustrating the model's higher R2.
Finally, to check how much of our pricing results are just from looking at the market at different timescales versusHML and SMB

at different timescales, we run the cross-sectional regressions like those in Tables 1 and2 but without βi
HML
,• and βi

SMB
,• .25 The results

are presented in Tables 3 and4. As expected, looking at the market alone generally lowers the R2s and increases the WSSPEs. More
importantly, it also renders a difference in the relative performance of the variant models. In particular, we no longer find that the
highest R2 and lowest WSSPE come about at d• = 3 (see Table 3). βi d

m
, 3

also leaves a large, statistically significant intercept, even after
accounting for sampling error (see Table 4). These results suggest that the relative superiority of the FFd3 model is not from the
effect of βi d

m
, 3

but is due largely to βi d
HML
, 3

and βi d
SMB
, 3

.26

Table 2
MRA-based cross-sectional regressions with an intercept.

Panel A: E R λ λ β λ β λ β( ) = + + +i t m i
m

h i
HML

s i
SMB

, 0 ,• ,• ,•

λ0 λm λh λs RAdj. 2 WSSPE

d• = 1
Estimate 1.29 -0.72 0.38 0.19 0.72 0.011
t-value 5.02 -2.75 3.49 1.49 [0.33, 0.98] [0.010]
Bootstrap-t 2.75 -2.12 3.45 1.22

d• = 2
Estimate 0.77 -0.17 0.30 0.13 0.67 0.012
t-value 2.96 -0.86 3.71 1.42 [0.25, 0.94] [0.005]
Bootstrap-t 1.96 -0.77 3.51 1.17

d• = 3
Estimate 0.59 -0.06 0.30 0.12 0.74 0.010
t-value 2.28 -0.31 3.82 1.48 [0.36, 0.98] [0.020]
Bootstrap-t 1.46 -0.25 4.09 1.17

d• = 4
Estimate 1.09 -0.38 0.29 0.10 0.72 0.011
t-value 4.14 -2.26 3.89 1.22 [0.36, 1.00] [0.028]
Bootstrap-t 2.56 -1.59 3.71 0.97

d• = 5
Estimate 1.15 -0.48 0.29 0.13 0.79 0.008
t-value 3.59 -2.61 3.52 1.53 [0.56, 1.00] [0.323]
Bootstrap-t 2.84 -1.91 3.58 1.28

d• = 6
Estimate 0.80 -0.25 0.25 0.15 0.81 0.008
t-value 3.81 -2.71 4.33 1.89 [0.59, 1.00] [0.286]
Bootstrap-t 2.29 -1.21 3.06 1.40

s• = 6
Estimate 0.53 -0.05 0.22 0.13 0.66 0.014
t-value 2.03 -0.36 3.38 1.22 [0.30, 1.00] [0.119]
Bootstrap-t 1.56 -0.16 2.04 0.93

Panel B: E R λ λ β λ β λ β( ) = + + +i t m i
m

h i
HML

s i
SMB

, 0

λ0 λm λh λs RAdj. 2 WSSPE

Estimate 1.21 -0.74 0.46 0.19 0.73 0.010
t-value 4.14 -2.11 3.60 1.32 [0.37, 0.97] [0.007]
Bootstrap-t 2.56 -1.78 3.64 1.07

This table reports the cross-sectional regression results using the excess returns on 25 portfolios sorted by size and book-to-market ratio. Panel A contains results for
seven variants of the FF model; Panel B contains results for the original FF model. The intercept and slope estimates are expressed as percentage per month. The first
set of t-statistics stands for the Fama–MacBeth estimate. The second set, indicated by Bootstrap-t, is obtained from a bootstrap procedure designed to account for
time-series dependence, as well as estimation error in details, smooths, and factor loadings. The fifth column reports the 95% confidence intervals for the true R2s (in
brackets), given the sample adjusted R2s reported above them. The last column reports the weighted sum of squared pricing errors (WSSPE) employed by Campbell
and Vuolteenaho (2004) and the corresponding p-values (in brackets) for the null hypothesis that the pricing errors are jointly zero.

