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Abstract 
Environmental protection is a complex issue. Different types of pollutants behave differently, 

and different locations may present different environmental problems. This is particularly true 

in China, which is a vast country with significant pollution problems that vary across regions. 

This study undertakes a comprehensive analysis of the emission levels of 11 environmental 

pollution indicators to provide evidence on the relationship between these 11 indicators and 

economic development in China, measured by per capita, applying the environmental Kuznets 

curve (EKC) hypothesis to data derived over the period 1999 to 2010. Our study also closely 

examines the data on the 11 pollutants in three regions of China to determine the presence of 

an EKC for each pollutant on a regional basis. Our results have important policy implications. 

We suggest that the best way to address China’s complex and variable pollution problems is 

to supplement national environmental policy with policies that target specific regions and take 

into account both economic development and the emission levels of the specific pollutants 

present in each region. 
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I. Introduction 

Pollution is usually one of the biggest concerns for many countries and is particularly so 

for China, which has seen rapid economic development in recent decades. As a result, during 

the past decades, corporate social responsibility (CSR) performance, which measures firms’ 

commitment to both environmental and social activities, has become a critical issue globally 

and is now a primary corporate governance concern and business practice for many firms. 

Research in accounting, business, and management generally finds a positive relationship 

between CSR and firm value (Dhaliwal et al., 2011; Dhaliwal et al., 2012; Chen et al., 2016; 

Radhakrishnan et al., 2018; Clarkson et al., 2019; Muslu et al., 2019; Liao et al., 2020; Ryou 

et al., 2020; Tsang et al., 2021). 

Meanwhile, the empirical literature has investigated the relationship between economic 

growth and environmental quality. These studies are motivated by a desire to provide 

scientific evidence with important public policy implications. Among these studies, the 

environmental Kuznets curve (EKC) hypothesis has been extensively analysed (e.g. Dinda 

and Coondoo, 2006; Song et al., 2008 Tamazian et al., 2009; Pao et al., 2011; Shahbaz et al., 

2012; Tiwari et al., 2013; Farhani et al., 2014; Apergis and Ozturk, 2015; Begum et al., 2015; 

Jebli and Youssef, 2015; Al-Mulali et al., 2016; Dogan and Turkekul, 2016; Liu et al., 2017; 

Liu et al., 2019). The EKC hypothesis states that the environment deteriorates during the 

initial stages of economic growth but improves once the economy reaches a level of 

development that is evidenced by higher personal income levels (Grossman and Krueger, 

1991; Grossman and Krueger, 1995).  

Studies using the EKC in China have been a heated topic of discussion in recent years as 

China is facing the challenges of accelerated economic growth and rapidly worsening 

environmental quality. Environmental deterioration and resource exhaustion are common 

problems in developing countries when those countries experience rapid economic growth. 

According to the World Bank, China’s economy has enjoyed an annual growth rate of almost 

10% in GDP since major economic reforms started in 1978. China’s gross national income 

(GNI) per capita was $293 in 1985 and reached $10,410 in 2019 (World Bank). However, the 

fast-growing economy has come with significant costs, namely, overuse of natural resources 

and declining environmental quality. Total sulphur dioxide (SO2) emissions in China, for 

example, were 23 million tons in 1995 and 25 million tons in 2005, the highest volume in the 

world at those times. Every year, over one hundred thousand Chinese people suffer from, and 

many die of, respiratory diseases. The serious air pollution problem has become a heavy 

burden to China’s future sustainable economic development. The Chinese government did not 

pay serious attention to the problem until 2000. As pressure to address these environment 

issues increased, the Chinese government started implementing a series of environmental 

regulations. According to China’s 13th five-year plan, the Chinese government aims to reduce 

carbon dioxide (CO2) emissions per unit of GDP by at least 40% by 2020 compared to 2015 
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levels. In addition, under the Paris Agreement, which it signed in 2016, China has pledged to 

reach peak CO2 emissions by 2030. Policymakers in China need more scientific evidence to 

develop effective policies to achieve these targets. 