25 We thank the referee for suggesting this additional analysis.
26 As an aside, note that the market beta works best at s• = 6: When considered alone, βi s

m
, 6

explains 27% of the cross-sectional variation in average returns
(Table 3), and adding an intercept does not make the slope turn negative (Table 4).
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Fig. 5. Fitted versus realized returns. This figure shows the pricing errors for each of the 25 size and book-to-market sorted portfolios of the FF model and its seven
variants. Each two-digit number represents one portfolio. The first digit refers to the size quintile (1 being the smallest and 5 the largest), while the second digit refers
to the book-to-market quintile (1 being the lowest and 5 the highest). The pricing errors are from the Fama–MacBeth regressions in Table 1. Panels A through G
correspond to the seven variant models FFd1 through FFs6; Panel H corresponds to the original FF model.
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In summary, our results in this subsection suggest that isolating different timescale fluctuations in the factors can be important in pricing
risky assets, and that in the case of the FF factors much of the priced information seems contained in their level 3 details. Interestingly, the
FFd3 model improves over the FF model in the same portfolios as those in which Hahn and Lee's (2006) and Petkova's (2006) models
improve over the FF model (see, e.g., Fig. 1 in Petkova, 2006]).27 In Section 4, we will show that the FF factors’ ability to proxy for the state
variable innovations considered in Hahn and Lee (2006) and Petkova (2006) comes from the level 3 details for the FF factors.

3.2. Empirical implementation of (13)

When evaluating (13), there is another theoretical restriction to take into account (in addition to zero cross-sectional intercept) if
the factors in the original model are portfolio returns, as in the FF model. That is, the cross-sectional slopes should be equal to the

Table 3
MRA-based cross-sectional regressions: CAPM.

Panel A: E R λ β( ) =i t m i
m

, ,•

λm RAdj. 2 WSSPE

d• = 1
Estimate 0.55 -0.15 0.046
t-value 3.19 [0.009]
Bootstrap-t 3.91

d• = 2
Estimate 0.44 -0.14 0.047
t-value 3.21 [0.012]
Bootstrap-t 3.99

d• = 3
Estimate 0.43 -0.18 0.050
t-value 3.21 [0.009]
Bootstrap-t 4.07

d• = 4
Estimate 0.38 0.01 0.043
t-value 3.25 [0.026]
Bootstrap-t 3.74

d• = 5
Estimate 0.45 -0.20 0.050
t-value 3.19 [0.016]
Bootstrap-t 4.17

d• = 6
Estimate 0.50 -0.23 0.050
t-value 3.19 [0.066]
Bootstrap-t 3.95

s• = 6
Estimate 0.57 0.27 0.042
t-value 3.41 [0.345]
Bootstrap-t 3.56

Panel B: E R λ β( ) =i t m i
m

,

λm RAdj. 2 WSSPE

Estimate 0.66 -0.13 0.046
t-value 3.20 [0.011]
Bootstrap-t 4.02

This table re-estimates the cross-sectional regressions in Table 1 but without βi
HML
,• and βi

SMB
,• (in Panel A) or βi

HML and βi
SMB (in Panel B). The betas are estimated

from the same first-stage time-series regressions as in Tables 1 or 2, in order to avoid the cross-factor confounding discussed in Section 2.1, as well as to facilitate
comparison. The slope estimates are expressed as percentage per month. The first set of t-statistics stands for the Fama–MacBeth estimate. The second set, indicated
by Bootstrap-t, is obtained from a bootstrap procedure designed to account for time-series dependence, as well as estimation error in details, smooths, and factor
loadings. The second column reports the adjusted cross-sectional R2s. The last column reports the weighted sum of squared pricing errors (WSSPE) employed by
Campbell and Vuolteenaho (2004) and the corresponding p-values (in brackets) for the null hypothesis that the pricing errors are jointly zero.

27 Online Appendix Figure A2 also replicates and summarizes the pricing results of Hahn and Lee (2006) and Petkova (2006).
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factors’ expected returns (i.e., λ E f= ( )t ). This restriction arises because each factor has a wavelet (or scaling) beta of one on itself and
zero on all the other factors from (9), and returns on any asset, including those on the factor portfolios, should satisfy (13). Under
this restriction, pricing errors of (13) are computed as βα R f= − ′i i i,•, where bars denote time-series averages. Of course, the same
restriction also applies to the original model, in which case the pricing errors, αi, are equal to time-series regression intercepts from
(1) and the WSSPE becomes analogous to the F-statistic of Gibbons et al. (1989). The difference is that, unlike the F-statistic, the
WSSPE facilitates model comparison because its weighting matrix does not vary across models. In Online Appendix Table A1, we
perform this comparison and show that the performance metrics across models exhibit a similar pattern to that in Table 1. Other
results obtained from the ANOVA/ANCOVA-based approach are available from the authors upon request.

3.3. Additional MRA-based analyses

Since Jagannathan and Wang (1998), some authors evaluate models by including portfolio characteristics in the cross-sectional

Table 4
MRA-based cross-sectional regressions with an intercept: CAPM.