The results from the current literature are quite conflicting. According to the meta-

analysis study conducted by Saqib and Benhmad (2021), 57% of the results from the current 

literature support the validity of the EKC hypothesis, while 43% do not. Dinda (2004) 

summarises prior studies and suggests that the EKC hypothesis applies only to environmental 

problems that are easy to resolve, well documented, and well known. He points out that the 

EKC hypothesis is valid for SO2 and carbon monoxide (CO) emissions, but other pollutants 

follow either monotonicity or have an N-shaped relationship with economic development. 

Using a sample of many countries, Selden and Song (1994) find that SO2 emissions per capita 

is a monotonic function of income; however, SO2 emissions show an inverted U-shaped 

relationship to income when using a subsample of high-income countries. Taking diagnostic 

statistics and specification tests into account and using appropriate techniques, Perman and 

Stern (2003) reject the existence of an EKC in the case of SO2 emissions and then cast doubt 

on the general applicability of the EKC hypothesis.  

Studies applying EKC analyses in China also fail to reach a definitive conclusion. 

Yaguchi et al. (2007) compare emissions of SO2 and carbon dioxide (CO2), as well as energy 

consumption in Japan and China, for the last few decades, and they conclude that an inverted 

U-shaped EKC exists only in the case of SO2 emissions in Japan, although they acknowledge 

that it is possible that China is on the flat turning portion of the EKC. Using China data, Liu 

et al. (2007) show that production-induced pollutants support the EKC hypothesis while 

consumption-induced pollutants do not. Li et al. (2016) find evidence in support of the EKC 

hypothesis in China for CO2, waste water, and solid waste, and Riti et al. (2017) also find 

support for the hypothesis for CO2 in China. More recently, Ahmad et al. (2021) confirm the 

existence of an EKC for CO2 at the aggregate level, but results for the provincial level vary. 

These inconsistent results make it hard for policymakers to make appropriate policy decisions. 

In this study, we make two primary contributions to the literature. First, we analyse a 

comprehensive list of 11 emissions that represent the three major areas of pollution: air, water 

and solid waste. Second, we examine disaggregated data for each of three major regions in 

China to provide evidence to assist regional governments in developing policies targeted 

specifically to their regions.  

The 11 emissions included in our analysis are (1) industrial waste gas emissions, (2) SO2 

emissions by industry, (3) SO2 emissions by consumption, (4) soot emissions by industry, (5) 

soot emissions by consumption, (6) industrial dust emissions, (7) CO2 emissions, (8) waste-

water discharge from industry, (9) waste-water discharge from consumption, (10) solid waste 

by industry, and (11) solid waste by consumption. To the best of our knowledge, this is the 

first study to analyse the emissions of a comprehensive list of pollutants in China.  
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Carefully examining all the pollutants serves us in two ways. First, our findings provide 

more detailed information that the government can use to make effective environment policies 

that address more precisely the pollution problems presented by different pollutants. The key 

to solving any complex problem is having a thorough and nuanced understanding its causes. 

We need to understand the relationship between economic growth and the emission levels of 

each pollutant to find solutions for China’s pollution problem since every pollutant has a 

different EKC. Indeed, after analysing the emission levels of seven pollution indicators to 

investigate the relationship between economic growth and the contribution of such indicators 

to air pollution, our results confirm that three of the indicators, CO2, industrial SO2, and 

industrial waste gas emissions per capita, show a statistically significant inverted U-shaped 

EKC relationship with GDP per capita.  

However, the results show that these pollutants are in different stages according to our 

EKC analysis. For CO2 and industrial SO2, China has reached and passed its EKC peak and 

emissions are declining in relation to GDP per capita. Industrial waste gas emissions, however, 

are still on an upward trend, far away from reaching the EKC turning point. For the other four 

air pollution indicators, SO2 emissions by consumption, soot emissions by industry and 

consumption, and industrial dust emissions, we find no significant relationship between per 

capita emissions of those indicators and GDP per capita. The policy implications from these 

results are clear: It is time for government to take serious action to control industrial waste 

gas emissions to reach the turning point more quickly and flatten the EKC, while for CO2 

emissions and industrial SO2 emissions, our analysis shows that prior policies have taken 

effect and there is no urgent need to promote new policies. For the other four air pollution 

indicators, the policy implications are unclear and further research may be needed to provide 

guidance for effective policy decisions. 