Panel A: E R λ λ β( ) = +i t m i
m

, 0 ,•

λ0 λm RAdj. 2 WSSPE

d• = 1
Estimate 1.68 -0.81 0.04 0.044
t-value 6.03 -2.77 [0.015]
Bootstrap-t 3.71 -2.24

d• = 2
Estimate 1.18 -0.32 -0.01 0.042
t-value 2.55 -1.24 [0.013]
Bootstrap-t 2.19 -1.08

d• = 3
Estimate 1.42 -0.46 0.02 0.040
t-value 2.80 -1.74 [0.015]
Bootstrap-t 2.34 -1.29

d• = 4
Estimate 0.26 0.24 -0.02 0.042
t-value 0.38 0.75 [0.013]
Bootstrap-t 0.34 0.54

d• = 5
Estimate 1.52 -0.56 0.05 0.040
t-value 5.02 -3.37 [0.021]
Bootstrap-t 2.03 -1.22

d• = 6
Estimate 0.84 -0.12 -0.03 0.043
t-value 4.00 -0.82 [0.011]
Bootstrap-t 1.42 -0.34

s• = 6
Estimate 0.06 0.52 0.24 0.041
t-value 0.16 2.54 [0.051]
Bootstrap-t 0.15 1.53

Panel B: E R λ λ β( ) = +i t m i
m

, 0

λ0 λm RAdj. 2 WSSPE

Estimate 1.74 -1.02 0.03 0.043
t-value 4.58 -2.77 [0.015]
Bootstrap-t 3.70 -2.42

This table re-estimates the cross-sectional regressions in Table 2 but without βi
HML
,• and βi

SMB
,• (in Panel A) or βi

HML and βi
SMB (in Panel B). The betas are estimated

from the same first-stage time-series regressions as in Tables 1 or 2, in order to avoid the cross-factor confounding discussed in Section 2.1, as well as to facilitate
comparison. The intercept and slope estimates are expressed as percentage per month. The first set of t-statistics stands for the Fama–MacBeth estimate. The second
set, indicated by Bootstrap-t, is obtained from a bootstrap procedure designed to account for time-series dependence, as well as estimation error in details, smooths,
and factor loadings. The third column reports the adjusted cross-sectional R2s. The last column reports the weighted sum of squared pricing errors (WSSPE)
employed by Campbell and Vuolteenaho (2004) and the corresponding p-values (in brackets) for the null hypothesis that the pricing errors are jointly zero.
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regression. The idea is that, if a model is well specified, portfolio characteristics should capture no residual variation in the size and
book-to-market sorted portfolios. In Table 5, we present results when the log of the book-to-market ratio and log of size are added to
each of the seven variant models and to the original FF model. Consistent with Daniel and Titman (1997), when the two
characteristics are added to the FF model, their slope coefficients are strongly significant. After controlling for the betas prescribed
by the FFd3 model, however, the magnitudes of these coefficients are much reduced, both to insignificance. Likewise, the cross-
sectional adjusted R2s also indicate that the two characteristics add considerable explanatory power to the FF model and to its other
variants, but relatively little to the FFd3 model. Overall, these results provide further support for the earlier finding that focusing on
the level 3 details for the FF factors refines the factors’ information content about cross-sectional returns.

We also introduce to each variant model the remaining part of the original betas, that is, the part of the betas that is not already in use by
each model. Note that this amounts to an empirical implementation of (14). Although (14) can be used as a model of its own, our purpose
here is to examine the robustness of the FFd3 model in the presence of the remaining part of the betas. If the priced information in the FF
factors is indeed concentrated in their level 3 details, the rest should not add much to the explanatory power of the FFd3 model. The first
column of Table 6 presents the results of joint tests on the significance of the betas prescribed by each variant model (i.e., the null of λ = 01 );
the second column presents corresponding results for the significance of the original betas deprived of those prescribed by each variant
model (i.e., the null of λ = 02 ). The results confirm the “information tilt” toward the level 3 details: In the case of d• = 3, the null of λ = 01 is
soundly rejected by the data, whereas the null of λ = 02 cannot be rejected at any significance level (and this failure to reject the null is not
due to the sampling error, as in the case of s• = 6). None of the other beta components remains significant in the presence of the remaining
part, while at the same time completely subsuming the explanatory power of the latter.

In Online Appendix Table A2, we conduct an extensive set of robustness checks. First, we consider alternative wavelet filters.

Table 5
Cross-sectional regressions including portfolio characteristics.

Panel A: E R λ β λ β λ β λ λ( ) = + + + BM + SIZEi t m i
m

h i
HML

s i
SMB

bm i t size i t, ,• ,• ,• , −1 , −1

λm λh λs λbm λsize RAdj. 2

d• = 1
Estimate -0.22 0.01 0.32 0.36 0.08 0.76
t-value -0.90 0.07 2.39 3.46 4.12

d• = 2
Estimate 0.24 0.00 0.16 0.35 0.03 0.71
t-value 1.29 0.02 1.67 2.94 1.59

d• = 3
Estimate 0.21 0.20 0.16 0.14 0.02 0.76
t-value 1.19 1.40 1.95 1.03 0.84

d• = 4
Estimate -0.05 0.16 0.16 0.17 0.05 0.72
t-value -0.27 1.23 1.94 1.37 2.51

d• = 5
Estimate -0.48 0.08 0.27 0.30 0.11 0.82
t-value -2.99 0.72 3.36 3.18 5.75

d• = 6
Estimate -0.24 0.21 0.23 0.11 0.07 0.76
t-value -2.89 2.83 2.84 1.06 4.31

s• = 6
Estimate 0.20 0.04 0.22 0.24 0.04 0.65
t-value 1.69 0.56 1.93 2.34 1.79

Panel B: E R λ β λ β λ β λ λ( ) = + + + BM + SIZEi t m i
m

h i
HML

s i
SMB

bm i t size i t, , −1 , −1

λm λh λs λbm λsize RAdj. 2

Estimate -0.09 0.18 0.31 0.25 0.06 0.74
t-value -0.29 0.77 2.12 2.02 2.70

This table reports the cross-sectional regression results using the excess returns on 25 portfolios sorted by size and book-to-market ratio. Panel A examines whether
the log of the book-to-market ratio (BM) and the log of size (SIZE) have incremental explanatory power in seven variants of the FF model. Panel B examines whether
BM and SIZE have incremental explanatory power in the original FF model. As in FF (1992), BM measured in December of year t − 1 and SIZE measured in June of
year t are matched with returns from July of year t to June of year t + 1. The slope estimates are expressed as percentage per month, and the t-statistics are the Fama–
MacBeth estimates. The last column reports adjusted R2s.
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Second, we use rolling windows and extending windows in the first-stage time-series regressions, to compare models’ out-of-sample
performance.28 Third, in response to a comment that our results may arise simply because the periodicities associated with the level
3 detail (i.e., 8-16 months) coincide with the rebalancing frequency of the FF data (i.e., 12 months), we rerun the analysis using data
constructed in the same way as described in FF (1993), except that they are rebalanced every five years. Fourth, given that the
performance of the FF model as well as the size and book-to-market effects have evolved since the publication of FF (1992, 1993)
(see, e.g., Schwert, 2003; Zhang, 2008), we examine separately the periods before and after January 1992, to see if the relative
superiority of the FFd3 model is sensitive to this change.29 Fifth, following the suggestion of Lewellen et al. (2010), we augment the
test assets with other portfolios with little factor structure, such as industry, CAPM beta, and the cluster portfolios of Ahn et al.
(2009). Finally, we analyze whether our results change when we discard observations heavily influenced by boundary conditions.30

Overall, the results are consistent with the main analysis: The FFd3 model continues to stand out from its siblings and also compares

Table 6
Cross-sectional regressions including remaining components of betas.

Unrestricted: λ β λ βE R( ) = ′ + ′i t i i, 1 ,• 2 ,•
⊥

Restricted: λ βE R( ) = ′i t i, 2 ,•
⊥ Restricted: λ βE R( ) = ′i t i, 1 ,•

d• = 1

F-statistic 3.228 6.320
p-value 0.046 0.004
Bootstrap-p 0.080 0.013

d• = 2

F-statistic 1.941 2.439
p-value 0.157 0.096
Bootstrap-p 0.239 0.092

d• = 3

F-statistic 2.904 0.699
p-value 0.062 0.564
Bootstrap-p 0.039 0.538

d• = 4

F-statistic 0.411 0.233
p-value 0.747 0.872
Bootstrap-p 0.815 0.911

d• = 5

F-statistic 1.100 1.377
p-value 0.373 0.280
Bootstrap-p 0.477 0.426

d• = 6

F- statistic 6.851 8.927
p-value 0.003 0.001
Bootstrap-p 0.018 0.068

s• = 6

F-statistic 5.663 7.158
p-value 0.006 0.002
Bootstrap-p 0.081 0.306

This table examines an MRA-based implementation of (14) in the context of the FF model using the excess returns on 25 portfolios sorted by size and book-to-market
ratio. The first column reports results of joint tests on the significance of the betas prescribed by each variant model (i.e., the null of λ = 01 ); the second column

reports corresponding results for the significance of the original betas deprived of those prescribed by each variant model (i.e., the null of λ = 02 ). The first set of p-

values is based on the F distribution. The second set, indicated by Bootstrap-p, is based on empirical distributions obtained from a bootstrap procedure designed to
account for time-series dependence, as well as estimation error in details, smooths, and factor loadings.