Our EKC analysis of the two water pollution indicators shows that industrial waste-water 

emissions are declining in relation to GDP per capita. Interestingly, however, consumption 

waste water does not show any sign of declining. It is important for the government to closely 

monitor consumption waste water and make new policies or revise prior policies to stop 

consumption waste water’s upward trend. For solid waste pollution, our EKC analysis does 

not demonstrate any statistically significant relationship between GDP per capita and the two 

indicators we examined, per capita solid waste disposals by industry and by consumption. We 

suggest more research on this topic is necessary to provide evidence to guide near-term policy 

development.  

In addition, applying an EKC analysis to each of the 11 pollutants enhances our study in 

that it helps explain the conflicting findings in the current literature. The findings of previous 

studies are variable and often ambiguous, which impairs the government’s ability to develop 

precise and effective environmental policies. Since each pollutant has unique characteristics 

from an EKC perspective, examining the relative contributions by the individual pollutants 
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can provide clear conclusions. 

The second primary contribution of our study to the literature on the relationship between 

economic growth and environmental quality is our use of disaggregated data to provide 

evidence that each local government can use to develop environmental policies that address 

the specific circumstances of their region. To the best of our knowledge, this is the first study 

to analyse EKC at a regional level. As Xu (2018) points out, aggregation bias arises in EKC 

studies in China because results from disaggregated data fail to support conclusions reached 

using aggregated data. To alleviate the problem of aggregation bias, we divide the 30 

provinces into three regions according to each province’s geographical location and economic 

structures. Geographical location is the best and easiest proxy for industry type, which directly 

correlates with the presence of the specific environmental pollutants. With respect to 

economic structures, China is a vast country with uneven economic development across 

regions. As expected, our results show the following: The most EKC relationships between 

GDP per capita and the emission levels of the 11 studied pollutants are observed in the eastern 

region, which has the highest level of economic development; the fewest EKCs are observed 

in the western region, which has the lowest GDP per capita; and in the central region, which 

has the median GDP per capita, the number of EKCs observed is between the numbers of 

EKCs found in the other two regions.  

A one-size-fits-all policy will not resolve China’s pollution problems. It is important for 

each local government to understand the environmental problems that are characteristic of its 

region; only then will they be able to develop policies that effectively address each individual 

problem and, as a result, improve overall environmental quality. 

The remainder of this paper is organised as follows: Section II presents our empirical 

model and data, section III discusses the results of our data analysis, and section IV 

summarises our study and concludes the paper. 

 

II. Empirical Model and Data 

Although there are a wide variety of specifications for the EKC, the basic model usually 

takes the following form: an indicator of pollutant emissions is the dependent variable; per 

capita income or GDP, its squared term, and a set of control variables are the explanatory 

variables.  

𝐸𝑀௧ ൌ α    βଵ GDP௧    βଶGDP௧
ଶ   ∑ β 𝑍௧  𝜀௧,                    (1) 

where EM represents per capita pollutant emissions, GDP௧ is per captia GDP, t is the time 

index and i is the regional index, 𝑍௧ denotes other control variables, and 𝜀௧ is the error 

term. 

Instead of using the traditional fixed-effects model for panel data, we estimate the 

econometric model using the dynamic panel data estimator proposed by Arellano and Bond 
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(1991).4  The advantage of using the dynamic panel data estimator is that it produces an 

unbiased estimator for panel data with short time periods, which is the case in this paper. In 

the dynamic panel data model, the lagged dependent variable is used as an instrument to 

address the potential endogeneity issue. Such specification is preferred since pollution is 

dynamic in the sense that current pollution level depends on its own past realisation. 

 ln ሺ𝐸𝑀௧ሻ ൌ α   ln ሺ𝐸𝑀௧ିଵሻ βଵ ln ሺGDP௧ሻ   βଶln ሺGDP௧ ሻଶ  

   βଷ Trade௧βସ Urban௧βହ Energy௧β EnvInv௧ିଵ  𝜀௧,      (2) 

where EM represents per capita pollutant emissions, GDP௧ is per capita GDP, t is the time 

index and i is the region/province index, and 𝜀௧ is the error term.  