28 The 120-month rolling windows and extending windows start in July 1953, so the second-stage cross-sectional regressions start in July 1963. To ensure out-of-
sample setting, we perform MRA for windowed time series and use the resulting details and smooth rather than performing MRA for the full time series and
windowing the resulting details and smooth.
29 We also tried two and three subperiods of equal length.
30 Since the MODWT (and DWT) makes use of circular filtering, which assumes that the beginning and end of a time series are joined in a loop, a filtering operation

near the beginning and end of the series can introduce undesirable effects, especially when there is a large mismatch between the first and last observation.
Throughout the paper, we employ reflection boundary conditions, which append a reversed version of a time series onto the end of the original series, in an effort to
reduce the impact of circularity. A more conservative approach would be to drop observations heavily affected by the circularity assumption. For this robustness test,
we use data from January 1947 to conduct the MRA and discard the first and last 198 observations in the resulting series. Consequently, the details and smooth cover
the same period as in our other analyses and yet are virtually free of influence from circularity.
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favorably with the original FF model.
Finally, to see how likely (or unlikely) it is that the FFd3 model outperforms others by chance, we conduct the same bootstrap

procedure as in the main analysis, except that we impose the null of no difference in performance across seven models: Under this
null, any realized difference in performance is due to chance. To impose this null, we resample the original factors and the test assets
separately, so that all seven models, as well as the FF model, become “useless” (hence, no difference in performance). Overall, it
seems unlikely that our results are due to chance: Out of 5000 bootstrap simulations, we find 402 times (i.e., 8.04%) that the FFd3
model outperforms others in the way it does across Tables 1 and2. In particular, the “robustness” that we see above across
alternative wavelet filters, alternative rebalancing frequencies, and augmented sets of test assets (i.e., across Panels A, B, E, and H of
Online Appendix Table A2) occurs only 82 times in 5000 bootstrap simulations (i.e., 1.64%). These results suggest that unless the
FFd3 model is indeed better than the other models, there is at best a 8.04% (1.64%) chance that we would see the results that we see
in Tables 1 and2 (in Tables 1 and2, as well as in Panels A, B, E, and H of Online Appendix Table A2).

4. What drives our results?

Much of the controversy surrounding the empirical success of the FF model comes from the lack of clear economic links between
the FF factors and systematic risk. This is because the model's two empirically motivated factors, HML and SMB, are not designed to
capture or proxy for any particular economic factor. Recently, however, progress has been made in establishing an empirical linkage
between the FF factors and more theoretically structured risk factors. For example, Hahn and Lee (2006) and Petkova (2006)
examine several candidate state variables within Merton's (1973) ICAPM (i.e., dividend yield, term spread, default spread, and
short-term rate) and find that HML is related to innovations (estimated by changes or residuals) in term spread, and SMB is related
to innovations in default spread.31 Consistent with FF's (1993) conjecture that the FF factors proxy for risk factors within Merton's
(1973) ICAPM or Ross's (1976) arbitrage pricing theory (APT), these authors suggest that innovations in term spread and default
spread are the two underlying risk factors proxied by HML and SMB, respectively.32

This section builds on the recent development in the empirical literature and seeks to provide a risk-based explanation for what
we document in Section 3. Specifically, given the finding of Hahn and Lee (2006) and Petkova (2006) that the significant relationship
between the FF factors and state variable innovations gives rise to the significant explanatory power of the FF model, we hypothesize
and show that the FFd3 model does a better job of pricing cross-sectional returns than the other variants of the FF model or the FF
model itself because the level 3 details for the FF factors relate more closely to innovations in term and default spreads than the other
timescale components of the FF factors and the FF factors themselves. To the extent that the priced information in the FF factors is
concentrated in their level 3 details, a rational risk-based story would predict the observed empirical linkage between the FF factors
and state variable innovations to arise from the association of the latter with the level 3 details for the former.