We include the following control variables other than GDP: trade openness, denoted by 

Trade and measured by the total of exports and imports as a percentage of GDP; level of 

urbanisation, denoted by Urban and measured by the percentage of the population within 

province that lives in urban areas; energy consumption, denoted by Energy and measured by 

per capita electricity consumption; and environmental investment, denoted by EnvInv and 

measured as investment in pollution treatments as a percentage of GDP.  

Per capita GDP and per capita emissions enter the model after natural log transformation. 

Also, we include environmental investment as a lagged variable for two reasons. First, it may 

take time for pollution treatment to make an impact on pollutant emissions. Second, decisions 

on environmental investment can rely on the emission levels of various pollutants; thus, 

including it as a lagged term can alleviate endogeneity.  

Data in this paper are obtained mainly from the China Statistical Yearbook. Data on GDP, 

population, exports and imports, urban population, energy consumption, environmental 

investment, and 10 of the 11 pollutant emissions are collected for 30 provinces in China from 

1999 to 2010 (excluding Inner Mongolia, Hong Kong, Macao, and Taiwan).5 Due to the lack 

of official CO2 emission data, we use the provincial CO2 emission data published in Shan et 

al. (2018). The 11 pollutant emissions represent three types of emissions: air, water and solid 

waste. Table 1 provides descriptions of the 11 emissions, and Table 2 provides summary 

statistics for all the data. All emission, GDP, and energy consumption data are converted into 

per capita values. 

 

Table 1  Variable Descriptions 
Table 1 defines all the variables used in this study. Eleven emissions are classified into three categories: air, 
water, and solid.  

Pollutant Variable Unit 

AIR 
I-Gas Industrial waste gas emission 1000 m3 per capita 
I-SO2 Industrial sulphur dioxide emission Kg per capita 

                                                        
4 Fixed-effects model estimation results are available upon request. 
5 Data on certain emissions are no longer collected after 2010, and thus our sample size is limited to 12 years 

of data.  
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C-SO2 Consumption sulphur dioxide emission  Kg per capita 
CO2 Carbon dioxide emissions Million tons per capita 

I-Soot Industrial soot emission Kg per capita 
C-Soot Consumption soot emission Kg per capita 
I-Dust Industrial dust emission Kg per capita 

WATER 
I-Water Industrial waste water discharge  Tons per capita 
C-Water Consumption waste water discharge  Tons per capita 

SOLID 
I-Solid Industrial solid waste produced Kg per capita 
C-Solid Consumption waste collected Tons per capita 

 

Table 2  Summary Statistics 
Table 2 presents the descriptive statistics of all the variables used in this study during the sample period of 
1999 to 2010. Emissions, GDP, and energy consumption are per capita values. All the data except CO2 come 
from the China Statistical Yearbook. CO2 emission data are adopted from Shan et al. (2018). 

Variable N Mean Std Dev Minimum Maximum 

I-Gas 360 24.95 21.87 4.48 257.90 

I-SO2 360 15.80 9.90 2.42 57.95 

C-SO2 360 3.43 3.58 0.00 22.91 

CO2 356 178.24 136.33 8.10 766.60 

I-Soot 360 7.00 5.08 0.75 27.12 

C-Soot 360 2.24 1.96 0.00 8.59 

I-Dust 360 6.47 4.44 0.42 31.14 

I-Water 360 16.86 9.48 3.08 57.86 

C-Water 360 23.41 15.89 6.29 98.56 

I-Solid 360 16.64 34.04 0.00 224.00 

C-Solid 240 0.13 0.08 0.04 0.39 

GDP 360 17.12 13.91 2.46 78.33 

Trade 360 62.84 80.78 6.08 368.96 

Urban 360 45.27 15.58 21.71 89.30 

Energy Consumption 360 0.27 0.18 0.05 1.17 

Envir. Invt. 360 30.14 28.74 1.25 178.62 

 

III. Results and Discussion 

3.1 Main Model 

We start our analysis with the results from our main model, which are shown in Table 3. 

In addition to the 11 individual pollutant emissions, we also consider total SO2, soot, waste 

water, and solid waste, in each case from both industry and consumption. The autocorrelation 

(AR) tests at lag 1 shown in Table 3 confirm a serial correlation of order one, and thus 

including the lagged dependent variable is necessary. The AR tests at lag 2 suggest no serial 

correlation and thus no deeper lags are needed. 

 



134 Jia, Liu, and Li 

Table 3  Regression Results for National Data Set 
Table 3 presents the results at national level from the dynamic panel data model on 11 emissions in year t as 
the dependent variable and with the lagged dependent variable Lag(emission) as instruments: 

ln ሺ𝐸𝑀௧ሻ ൌ α   ln ሺ𝐸𝑀௧ିଵሻ βଵ ln ሺGDP௧ሻ    βଶln ሺGDP௧ ሻଶ  
βଷ Trade௧βସ Urban௧βହ Energy௧β EnvInv௧ିଵ  𝜀௧ 

Standard deviations are reported in parentheses. *p<0.10, **p<0.05, ***p<0.01. 

Variable (1) I-Gas (2) I-SO2 (3) C-SO2 (4) CO2 (5) I-Soot (6) C-Soot (7) I-Dust 
Lag (emission) 0.087 0.658*** 0.647*** 0.530*** 0.710*** 0.570*** 0.544*** 
 (0.113) (0.067) (0.139) (0.163) (0.100) (0.094) (0.063) 
ln(GDP) 1.047*** 0.677*** 0.190 0.728*** 0.247 0.288 0.336 
 (0.305) (0.213) (0.252) (0.159) (0.169) (0.244) (0.299) 
ln(GDP)2 -0.101** -0.136*** -0.094* -0.096*** -0.074** -0.064 -0.164*** 
 (0.039) (0.032) (0.051) (0.019) (0.029) (0.041) (0.050) 
Urban 0.000 0.001** -0.002** 0.001 0.001 -0.001 0.001* 
 (0.001) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) 
Trade 0.024** 0.005 0.014 0.008 0.006 0.017 0.027** 
 (0.009) (0.009) (0.015) (0.010) (0.009) (0.020) (0.012) 
Energy 0.388** 0.233 0.911** 0.339 0.255 -0.247 0.616** 
 (0.158) (0.197) (0.385) (0.212) (0.225) (0.560) (0.273) 
Lag (Env. Inv. ) -0.000 -0.001*** 0.000 -0.000 -0.002*** 0.001* -0.002** 
 (0.001) (0.000) (0.001) (0.000) (0.001) (0.001) (0.001) 
AR test (p-value) 0.103 0.382 0.191 0.163 0.263 0.774 0.344 

Table 3  (Continued) 

Variable 
(8) 

I-Water
(9) 

C-Water
(10) 

I-Solid 
(11) 

C-Solid
Total SO2

(2)+(3)
Total Soot

(5)+(6)

Total 
Waste 
Water 

Total 
Solid 
Waste 

Lag (emission) 0.619*** 0.292** 0.148 -0.061 0.653*** 0.684*** 0.300* 0.583*** 
 (0.077) (0.125) (0.133) (0.142) (0.071) (0.088) (0.157) (0.123) 
ln(GDP) 0.243** 0.392*** -0.344 -0.224 0.636*** 0.327* 0.294*** -0.495 
  (0.119) (0.121) (1.254) (0.170) (0.174) (0.185) (0.112) (0.794) 
ln(GDP)2 -0.077*** -0.030 -0.059 0.036 -0.123*** -0.072** -0.042** -0.068 
  (0.019) (0.019) (0.285) (0.037) (0.025) (0.029) (0.017) (0.142) 
Trade -0.000 0.000*** -0.007 0.001** 0.001** 0.000 0.000** -0.005 
  (0.000) (0.000) (0.005) (0.000) (0.000) (0.001) (0.000) (0.004) 
Urban 0.008 0.001 -0.064 0.010 0.002 -0.007 0.004 0.015 
  (0.006) (0.004) (0.069) (0.006) (0.006) (0.010) (0.005) (0.030) 
Energy 0.637*** 0.010 -0.673 -0.056 0.111 0.248 0.285*** 0.683 
  (0.154) (0.095) (2.097) (0.462) (0.167) (0.182) (0.103) (0.822) 
Lag Env. Inv. -0.000 0.000 0.004 -0.001* -0.001** -0.001* 0.000 -0.002 
  (0.001) (0.000) (0.005) (0.000) (0.000) (0.000) (0.000) (0.002) 
AR test (p-value) 0.252 0.611 0.462 0.602 0.445 0.835 0.456 0.258 