As a first step toward testing this prediction, we develop an approach, inspired by Hecht and Vuolteenaho (2006), that
decomposes the following regressions used in Hahn and Lee (2006) (regressions (1) and (2) in their paper):

HML SMB a b R c term d def e(or ) = + + Δ + Δ + ,t t m t t t t, (18)

where termΔ denotes changes in term spread and defΔ denotes changes in default spread. Specifically, we split the regression into
seven component regressions as follows:

HML SMB a b R c term d def e HML SMB

a b R c term d def e HML SMB a b R c term d def e

(or ) = + + Δ + Δ + , ⋮ (or )

= + + Δ + Δ + , (or ) = + + Δ + Δ + .
t
d

t
d

m t t t t t
d

t
d

m t t t t t
s

t
s

m t t t t

1 1 , 1 1 1,

6 6 , 6 6 6, 7 7 , 7 7 7,

1 1 6 6

6 6

(19)

Recall that Hahn and Lee (2006) find, when regressing HML, a significant coefficient on termΔ (i.e., c) and, when regressing SMB, a
significant coefficient on defΔ (i.e., d). An advantage of (19) is that it quantifies the relative importance of the seven components of the FF
factors in establishing these empirical linkages: Because the independent variables in each component regression are the same as those in
the original regression (18), it follows from summing the seven component regressions that a a a= + ⋯ +1 7, b b b= + ⋯ +1 7,
c c c= + ⋯ +1 7, and d d d= + ⋯ +1 7. Consequently, the coefficients in each component regression measure the contribution from a
different timescale component of HML (or SMB) in driving the regression coefficients in the original specification.

Table 7 presents the estimation results for these regressions. Panel A refers to the case where the regression of HML is
decomposed, and Panel B refers to the case where the regression of SMB is decomposed. The results reveal a substantial contribution
from HMLd3 and SMBd3 to the relationships between HML and the term factor and between SMB and the default factor, respectively.
In the top two rows of each panel, we first replicate and confirm Hahn and Lee's (2006) results that HML relates to the term factor
(i.e., c = 1.06 with a t-statistics of 2.30) and SMB relates to the default factor (i.e., d = − 2.99 with a t-statistics of -4.33) after

31 In addition to time-series evidence, Hahn and Lee (2006) and Petkova (2006) find that the loadings of the 25 portfolios on HML and the term factor share the
same systematic pattern along the book-to-market dimension, while the loadings on SMB and the default factor show the same systematic pattern along the size
dimension. In contrast, Petkova (2006) finds that the loadings on dividend yield and short-term rate innovations do not exhibit any systematic patterns related to size
or book-to-market ratio.
32 There is also evidence linking the FF factors to future GDP growth (Liew and Vassalou, 2000; Vassalou, 2003). According to Campbell (1996), however, variables

shown to forecast stock market returns, such as those considered in Hahn and Lee (2006) and Petkova (2006), conform more closely to the ICAPM than important
macroeconomic variables such as GDP growth. Moreover, Petkova (2006) shows that the mimicking portfolio of Vassalou (2003) that captures news about future GDP
growth loses its explanatory power for the cross section in the presence of the state variable innovations factors.
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Table 7
Decomposing Hahn and Lee's (2006) regressions.

Dep. var. Independent variables

Const. Rm termΔ defΔ RAdj. 2

Panel A: Decomposing the regression of HML on the independent variables
HML 0.55 -0.28 1.06 0.46 0.17

(5.00) (-4.72) (2.30) (0.98)

HMLd1 0.05 -0.13 0.42 0.29 0.09

(2.07) (-4.08) (2.02) (0.95)

HMLd2 0.03 -0.07 -0.05 0.19 0.06

(2.14) (-4.53) (-0.25) (0.63)

HMLd3 0.02 -0.04 0.55 -0.02 0.06

(1.99) (-4.46) (4.03) (-0.13)

HMLd4 0.01 -0.02 0.07 0.13 0.02

(1.85) (-2.76) (0.97) (1.25)

HMLd5 0.01 -0.01 -0.03 0.07 0.01

(1.92) (-2.28) (-0.41) (0.95)

HMLd6 0.00 -0.00 0.08 -0.13 0.01

(1.30) (-1.13) (1.75) (-2.70)

HMLs6 0.43 -0.00 0.02 -0.06 0.00

(3.65) (-0.83) (1.15) (-2.52)

Panel B: Decomposing the regression of SMB on the independent variables
SMB 0.15 0.22 0.48 -2.99 0.11

(0.93) (5.27) (1.43) (-4.33)

SMBd1 -0.02 0.04 -0.26 -0.18 0.00

(-1.77) (1.92) (-1.21) (-0.68)