 

3.1.1 Air pollution 

A total of seven air pollution indicators are considered, including CO2, SO2 (from 

industry and consumption), soot (from industry and consumption), industrial waste gas, and 

dust. SO2 and CO2 are the most important indicators monitored and regulated by most 
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countries. Both gases are produced mainly by manufacturing facilities and coal-based power 

plants, and the latter are the main source of power in China. For both CO2 and industrial SO2 

emissions, the coefficient of GDP is positive and the coefficient GDP-squared is negative, 

both being highly significant. This confirms the existence of a EKC for these two emissions, 

which is in accordance with previous literature. The turning points are 44,330 RMB ($6,926) 

and 12,049 RMB ($1,854) for CO2 and industrial SO2, respectively.6 In 2020, GDP per capita 

in China was $10,504. This suggests that, in general, China has reached and passed its EKC 

peak in CO2 and SO2, and both emissions are expected to decline. However, given the vast 

difference in economic development across different regions of China, it is still possible that 

certain areas will see increased CO2 and SO2 emissions before these emissions can be expected 

to decline. 

Among the remaining emissions, an EKC is confirmed only for industrial waste gas 

emissions. The turning point is 178,247 RMB ($27,422), which is still much higher than the 

current GDP per capita in China. The insignificant relationship between GDP and emissions 

such as SO2 from consumption, soot and dust may reflect either that economic development 

has no significant impacts on those emissions or merely that economic development has not 

yet reached a level at which its impact on those emissions is reflected in an EKC. 

3.1.2 Water pollution 

For water pollution, we find an inverted U-shaped EKC for industrial waste-water 

emissions, with GDP and GDP-squared both being highly significant. The turning point is 

4844 RMB ($745), which is well below the current GDP per capita. Thus, China has passed 

the turning point for industrial waste-water emissions and the overall level of emissions is 

declining with economic growth. In comparison, no EKC is found for waste water from 

consumption; instead, the positive and significant coefficient of GDP together with the 

insignificant coefficient of GDP-squared suggests that consumption waste water has been 

continuously increasing as China’s economy grows. Additional policies or modifications of 

existing policies may be needed to better address the issue.  

3.1.3 Solid waste 

For solid waste, no EKC is found for either industrial or consumption emissions, as the 

coefficients of both GDP and GDP-squared are insignificant. It is possible that these results 

are inconclusive because economic development during our sample period is not high enough 

to demonstrate a significant relationship between GDP and solid waste emissions.  

3.1.4 Total industrial and consumption emissions 

Regardless of whether emissions are from industry or consumption, they are essentially 

                                                        
6 Turning points are calculated as TP =𝑒ି ఉଵ/ሺଶఉଶ ሻsince GDP is included in the model with natural log 

transformation.  
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the same emissions discharged into the environment. Therefore, we aggregate industrial and 

consumption emissions of SO2, soot, waste water, and solid waste and consider them as the 

total emissions of each type. 

We find an inverted U-shaped EKC for all total emissions except total solid waste. When 

considered individually, industrial or consumption soot emissions do not exhibit any U-

shaped curve. However, when total soot emissions are examined, we do observe an EKC, 

which suggests that as a total discharge into the air, soot emissions increase during the initial 

stages of economic growth but gradually improve after the peak. In terms of total solid waste, 

instead of a U-shaped EKC, we find it to be monotonically increasing with GDP. Such a 

relationship calls for more stringent and specific environmental policies to better address 

increasing solid waste discharges. 

3.1.5 Other control variables 

The other control variables included in our model have limited effects on emissions: 

 Trade shows positive and significant effects on six of the emissions. The positive effect 

could be due to the shift of polluting industries to developing countries like China.  

 Urbanisation is in general positive and significant in two of the 15 regressions. Previous 

literature has shown mixed results in terms of how urbanisation can affect emissions. 

The positive effect found in our study may be due to the growth in population and an 

increase in the concentration of industry in urban areas (Panayotou, 1997).  

 As expected, in accordance with previous literature, we found positive and significant 

effects of energy consumption on emissions in five of the regressions.  

 Lastly, environmental investment shows negative and significant effects on six of the 

emissions. Such effects are expected as environmental investment is aimed at reducing 

pollution.  

3.2 Regional Models 

The data set includes data from all 30 provinces of China, which differ in terms of 

economic structures, development levels, and natural resources. Thus, it is reasonable to 

assume that different emission-development relationships exist in different regions. Therefore, 

we estimate the regional disparity by comparing results across three regions: eastern, central, 

and western China. The results are shown in Table 4. The “eastern” region includes Beijing, 

Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, 

Guangxi, and Hainan, a total of 12 provinces along the coast. The “central” region includes 

Inner Mongolia, Jilin, Heilongjiang, Shanxi, Anhui, Jiangxi, Henan, Hubei, and Hunan, a total 

of nine provinces. The “western” region includes Chongqing, Sichuan, Guizhou, Yunnan, 

Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang, a total of nine provinces. Heilongjiang and 

Jilin are treated as central provinces due to their production structures and levels of economic 

development instead of their geographical location. The divisions are basically in accordance 
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with the official divisions, other than merging “north-eastern” into “central” due to their 

similar economic structures.  

 

Table 4  Regression Results by Region 
Table 4 represents the results at regional level from the dynamic panel data model on 11 emissions in year t 
as the dependent variable and with the lagged dependent variable Lag(emission) as instruments. 

ln ሺ𝐸𝑀௧ሻ ൌ α   ln ሺ𝐸𝑀௧ିଵሻ βଵ ln ሺGDP௧ሻ    βଶln ሺGDP௧ ሻଶ  
βଷ Trade௧βସ Urban௧βହ Energy௧β EnvInv௧ିଵ  𝜀௧ 

Standard deviations are reported in parentheses. *p<0.10, **p<0.05, ***p<0.01. 

Variables (1) I-Gas (2) I-SO2 (3) C-SO2 (4) CO2 (5) I-Soot (6) C-Soot (7) I-Dust 
Eastern (Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, 
Guangdong, Guangxi, and Hainan) 
ln (GDP) 1.750*** 0.861*** 1.734*** 1.284*** -0.303 1.952*** 0.700** 
 (0.566) (0.217) (0.621) (0.427) (0.199) (0.613) (0.321) 
ln (GDP)2 -0.199*** -0.174*** -0.360*** -0.164*** -0.014 -0.358*** -0.180*** 
 (0.074) (0.035) (0.117) (0.050) (0.030) (0.085) (0.041) 
Central (Inner Mongolia, Jilin, Heilongjiang, Shanxi, Anhui, Jiangxi, Henan, Hubei and Hunan) 
ln (GDP) 0.808** 2.188*** 0.052 1.408*** 1.583*** 0.280** 2.608*** 
 (0.348) (0.382) (0.178) (0.485) (0.325) (0.142) (0.581) 
ln(GDP)2 -0.074 -0.390*** -0.068 -0.180** -0.337*** -0.058* -0.600*** 
 (0.054) (0.060) (0.043) (0.074) (0.049) (0.035) (0.097) 
Western (Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia and 
Xinjiang) 
ln (GDP) 0.272 0.385** 0.437 1.005*** -0.176 0.099 0.153 
 (0.335) (0.186) (0.394) (0.343) (0.176) (0.337) (0.302) 
ln (GDP)2 0.111 -0.122*** -0.164* -0.153** 0.056 0.029 -0.118 
 (0.086) (0.045) (0.099) (0.068) (0.062) (0.079) (0.100) 

Table 4  (Continued) 
Variables (8) 

I-Water
(9) 

C-Water 
(10) 

I-Solid
(11) 