SMBd2 -0.03 0.08 0.48 -1.19 0.09

(-2.60) (5.93) (2.46) (-3.11)

SMBd3 -0.02 0.06 0.18 -0.96 0.11

(-2.35) (6.71) (1.45) (-5.24)

SMBd4 -0.01 0.03 0.05 -0.53 0.06

(-2.08) (4.42) (0.59) (-4.28)

SMBd5 -0.00 0.01 0.01 -0.06 0.01

(-1.81) (2.12) (0.22) (-0.87)

SMBd6 0.00 -0.00 0.03 -0.07 -0.00

(0.68) (-0.58) (0.75) (-1.36)

SMBs6 0.24 -0.00 -0.01 0.00 -0.01

(1.49) (-0.29) (-0.28) (0.02)

Panel A decomposes the time-series regressions ofHML on the term factor and the default factor, controlling for market excess returns. Panel B decomposes the time-
series regressions of SMB on the same set of independent variables. The numbers reported are the coefficient estimates of the regressions with the associated t-
statistics in parentheses. The t-statistics are obtained from a bootstrap procedure designed to account for time-series dependence, as well as estimation error in the
dependent variables and independent variables. The last column reports adjusted R2s. The term factor and default factor are simple changes in term and default
spreads, respectively. Following Hahn and Lee (2006), we define the term spread as the spread between 10-year and 1-year Treasury constant maturity rates, and the
default spread as the spread between yield to maturity on a Baa corporate bond and 10-year Treasury constant maturity rate. These data are obtained from the
Federal Reserve Bank of St. Louis.
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controlling for market excess returns. The third column of Panel A then reveals that more than half of the estimated regression
coefficient ofHML on termΔ comes from the effect of HMLd3 (i.e., c = 0.553 with a t-statistic of 4.03), while the fourth column of Panel
B shows that about one third of the estimated regression coefficient of SMB on defΔ comes from the effect of SMBd3 (i.e., d = − 0.963
with a t-statistic of -5.24). As indicated by the t-statistics, the contribution from the level 3 details is also statistically significant.

The component regression results are insensitive to the definitions of the term and default factors and to the inclusion of other
state variable risk proxies considered in Petkova (2006). In an unreported table, we follow Hahn and Lee (2006) and use residuals,
rather than simple changes, estimated from a simple autoregressive specification. The results are almost identical.33 In Online
Appendix Table A1, we also follow Petkova (2006) and use residuals in dividend yield (udiv), term spread (uterm), default spread
(udef), and short-term rate (urf), estimated from a vector autoregressive (VAR) model.34 The contribution from HMLd3 and SMBd3 to

Fig. 6. Correlations between the Fama–French factors and state variable innovations when focusing on a timescale component of the former. In Panels A and B, the
first seven points indicate the partial correlation of HML•, for d d s• ∈ { , …, , }1 6 6 , with the term factor, while the last point indicates that ofHML. Similarly, in Panels C

and D, the first seven points indicate the partial correlation of SMB •, for d d s• ∈ { , …, , }1 6 6 , with the default factor, while the last point indicates that of SMB. The

partial correlations control for excess market returns. Indicated in dotted lines are the 5% critical values, under the null of zero correlation, obtained from a bootstrap
procedure designed to account for time-series dependence and estimation error.

33 If anything, the results are cleaner. For example, the significant negative coefficients of HMLd6 and HMLs6 on the default factor are no longer observed using
residuals.
34 Following Petkova (2006), we specify a VAR for the vector including the FF three factors and the four state variables. We also specify a VAR for the vector

including the market factor and the four state variables. The results are very similar. Thus, we report only the latter results. In any case, we follow Petkova (2006) and
orthogonalize the innovations in the four state variables with respect to the market factor, and scale all innovations to have the same variance as the innovation in the
market factor.
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the relationships between HML and the term factor and between SMB and the default factor is similar to, if not greater than, that
indicated in Table 7: As shown in Online Appendix Table A1, HMLd3 (SMBd3) accounts for about 60% (32%) of the estimated
regression coefficient of HML (SMB) on the term (default) factor, with a t-statistic of 3.16 (-2.84). In contrast, the contribution from
the other timescale components is mostly smaller and statistically insignificant.