C-Solid
Total SO2

(2)+(3)
Total Soot

(5)+(6)
Total 
Waste 
Water 

Total  
Solid 
Waste 

Eastern (Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, 
Guangdong, Guangxi, and Hainan) 
ln(GDP) 1.229*** 0.316** -2.404 -0.044 0.811*** -0.283** 0.783*** -3.512*** 
 (0.318) (0.145) (1.930) (0.281) (0.197) (0.138) (0.186) (0.943) 
ln(GDP)2 -0.255*** -0.044* -0.150 -0.021 -0.167*** -0.046 -0.112*** 0.155 
 (0.048) (0.025) (0.372) (0.041) (0.033) (0.032) (0.030) (0.167) 
Central (Inner Mongolia, Jilin, Heilongjiang, Shanxi, Anhui, Jiangxi, Henan, Hubei and Hunan) 
ln(GDP) -0.032 -0.036 -0.085 -0.163 1.621*** 1.203*** -0.013 1.590 
 (0.313) (0.127) (2.287) (0.526) (0.356) (0.300) (0.182) (2.563) 
ln(GDP)2 -0.017 0.032 0.376 -0.010 -0.350*** -0.257*** 0.012 -0.425 
 (0.057) (0.028) (0.506) (0.096) (0.056) (0.044) (0.033) (0.571) 
Western (Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang) 
ln(GDP) -0.015 0.391*** -0.024 -0.143 0.443** -0.038 0.305* 2.415 
 (0.141) (0.135) (1.530) (0.401) (0.215) (0.237) (0.171) (1.963) 
ln(GDP)2 -0.062* -0.092** -0.255 0.037 -0.132*** 0.040 -0.078** -0.838** 
 (0.034) (0.038) (0.320) (0.117) (0.040) (0.055) (0.033) (0.408) 
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For the eastern region, an EKC is found for most emission indicators. The only 

exceptions are industrial soot emissions and industrial, consumption and total solid waste. 

Such results are expected as the eastern region is fast growing with relatively high income per 

capita, and thus our sample can better capture the curve in the relationship. It is worth noting 

that although no EKC is found for total soot and total solid waste, these two types of emissions 

decline monotonically with economic development, as shown by the negative and significant 

coefficients. 

The central region of China is usually considered to be in the middle in terms of 

economic development when compared with the other two regions. For the central region, an 

EKC is found for almost half of the emission indicators. Yet a concerning finding is that 

industrial gas emissions seem to increase monotonically with economic development for the 

central region.  

Lastly, the western region shows the fewest EKC relationships. Only industrial SO2, total 

SO2, waste water from consumption, and total waste water show an inverted U-shaped 

relationship with GDP per capita. The lack of EKCs in the western region is not surprising as 

the region is still at a relatively low level of economic development. With China’s economic 

policy focusing on the western region, we may observe declining emissions as the economy 

grows. 

The findings of substantial differences across regions not only illustrates how the 

economy can impact emissions across different regions but also highlights the existence of 

regional disparities in China’s economic growth in general. The fact that these economic 

disparities will not be fully resolved in the near term further emphasises the need for an 

increased focus on local environmental policies that address individual regions’ specific needs 

in addition to the national level environmental policy. The cumulative effect of more effective 

local policies would contribute to improved environmental quality throughout China. 

 

IV. Conclusions 

In the economic development process of most developed countries, there seems to be a 

general rule—degradation then improvement in environmental quality with an increase in per 

capita income. However, not all developing countries follow this pattern. Environmental 

policies and regulations, particularly in the areas of natural resource exploration and 

production, are important factors in preserving and improving environmental quality. This is 

particularly true in China, which has unified authoritarian economic policies.  

The inverted U-shaped EKC relationship to per capita income levels cannot be 

generalised for all types of pollutants. As shown in our analysis, there is not necessarily an 

inverted U-shaped relationship for all pollutants across all regions. The shape of the 

relationship depends on the nature of the pollutants, such as source and duration. Differences 

in economic structures also change the relationship between economic development and 
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environmental quality. Since the Chinese economy is currently still at the low- to middle-

income stage, most regions in China are on the rising section of the relationship curve. Perhaps 

more than any other factor, environmental policies established by governments often shape 

the relationship curves greatly. Given the variation in economic development levels and in the 

relationships between income levels and the emission levels of various pollutants across 

regions, it is critical to have environmental policies targeting specific regions that take into 

account a region’s economic growth rate and per capita income levels and address the 

pollutants present in the region individually. 
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