It is also useful to examine how the correlations between the FF factors and the state variable innovations change when we focus
on, or omit, a different timescale component of the former. To do so, we display in Fig. 6 the correlations of HML• and SMB•, for each

d d s• ∈ { , …, , }1 6 6 , with the term and default factors, respectively, and in Fig. 7 the correlations of HML HML− • and SMB SMB− •, for
each d d s• ∈ { , …, , }1 6 6 , with the term and default factors, respectively. In each panel of Figs. 6 and7, the last (right-most) point
indicates the correlation of the original HML or SMB for comparison, while the dotted lines indicate the 5% critical values, under the
null hypothesis of zero correlation, obtained from a bootstrap procedure designed to account for time-series dependence as well as
estimation error (see the Online Appendix). Fig. 6 shows that focusing on the level 3 details for the FF factors generally strengthens
the correlations with the associated state variable innovations, while focusing on the other timescale components reduces them,
often to insignificance. Conversely, Fig. 7 shows that removing the level 3 details from the FF factors generally reduces the
correlations with the state variable innovations, often to insignificance, whereas removing the other timescale components does not
reduce the correlations as much, if at all.

Overall, the results are consistent with a risk-based story for what we find in Section 3: The superior performance of the FFd3
model relative to the other variants of the FF model and the FF model itself comes from the fact that the level 3 details for the FF

Fig. 7. Correlations between the Fama–French factors and state variable innovations when excluding a timescale component of the former. In Panels A and B, the
first seven points indicate the partial correlation of HML HML− •, for d d s• ∈ { , …, , }1 6 6 , with the term factor, while the last point indicates that of HML. Similarly, in

Panels C and D, the first seven points indicate the partial correlation of SMB SMB− •, for d d s• ∈ { , …, , }1 6 6 , with the default factor, while the last point indicates that

of SMB. The partial correlations control for excess market returns. Indicated in dotted lines are the 5% critical values, under the null of zero correlation, obtained from
a bootstrap procedure designed to account for time-series dependence and estimation error.
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factors are better proxies for risk than the other timescale components of the FF factors and the FF factors themselves are. To the
extent that the innovations in term and default spreads represent the two underlying risk factors proxied by HML and SMB, focusing
on the level 3 details for the FF factors refines the factors’ information content about systematic risk, and thereby pricing
performance.

5. Concluding remarks

Standard beta pricing models quantify an asset's systematic risk as a weighted combination of different timescale betas. This
paper presents a wavelet-based framework that disentangles the explanatory power of these timescale betas for the cross section of
returns and thereby locates the priced information in the standard betas. Our framework extends the earlier work of Gençay et al.
(2003, 2005) by adding MRA-based regressions while rectifying their interpretation of ANOVA/ANCOVA-based regressions. The
framework provides a diagnostic tool to understand what makes a certain model perform relatively well or poorly by examining the
pricing implications of each timescale beta in isolation. One may thus use our framework to work backward from “diagnostic” results
to arrive at a new model, especially when the basic premise of a modeler is similar to that underlying, for example, Bansal and Yaron
(2004), Bansal et al. (2005), and Parker and Julliard (2005), that is, only part of the information in the standard betas is relevant for
pricing risky assets and the relevant part is concentrated in certain timescale betas.

In an application to the FF three-factor model, we not only demonstrate in detail an empirical implementation of our framework
but also obtain results that pose a new challenge to existing explanations for the model's well-known empirical success. Specifically,
we find that the FFd3 model explains the cross-sectional patterns in average returns better than any other variants of the FF model or
the FF model itself do. The FFd3 model also drives out portfolio characteristics and the remaining components of the betas in the
cross-sectional regression. Given the robust evidence of the information tilt in the standard betas toward their scale 3 components,
we expect that any viable explanation for the success of the FF model that has been applied to the FF factors should apply
particularly to the level 3 details for the FF factors, but not to the other timescale components.

In this light, FF's (1993) risk-based explanation, for example, should show that the ability of the FF factors to proxy for
underlying risk factors comes from the level 3 details for the FF factors, but not from the other timescale components. Drawing on
the work of Hahn and Lee (2006) and Petkova (2006) for the identity of the underlying risk factors that HML and SMB proxy for, we
find evidence validating the risk-based explanation. Specifically, by revisiting Hahn and Lee's (2006) regressions of HML or SMB on
innovations in term and default spreads, we find that a substantial fraction of the estimated regression coefficient of HML (SMB) on
the term (default) factor comes from the effect of the level 3 details for HML (SMB). In addition, while focusing on the level 3 details
for the FF factors strengthens the FF factors’ correlations with the associated state variable innovations, correlations between the FF
factors and the state variable innovations that are otherwise significant become insignificant when we remove the level 3 details from
the FF factors. While it would be interesting to evaluate in this manner other explanations for the success of the FF model, we leave
this task for future work.
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